1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-23 16:38:37 -05:00
sdrangel/liblimesuite/srcmw/lms7002m/LMS7002M.cpp

2654 lines
91 KiB
C++

/**
@file LMS7002M.cpp
@author Lime Microsystems (www.limemicro.com)
@brief Implementation of LMS7002M transceiver configuring
*/
#define _USE_MATH_DEFINES
#include <cmath>
#include <ciso646>
#include "vasprintf.h"
#include "LMS7002M.h"
#include <stdio.h>
#include <set>
#include "IConnection.h"
#include "ErrorReporting.h"
#include "INI.h"
#include <cmath>
#include <iostream>
#include <fstream>
#include <algorithm>
#include "LMS7002M_RegistersMap.h"
#include "CalibrationCache.h"
#include <math.h>
#include <assert.h>
#include <chrono>
#include <thread>
#include "Logger.h"
#include "MCU_BD.h"
const static uint16_t MCU_PARAMETER_ADDRESS = 0x002D; //register used to pass parameter values to MCU
#define MCU_ID_DC_IQ_CALIBRATIONS 0x01
#define MCU_FUNCTION_CALIBRATE_TX 1
#define MCU_FUNCTION_CALIBRATE_RX 2
using namespace std;
using namespace lime;
#include "MCU_BD.h"
float_type LMS7002M::gVCO_frequency_table[3][2] = { { 3800e6, 5222e6 }, { 4961e6, 6754e6 }, {6306e6, 7714e6} };
float_type LMS7002M::gCGEN_VCO_frequencies[2] = {1950e6, 2900e6};
///define for parameter enumeration if prefix might be needed
extern std::vector<const LMS7Parameter*> LMS7parameterList;
//module addresses needs to be sorted in ascending order
const uint16_t LMS7002M::readOnlyRegisters[] = { 0x002F, 0x008C, 0x00A8, 0x00A9, 0x00AA, 0x00AB, 0x00AC, 0x0123, 0x0209, 0x020A, 0x020B, 0x040E, 0x040F };
const uint16_t LMS7002M::readOnlyRegistersMasks[] = { 0x0000, 0x0FFF, 0x007F, 0x0000, 0x0000, 0x0000, 0x0000, 0x003F, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 };
/** @brief Simple logging function to print status messages
@param text message to print
@param type message type for filtering specific information
*/
void LMS7002M::Log(const char* text, LogType type)
{
switch(type)
{
case LOG_INFO:
lime::info(text);
if(log_callback)
log_callback(text, type);
break;
case LOG_WARNING:
lime::warning(text);
if(log_callback)
log_callback(text, type);
break;
case LOG_ERROR:
lime::error(text);
if(log_callback)
log_callback(text, type);
break;
case LOG_DATA:
lime::debug(text);
if(log_callback)
log_callback(text, type);
break;
}
}
//Compatibility for vasprintf under MSVC
#ifdef _MSC_VER
int vasprintf(char **strp, const char *fmt, va_list ap)
{
int r = _vscprintf(fmt, ap);
if (r < 0) return r;
*strp = (char *)malloc(r+1);
return vsprintf_s(*strp, r+1, fmt, ap);
}
#endif
void LMS7002M::Log(LogType type, const char *format, va_list argList)
{
char *message = NULL;
if (vasprintf(&message, format, argList) != -1)
{
Log(message, type);
free(message);
}
}
/** @brief Sets connection which is used for data communication with chip
*/
void LMS7002M::SetConnection(IConnection* port, const size_t devIndex)
{
controlPort = port;
mdevIndex = devIndex;
if (controlPort != nullptr)
{
unsigned byte_array_size = 0;
if (controlPort->IsOpen())
{
unsigned chipRev = this->Get_SPI_Reg_bits(LMS7_MASK, true);
if (chipRev >= 1)
byte_array_size = 1024 * 16;
else
byte_array_size = 1024 * 8;
}
mcuControl->Initialize(port, mdevIndex, byte_array_size);
}
}
/** @brief Creates LMS7002M main control object.
It requires IConnection to be set by SetConnection() to communicate with chip
*/
LMS7002M::LMS7002M() :
useCache(0),
mValueCache(new CalibrationCache()),
mRegistersMap(new LMS7002M_RegistersMap()),
controlPort(nullptr),
mdevIndex(0),
mSelfCalDepth(0)
{
mCalibrationByMCU = true;
//memory intervals for registers tests and calibration algorithms
MemorySectionAddresses[LimeLight][0] = 0x0020;
MemorySectionAddresses[LimeLight][1] = 0x002F;
MemorySectionAddresses[EN_DIR][0] = 0x0081;
MemorySectionAddresses[EN_DIR][1] = 0x0081;
MemorySectionAddresses[AFE][0] = 0x0082;
MemorySectionAddresses[AFE][1] = 0x0082;
MemorySectionAddresses[BIAS][0] = 0x0084;
MemorySectionAddresses[BIAS][1] = 0x0084;
MemorySectionAddresses[XBUF][0] = 0x0085;
MemorySectionAddresses[XBUF][1] = 0x0085;
MemorySectionAddresses[CGEN][0] = 0x0086;
MemorySectionAddresses[CGEN][1] = 0x008C;
MemorySectionAddresses[LDO][0] = 0x0092;
MemorySectionAddresses[LDO][1] = 0x00A7;
MemorySectionAddresses[BIST][0] = 0x00A8;
MemorySectionAddresses[BIST][1] = 0x00AC;
MemorySectionAddresses[CDS][0] = 0x00AD;
MemorySectionAddresses[CDS][1] = 0x00AE;
MemorySectionAddresses[TRF][0] = 0x0100;
MemorySectionAddresses[TRF][1] = 0x0104;
MemorySectionAddresses[TBB][0] = 0x0105;
MemorySectionAddresses[TBB][1] = 0x010A;
MemorySectionAddresses[RFE][0] = 0x010C;
MemorySectionAddresses[RFE][1] = 0x0114;
MemorySectionAddresses[RBB][0] = 0x0115;
MemorySectionAddresses[RBB][1] = 0x011A;
MemorySectionAddresses[SX][0] = 0x011C;
MemorySectionAddresses[SX][1] = 0x0124;
MemorySectionAddresses[TxTSP][0] = 0x0200;
MemorySectionAddresses[TxTSP][1] = 0x020C;
MemorySectionAddresses[TxNCO][0] = 0x0240;
MemorySectionAddresses[TxNCO][1] = 0x0261;
MemorySectionAddresses[TxGFIR1][0] = 0x0280;
MemorySectionAddresses[TxGFIR1][1] = 0x02A7;
MemorySectionAddresses[TxGFIR2][0] = 0x02C0;
MemorySectionAddresses[TxGFIR2][1] = 0x02E7;
MemorySectionAddresses[TxGFIR3a][0] = 0x0300;
MemorySectionAddresses[TxGFIR3a][1] = 0x0327;
MemorySectionAddresses[TxGFIR3b][0] = 0x0340;
MemorySectionAddresses[TxGFIR3b][1] = 0x0367;
MemorySectionAddresses[TxGFIR3c][0] = 0x0380;
MemorySectionAddresses[TxGFIR3c][1] = 0x03A7;
MemorySectionAddresses[RxTSP][0] = 0x0400;
MemorySectionAddresses[RxTSP][1] = 0x040F;
MemorySectionAddresses[RxNCO][0] = 0x0440;
MemorySectionAddresses[RxNCO][1] = 0x0461;
MemorySectionAddresses[RxGFIR1][0] = 0x0480;
MemorySectionAddresses[RxGFIR1][1] = 0x04A7;
MemorySectionAddresses[RxGFIR2][0] = 0x04C0;
MemorySectionAddresses[RxGFIR2][1] = 0x04E7;
MemorySectionAddresses[RxGFIR3a][0] = 0x0500;
MemorySectionAddresses[RxGFIR3a][1] = 0x0527;
MemorySectionAddresses[RxGFIR3b][0] = 0x0540;
MemorySectionAddresses[RxGFIR3b][1] = 0x0567;
MemorySectionAddresses[RxGFIR3c][0] = 0x0580;
MemorySectionAddresses[RxGFIR3c][1] = 0x05A7;
MemorySectionAddresses[RSSI_DC_CALIBRATION][0] = 0x05C0;
MemorySectionAddresses[RSSI_DC_CALIBRATION][1] = 0x05CC;
mRegistersMap->InitializeDefaultValues(LMS7parameterList);
mcuControl = new MCU_BD();
mcuControl->Initialize(nullptr);
}
LMS7002M::~LMS7002M()
{
delete mcuControl;
delete mRegistersMap;
}
void LMS7002M::SetActiveChannel(const Channel ch)
{
if (ch == this->GetActiveChannel(false)) return;
this->Modify_SPI_Reg_bits(LMS7param(MAC), int(ch));
}
LMS7002M::Channel LMS7002M::GetActiveChannel(bool fromChip)
{
auto ch = Get_SPI_Reg_bits(LMS7param(MAC), fromChip);
return Channel(ch);
}
size_t LMS7002M::GetActiveChannelIndex(bool fromChip)
{
switch (this->GetActiveChannel(fromChip))
{
case ChB: return mdevIndex*2 + 1;
default: return mdevIndex*2 + 0;
}
}
int LMS7002M::EnableChannel(const bool isTx, const bool enable)
{
Channel ch = this->GetActiveChannel();
//--- LML ---
if (ch == ChA)
{
if (isTx) this->Modify_SPI_Reg_bits(LMS7param(TXEN_A), enable?1:0);
else this->Modify_SPI_Reg_bits(LMS7param(RXEN_A), enable?1:0);
}
else
{
if (isTx) this->Modify_SPI_Reg_bits(LMS7param(TXEN_B), enable?1:0);
else this->Modify_SPI_Reg_bits(LMS7param(RXEN_B), enable?1:0);
}
//--- ADC/DAC ---
this->Modify_SPI_Reg_bits(LMS7param(EN_DIR_AFE), 1);
if (ch == ChA)
{
if (isTx) this->Modify_SPI_Reg_bits(LMS7param(PD_TX_AFE1), enable?0:1);
else this->Modify_SPI_Reg_bits(LMS7param(PD_RX_AFE1), enable?0:1);
}
else
{
if (isTx) this->Modify_SPI_Reg_bits(LMS7param(PD_TX_AFE2), enable?0:1);
else this->Modify_SPI_Reg_bits(LMS7param(PD_RX_AFE2), enable?0:1);
}
int disabledChannels = (Get_SPI_Reg_bits(LMS7_PD_AFE.address,4,1)&0xF);//check if all channels are disabled
Modify_SPI_Reg_bits(LMS7param(EN_G_AFE),disabledChannels==0xF ? 0 : 1);
Modify_SPI_Reg_bits(LMS7param(PD_AFE), disabledChannels==0xF ? 1 : 0);
//--- digital ---
if (isTx)
{
this->Modify_SPI_Reg_bits(LMS7param(EN_TXTSP), enable?1:0);
this->Modify_SPI_Reg_bits(LMS7param(ISINC_BYP_TXTSP), enable?0:1);
this->Modify_SPI_Reg_bits(LMS7param(GFIR3_BYP_TXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(GFIR2_BYP_TXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(GFIR1_BYP_TXTSP), 1);
if (!enable)
{
this->Modify_SPI_Reg_bits(LMS7param(CMIX_BYP_TXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(DC_BYP_TXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(GC_BYP_TXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(PH_BYP_TXTSP), 1);
}
}
else
{
this->Modify_SPI_Reg_bits(LMS7param(EN_RXTSP), enable?1:0);
this->Modify_SPI_Reg_bits(LMS7param(DC_BYP_RXTSP), enable?0:1);
this->Modify_SPI_Reg_bits(LMS7param(DCLOOP_STOP), enable?0:1);
this->Modify_SPI_Reg_bits(LMS7param(AGC_MODE_RXTSP), 2); //bypass
this->Modify_SPI_Reg_bits(LMS7param(AGC_BYP_RXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(GFIR3_BYP_RXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(GFIR2_BYP_RXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(GFIR1_BYP_RXTSP), 1);
if (!enable)
{
this->Modify_SPI_Reg_bits(LMS7param(CMIX_BYP_RXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(GC_BYP_RXTSP), 1);
this->Modify_SPI_Reg_bits(LMS7param(PH_BYP_RXTSP), 1);
}
}
//--- baseband ---
if (isTx)
{
this->Modify_SPI_Reg_bits(LMS7param(EN_DIR_TBB), 1);
this->Modify_SPI_Reg_bits(LMS7param(EN_G_TBB), enable?1:0);
}
else
{
this->Modify_SPI_Reg_bits(LMS7param(EN_DIR_RBB), 1);
this->Modify_SPI_Reg_bits(LMS7param(EN_G_RBB), enable?1:0);
this->Modify_SPI_Reg_bits(LMS7param(PD_PGA_RBB), enable?0:1);
}
//--- frontend ---
if (isTx)
{
this->Modify_SPI_Reg_bits(LMS7param(EN_DIR_TRF), 1);
this->Modify_SPI_Reg_bits(LMS7param(EN_G_TRF), enable?1:0);
this->Modify_SPI_Reg_bits(LMS7param(PD_TLOBUF_TRF), enable?0:1);
this->Modify_SPI_Reg_bits(LMS7param(PD_TXPAD_TRF), enable?0:1);
}
else
{
this->Modify_SPI_Reg_bits(LMS7param(EN_DIR_RFE), 1);
this->Modify_SPI_Reg_bits(LMS7param(EN_G_RFE), enable?1:0);
this->Modify_SPI_Reg_bits(LMS7param(PD_MXLOBUF_RFE), enable?0:1);
this->Modify_SPI_Reg_bits(LMS7param(PD_QGEN_RFE), enable?0:1);
this->Modify_SPI_Reg_bits(LMS7param(PD_TIA_RFE), enable?0:1);
this->Modify_SPI_Reg_bits(LMS7param(PD_LNA_RFE), enable?0:1);
}
//--- synthesizers ---
if (isTx)
{
this->SetActiveChannel(ChSXT);
this->Modify_SPI_Reg_bits(LMS7param(EN_DIR_SXRSXT), 1);
this->Modify_SPI_Reg_bits(LMS7param(EN_G), (disabledChannels&3) == 3?0:1);
if (ch == ChB) //enable LO to channel B
{
this->SetActiveChannel(ChA);
this->Modify_SPI_Reg_bits(LMS7param(EN_NEXTTX_TRF), enable?1:0);
}
}
else
{
this->SetActiveChannel(ChSXR);
this->Modify_SPI_Reg_bits(LMS7param(EN_DIR_SXRSXT), 1);
this->Modify_SPI_Reg_bits(LMS7param(EN_G), (disabledChannels&0xC)==0xC?0:1);
if (ch == ChB) //enable LO to channel B
{
this->SetActiveChannel(ChA);
this->Modify_SPI_Reg_bits(LMS7param(EN_NEXTRX_RFE), enable?1:0);
}
}
this->SetActiveChannel(ch);
return 0;
}
/*!
* Helpful macro to check the connection before doing SPI work.
*/
#define checkConnection() { \
if (controlPort == nullptr) return ReportError(ENOTCONN, "no connection object"); \
if (not controlPort->IsOpen()) return ReportError(ENOTCONN, "connection is not open"); \
}
/** @brief Sends reset signal to chip, after reset enables B channel controls
@return 0-success, other-failure
*/
int LMS7002M::ResetChip()
{
checkConnection();
int status = controlPort->DeviceReset();
if (status == 0) Modify_SPI_Reg_bits(LMS7param(MIMO_SISO), 0); //enable B channel after reset
return status;
}
int LMS7002M::SoftReset()
{
auto reg_0x0020 = this->SPI_read(0x0020, true);
auto reg_0x002E = this->SPI_read(0x002E, true);
this->SPI_write(0x0020, 0x0);
this->SPI_write(0x0020, reg_0x0020);
this->SPI_write(0x002E, reg_0x002E);//must write
return 0;
}
int LMS7002M::LoadConfigLegacyFile(const char* filename)
{
ifstream f(filename);
if (f.good() == false) //file not found
{
f.close();
return ReportError(ENOENT, "LoadConfigLegacyFile(%s) - file not found", filename);
}
f.close();
uint16_t addr = 0;
uint16_t value = 0;
Channel ch = this->GetActiveChannel(); //remember used channel
int status;
typedef INI<string, string, string> ini_t;
ini_t parser(filename, true);
if (parser.select("FILE INFO") == false)
return ReportError(EINVAL, "LoadConfigLegacyFile(%s) - invalid format, missing FILE INFO section", filename);
string type = "";
type = parser.get("type", "undefined");
stringstream ss;
if (type.find("LMS7002 configuration") == string::npos)
{
ss << "File " << filename << " not recognized" << endl;
return ReportError(EINVAL, "LoadConfigLegacyFile(%s) - invalid format, missing LMS7002 configuration", filename);
}
int fileVersion = 0;
fileVersion = parser.get("version", 0);
vector<uint16_t> addrToWrite;
vector<uint16_t> dataToWrite;
if (fileVersion == 1)
{
if (parser.select("Reference clocks"))
{
this->SetReferenceClk_SX(Rx, parser.get("SXR reference frequency MHz", 30.72) * 1e6);
this->SetReferenceClk_SX(Tx, parser.get("SXT reference frequency MHz", 30.72) * 1e6);
}
if (parser.select("LMS7002 registers ch.A") == true)
{
ini_t::sectionsit_t section = parser.sections.find("LMS7002 registers ch.A");
uint16_t x0020_value = 0;
this->SetActiveChannel(ChA); //select A channel
for (ini_t::keysit_t pairs = section->second->begin(); pairs != section->second->end(); pairs++)
{
sscanf(pairs->first.c_str(), "%hx", &addr);
sscanf(pairs->second.c_str(), "%hx", &value);
if (addr == LMS7param(MAC).address) //skip register containing channel selection
{
x0020_value = value;
continue;
}
addrToWrite.push_back(addr);
dataToWrite.push_back(value);
}
status = SPI_write_batch(&addrToWrite[0], &dataToWrite[0], addrToWrite.size());
if (status != 0 && controlPort != nullptr)
return status;
//parse FCW or PHO
if (parser.select("NCO Rx ch.A") == true)
{
char varname[64];
int mode = Get_SPI_Reg_bits(LMS7param(MODE_RX));
if (mode == 0) //FCW
{
for (int i = 0; i < 16; ++i)
{
sprintf(varname, "FCW%02i", i);
SetNCOFrequency(LMS7002M::Rx, i, parser.get(varname, 0.0));
}
}
else
{
for (int i = 0; i < 16; ++i)
{
sprintf(varname, "PHO%02i", i);
SetNCOPhaseOffset(LMS7002M::Rx, i, parser.get(varname, 0.0));
}
}
}
if (parser.select("NCO Tx ch.A") == true)
{
char varname[64];
int mode = Get_SPI_Reg_bits(LMS7param(MODE_TX));
if (mode == 0) //FCW
{
for (int i = 0; i < 16; ++i)
{
sprintf(varname, "FCW%02i", i);
SetNCOFrequency(LMS7002M::Tx, i, parser.get(varname, 0.0));
}
}
else
{
for (int i = 0; i < 16; ++i)
{
sprintf(varname, "PHO%02i", i);
SetNCOPhaseOffset(LMS7002M::Tx, i, parser.get(varname, 0.0));
}
}
}
status = SPI_write(0x0020, x0020_value);
if (status != 0 && controlPort != nullptr)
return status;
}
this->SetActiveChannel(ChB);
if (parser.select("LMS7002 registers ch.B") == true)
{
addrToWrite.clear();
dataToWrite.clear();
ini_t::sectionsit_t section = parser.sections.find("LMS7002 registers ch.B");
for (ini_t::keysit_t pairs = section->second->begin(); pairs != section->second->end(); pairs++)
{
sscanf(pairs->first.c_str(), "%hx", &addr);
sscanf(pairs->second.c_str(), "%hx", &value);
addrToWrite.push_back(addr);
dataToWrite.push_back(value);
}
this->SetActiveChannel(ChB); //select B channel
status = SPI_write_batch(&addrToWrite[0], &dataToWrite[0], addrToWrite.size());
if (status != 0 && controlPort != nullptr)
return status;
//parse FCW or PHO
if (parser.select("NCO Rx ch.B") == true)
{
char varname[64];
int mode = Get_SPI_Reg_bits(LMS7param(MODE_RX));
if (mode == 0) //FCW
{
for (int i = 0; i < 16; ++i)
{
sprintf(varname, "FCW%02i", i);
SetNCOFrequency(LMS7002M::Rx, i, parser.get(varname, 0.0));
}
}
else
{
for (int i = 0; i < 16; ++i)
{
sprintf(varname, "PHO%02i", i);
SetNCOPhaseOffset(LMS7002M::Rx, i, parser.get(varname, 0.0));
}
}
}
if (parser.select("NCO Tx ch.A") == true)
{
char varname[64];
int mode = Get_SPI_Reg_bits(LMS7param(MODE_TX));
if (mode == 0) //FCW
{
for (int i = 0; i < 16; ++i)
{
sprintf(varname, "FCW%02i", i);
SetNCOFrequency(LMS7002M::Tx, i, parser.get(varname, 0.0));
}
}
else
{
for (int i = 0; i < 16; ++i)
{
sprintf(varname, "PHO%02i", i);
SetNCOPhaseOffset(LMS7002M::Tx, i, parser.get(varname, 0.0));
}
}
}
}
this->SetActiveChannel(ch);
return 0;
}
return ReportError(EINVAL, "LoadConfigLegacyFile(%s) - invalid format", filename);
}
/** @brief Reads configuration file and uploads registers to chip
@param filename Configuration source file
@return 0-success, other-failure
*/
int LMS7002M::LoadConfig(const char* filename)
{
ifstream f(filename);
if (f.good() == false) //file not found
{
f.close();
return ReportError(ENOENT, "LoadConfig(%s) - file not found", filename);
}
f.close();
uint16_t addr = 0;
uint16_t value = 0;
Channel ch = this->GetActiveChannel(); //remember used channel
int status;
typedef INI<string, string, string> ini_t;
ini_t parser(filename, true);
if (parser.select("file_info") == false)
{
//try loading as legacy format
status = LoadConfigLegacyFile(filename);
this->SetActiveChannel(ChA);
return status;
}
string type = "";
type = parser.get("type", "undefined");
stringstream ss;
if (type.find("lms7002m_minimal_config") == string::npos)
{
ss << "File " << filename << " not recognized" << endl;
return ReportError(EINVAL, "LoadConfig(%s) - invalid format, missing lms7002m_minimal_config", filename);
}
int fileVersion = 0;
fileVersion = parser.get("version", 0);
vector<uint16_t> addrToWrite;
vector<uint16_t> dataToWrite;
if (fileVersion == 1)
{
if(parser.select("lms7002_registers_a") == true)
{
ini_t::sectionsit_t section = parser.sections.find("lms7002_registers_a");
uint16_t x0020_value = 0;
this->SetActiveChannel(ChA); //select A channel
for (ini_t::keysit_t pairs = section->second->begin(); pairs != section->second->end(); pairs++)
{
sscanf(pairs->first.c_str(), "%hx", &addr);
sscanf(pairs->second.c_str(), "%hx", &value);
if (addr == LMS7param(MAC).address) //skip register containing channel selection
{
x0020_value = value;
continue;
}
addrToWrite.push_back(addr);
dataToWrite.push_back(value);
}
status = SPI_write_batch(&addrToWrite[0], &dataToWrite[0], addrToWrite.size());
if (status != 0 && controlPort != nullptr)
return status;
status = SPI_write(0x0020, x0020_value);
if (status != 0 && controlPort != nullptr)
return status;
this->SetActiveChannel(ChB);
if (status != 0 && controlPort != nullptr)
return status;
}
if (parser.select("lms7002_registers_b") == true)
{
addrToWrite.clear();
dataToWrite.clear();
ini_t::sectionsit_t section = parser.sections.find("lms7002_registers_b");
for (ini_t::keysit_t pairs = section->second->begin(); pairs != section->second->end(); pairs++)
{
sscanf(pairs->first.c_str(), "%hx", &addr);
sscanf(pairs->second.c_str(), "%hx", &value);
addrToWrite.push_back(addr);
dataToWrite.push_back(value);
}
this->SetActiveChannel(ChB); //select B channel
status = SPI_write_batch(&addrToWrite[0], &dataToWrite[0], addrToWrite.size());
if (status != 0 && controlPort != nullptr)
return status;
}
this->SetActiveChannel(ch);
parser.select("reference_clocks");
this->SetReferenceClk_SX(Rx, parser.get("sxr_ref_clk_mhz", 30.72) * 1e6);
this->SetReferenceClk_SX(Tx, parser.get("sxt_ref_clk_mhz", 30.72) * 1e6);
}
this->SetActiveChannel(ChA);
checkConnection();
return 0;
}
/** @brief Reads all registers from chip and saves to file
@param filename destination filename
@return 0-success, other failure
*/
int LMS7002M::SaveConfig(const char* filename)
{
ofstream fout;
fout.open(filename);
fout << "[file_info]" << endl;
fout << "type=lms7002m_minimal_config" << endl;
fout << "version=1" << endl;
char addr[80];
char value[80];
Channel ch = this->GetActiveChannel();
vector<uint16_t> addrToRead;
for (uint8_t i = 0; i < MEMORY_SECTIONS_COUNT; ++i)
for (uint16_t addr = MemorySectionAddresses[i][0]; addr <= MemorySectionAddresses[i][1]; ++addr)
addrToRead.push_back(addr);
vector<uint16_t> dataReceived;
dataReceived.resize(addrToRead.size(), 0);
fout << "[lms7002_registers_a]" << endl;
this->SetActiveChannel(ChA);
for (uint16_t i = 0; i < addrToRead.size(); ++i)
{
dataReceived[i] = Get_SPI_Reg_bits(addrToRead[i], 15, 0, false);
sprintf(addr, "0x%04X", addrToRead[i]);
sprintf(value, "0x%04X", dataReceived[i]);
fout << addr << "=" << value << endl;
}
fout << "[lms7002_registers_b]" << endl;
addrToRead.clear(); //add only B channel addresses
for (uint8_t i = 0; i < MEMORY_SECTIONS_COUNT; ++i)
if (i != RSSI_DC_CALIBRATION)
for (uint16_t addr = MemorySectionAddresses[i][0]; addr <= MemorySectionAddresses[i][1]; ++addr)
if (addr >= 0x0100)
addrToRead.push_back(addr);
this->SetActiveChannel(ChB);
for (uint16_t i = 0; i < addrToRead.size(); ++i)
{
dataReceived[i] = Get_SPI_Reg_bits(addrToRead[i], 15, 0, false);
sprintf(addr, "0x%04X", addrToRead[i]);
sprintf(value, "0x%04X", dataReceived[i]);
fout << addr << "=" << value << endl;
}
this->SetActiveChannel(ch); //retore previously used channel
fout << "[reference_clocks]" << endl;
fout << "sxt_ref_clk_mhz=" << this->GetReferenceClk_SX(Tx) / 1e6 << endl;
fout << "sxr_ref_clk_mhz=" << this->GetReferenceClk_SX(Rx) / 1e6 << endl;
fout.close();
return 0;
}
int LMS7002M::SetRBBPGA_dB(const float_type value)
{
int g_pga_rbb = (int)(value + 12.5);
if (g_pga_rbb > 0x1f) g_pga_rbb = 0x1f;
if (g_pga_rbb < 0) g_pga_rbb = 0;
int ret = this->Modify_SPI_Reg_bits(LMS7param(G_PGA_RBB), g_pga_rbb);
int rcc_ctl_pga_rbb = (430.0*pow(0.65, (g_pga_rbb/10.0))-110.35)/20.4516 + 16;
int c_ctl_pga_rbb = 0;
if (0 <= g_pga_rbb && g_pga_rbb < 8) c_ctl_pga_rbb = 3;
if (8 <= g_pga_rbb && g_pga_rbb < 13) c_ctl_pga_rbb = 2;
if (13 <= g_pga_rbb && g_pga_rbb < 21) c_ctl_pga_rbb = 1;
if (21 <= g_pga_rbb) c_ctl_pga_rbb = 0;
ret |= this->Modify_SPI_Reg_bits(LMS7param(RCC_CTL_PGA_RBB), rcc_ctl_pga_rbb);
ret |= this->Modify_SPI_Reg_bits(LMS7param(C_CTL_PGA_RBB), c_ctl_pga_rbb);
return ret;
}
float_type LMS7002M::GetRBBPGA_dB(void)
{
auto g_pga_rbb = this->Get_SPI_Reg_bits(LMS7param(G_PGA_RBB));
return g_pga_rbb - 12;
}
int LMS7002M::SetRFELNA_dB(const float_type value)
{
const double gmax = 30;
double val = value - gmax;
int g_lna_rfe = 0;
if (val >= 0) g_lna_rfe = 15;
else if (val >= -1) g_lna_rfe = 14;
else if (val >= -2) g_lna_rfe = 13;
else if (val >= -3) g_lna_rfe = 12;
else if (val >= -4) g_lna_rfe = 11;
else if (val >= -5) g_lna_rfe = 10;
else if (val >= -6) g_lna_rfe = 9;
else if (val >= -9) g_lna_rfe = 8;
else if (val >= -12) g_lna_rfe = 7;
else if (val >= -15) g_lna_rfe = 6;
else if (val >= -18) g_lna_rfe = 5;
else if (val >= -21) g_lna_rfe = 4;
else if (val >= -24) g_lna_rfe = 3;
else if (val >= -27) g_lna_rfe = 2;
else g_lna_rfe = 1;
return this->Modify_SPI_Reg_bits(LMS7param(G_LNA_RFE), g_lna_rfe);
}
float_type LMS7002M::GetRFELNA_dB(void)
{
const double gmax = 30;
auto g_lna_rfe = this->Get_SPI_Reg_bits(LMS7param(G_LNA_RFE));
switch (g_lna_rfe)
{
case 15: return gmax-0;
case 14: return gmax-1;
case 13: return gmax-2;
case 12: return gmax-3;
case 11: return gmax-4;
case 10: return gmax-5;
case 9: return gmax-6;
case 8: return gmax-9;
case 7: return gmax-12;
case 6: return gmax-15;
case 5: return gmax-18;
case 4: return gmax-21;
case 3: return gmax-24;
case 2: return gmax-27;
case 1: return gmax-30;
}
return 0.0;
}
int LMS7002M::SetRFELoopbackLNA_dB(const float_type gain)
{
const double gmax = 40;
double val = gain - gmax;
int g_rxloopb_rfe = 0;
if (val >= 0) g_rxloopb_rfe = 15;
else if (val >= -0.5) g_rxloopb_rfe = 14;
else if (val >= -1) g_rxloopb_rfe = 13;
else if (val >= -1.6) g_rxloopb_rfe = 12;
else if (val >= -2.4) g_rxloopb_rfe = 11;
else if (val >= -3) g_rxloopb_rfe = 10;
else if (val >= -4) g_rxloopb_rfe = 9;
else if (val >= -5) g_rxloopb_rfe = 8;
else if (val >= -6.2) g_rxloopb_rfe = 7;
else if (val >= -7.5) g_rxloopb_rfe = 6;
else if (val >= -9) g_rxloopb_rfe = 5;
else if (val >= -11) g_rxloopb_rfe = 4;
else if (val >= -14) g_rxloopb_rfe = 3;
else if (val >= -17) g_rxloopb_rfe = 2;
else if (val >= -24) g_rxloopb_rfe = 1;
else g_rxloopb_rfe = 0;
return this->Modify_SPI_Reg_bits(LMS7param(G_RXLOOPB_RFE), g_rxloopb_rfe);
}
float_type LMS7002M::GetRFELoopbackLNA_dB(void)
{
const double gmax = 40;
auto g_rxloopb_rfe = this->Get_SPI_Reg_bits(LMS7param(G_RXLOOPB_RFE));
switch (g_rxloopb_rfe)
{
case 15: return gmax-0;
case 14: return gmax-0.5;
case 13: return gmax-1;
case 12: return gmax-1.6;
case 11: return gmax-2.4;
case 10: return gmax-3;
case 9: return gmax-4;
case 8: return gmax-5;
case 7: return gmax-6.2;
case 6: return gmax-7.5;
case 5: return gmax-9;
case 4: return gmax-11;
case 3: return gmax-14;
case 2: return gmax-17;
case 1: return gmax-24;
}
return 0.0;
}
int LMS7002M::SetRFETIA_dB(const float_type value)
{
const double gmax = 12;
double val = value - gmax;
int g_tia_rfe = 0;
if (val >= 0) g_tia_rfe = 3;
else if (val >= -3) g_tia_rfe = 2;
else g_tia_rfe = 1;
return this->Modify_SPI_Reg_bits(LMS7param(G_TIA_RFE), g_tia_rfe);
}
float_type LMS7002M::GetRFETIA_dB(void)
{
const double gmax = 12;
auto g_tia_rfe = this->Get_SPI_Reg_bits(LMS7param(G_TIA_RFE));
switch (g_tia_rfe)
{
case 3: return gmax-0;
case 2: return gmax-3;
case 1: return gmax-12;
}
return 0.0;
}
int LMS7002M::SetTRFPAD_dB(const float_type value)
{
const double pmax = 0;
double loss = pmax-value;
//different scaling realm
if (loss > 10) loss = (loss+10)/2;
//clip
if (loss > 31) loss = 31;
if (loss < 0) loss = 0;
//integer round
int loss_int = (int)(loss + 0.5);
int ret = 0;
ret |= this->Modify_SPI_Reg_bits(LMS7param(LOSS_LIN_TXPAD_TRF), loss_int);
ret |= this->Modify_SPI_Reg_bits(LMS7param(LOSS_MAIN_TXPAD_TRF), loss_int);
return ret;
}
float_type LMS7002M::GetTRFPAD_dB(void)
{
const double pmax = 0;
auto loss_int = this->Get_SPI_Reg_bits(LMS7param(LOSS_LIN_TXPAD_TRF));
if (loss_int > 10) return pmax-10-2*(loss_int-10);
return pmax-loss_int;
}
int LMS7002M::SetTRFLoopbackPAD_dB(const float_type gain)
{
//there are 4 discrete gain values, use the midpoints
int val = 0;
if (gain >= (-1.4-0)/2) val = 0;
else if (gain >= (-1.4-3.3)/2) val = 1;
else if (gain >= (-3.3-4.3)/2) val = 2;
else val = 3;
return this->Modify_SPI_Reg_bits(LMS7param(L_LOOPB_TXPAD_TRF), val);
}
float_type LMS7002M::GetTRFLoopbackPAD_dB(void)
{
switch (this->Get_SPI_Reg_bits(LMS7param(L_LOOPB_TXPAD_TRF)))
{
case 0: return 0.0;
case 1: return -1.4;
case 2: return -3.3;
case 3: return -4.3;
}
return 0.0;
}
int LMS7002M::SetPathRFE(PathRFE path)
{
int sel_path_rfe = 0;
switch (path)
{
case PATH_RFE_NONE: sel_path_rfe = 0; break;
case PATH_RFE_LNAH: sel_path_rfe = 1; break;
case PATH_RFE_LNAL: sel_path_rfe = 2; break;
case PATH_RFE_LNAW: sel_path_rfe = 3; break;
case PATH_RFE_LB1: sel_path_rfe = 3; break;
case PATH_RFE_LB2: sel_path_rfe = 2; break;
}
int pd_lna_rfe = 1;
switch (path)
{
case PATH_RFE_LNAH:
case PATH_RFE_LNAL:
case PATH_RFE_LNAW: pd_lna_rfe = 0; break;
default: break;
}
int pd_rloopb_1_rfe = (path == PATH_RFE_LB1)?0:1;
int pd_rloopb_2_rfe = (path == PATH_RFE_LB2)?0:1;
int en_inshsw_l_rfe = (path == PATH_RFE_LNAL)?0:1;
int en_inshsw_w_rfe = (path == PATH_RFE_LNAW)?0:1;
int en_inshsw_lb1_rfe = (path == PATH_RFE_LB1)?0:1;
int en_inshsw_lb2_rfe = (path == PATH_RFE_LB2)?0:1;
this->Modify_SPI_Reg_bits(LMS7param(PD_LNA_RFE), pd_lna_rfe);
this->Modify_SPI_Reg_bits(LMS7param(PD_RLOOPB_1_RFE), pd_rloopb_1_rfe);
this->Modify_SPI_Reg_bits(LMS7param(PD_RLOOPB_2_RFE), pd_rloopb_2_rfe);
this->Modify_SPI_Reg_bits(LMS7param(EN_INSHSW_LB1_RFE), en_inshsw_lb1_rfe);
this->Modify_SPI_Reg_bits(LMS7param(EN_INSHSW_LB2_RFE), en_inshsw_lb2_rfe);
this->Modify_SPI_Reg_bits(LMS7param(EN_INSHSW_L_RFE), en_inshsw_l_rfe);
this->Modify_SPI_Reg_bits(LMS7param(EN_INSHSW_W_RFE), en_inshsw_w_rfe);
this->Modify_SPI_Reg_bits(LMS7param(SEL_PATH_RFE), sel_path_rfe);
//enable/disable the loopback path
const bool loopback = (path == PATH_RFE_LB1) or (path == PATH_RFE_LB2);
this->Modify_SPI_Reg_bits(LMS7param(EN_LOOPB_TXPAD_TRF), loopback?1:0);
//update external band-selection to match
this->UpdateExternalBandSelect();
return 0;
}
LMS7002M::PathRFE LMS7002M::GetPathRFE(void)
{
if (this->Get_SPI_Reg_bits(LMS7param(EN_INSHSW_LB1_RFE)) == 0) return PATH_RFE_LB1;
if (this->Get_SPI_Reg_bits(LMS7param(EN_INSHSW_LB2_RFE)) == 0) return PATH_RFE_LB2;
if (this->Get_SPI_Reg_bits(LMS7param(EN_INSHSW_L_RFE)) == 0) return PATH_RFE_LNAL;
if (this->Get_SPI_Reg_bits(LMS7param(EN_INSHSW_W_RFE)) == 0) return PATH_RFE_LNAW;
if (this->Get_SPI_Reg_bits(LMS7param(PD_LNA_RFE)) == 0) return PATH_RFE_NONE;
return PATH_RFE_LNAH;
}
int LMS7002M::SetBandTRF(const int band)
{
this->Modify_SPI_Reg_bits(LMS7param(SEL_BAND1_TRF), (band==1)?1:0);
this->Modify_SPI_Reg_bits(LMS7param(SEL_BAND2_TRF), (band==2)?1:0);
//update external band-selection to match
this->UpdateExternalBandSelect();
return 0;
}
int LMS7002M::GetBandTRF(void)
{
if (this->Get_SPI_Reg_bits(LMS7param(SEL_BAND1_TRF)) == 1) return 1;
if (this->Get_SPI_Reg_bits(LMS7param(SEL_BAND2_TRF)) == 1) return 2;
return 0;
}
void LMS7002M::UpdateExternalBandSelect(void)
{
if(controlPort)
return controlPort->UpdateExternalBandSelect(
this->GetActiveChannelIndex(),
this->GetBandTRF(),
int(this->GetPathRFE()));
}
int LMS7002M::SetReferenceClk_SX(bool tx, float_type freq_Hz)
{
if(controlPort == nullptr)
return ReportError(ENODEV, "Device not connected");
if (tx)
return controlPort->SetTxReferenceClockRate(freq_Hz);
else
return controlPort->SetReferenceClockRate(freq_Hz);
}
/** @brief Returns reference clock in Hz used for SXT or SXR
@param Tx transmitter or receiver selection
*/
float_type LMS7002M::GetReferenceClk_SX(bool tx)
{
if(controlPort == nullptr)
return 30.72e6; //return default reference clock
return (tx ? controlPort->GetTxReferenceClockRate() : controlPort->GetReferenceClockRate());
}
/** @return Current CLKGEN frequency in Hz
Returned frequency depends on reference clock used for Receiver
*/
float_type LMS7002M::GetFrequencyCGEN()
{
float_type dMul = (GetReferenceClk_SX(Rx)/2.0)/(Get_SPI_Reg_bits(LMS7param(DIV_OUTCH_CGEN), true)+1); //DIV_OUTCH_CGEN
uint16_t gINT = Get_SPI_Reg_bits(0x0088, 13, 0, true); //read whole register to reduce SPI transfers
uint32_t gFRAC = ((gINT & 0xF) * 65536) | Get_SPI_Reg_bits(0x0087, 15, 0, true);
return dMul * (((gINT>>4) + 1 + gFRAC/1048576.0));
}
/** @brief Returns TSP reference frequency
@param tx TxTSP or RxTSP selection
@return TSP reference frequency in Hz
*/
float_type LMS7002M::GetReferenceClk_TSP(bool tx)
{
float_type cgenFreq = GetFrequencyCGEN();
float_type clklfreq = cgenFreq/pow(2.0, Get_SPI_Reg_bits(LMS7param(CLKH_OV_CLKL_CGEN)));
if(Get_SPI_Reg_bits(LMS7param(EN_ADCCLKH_CLKGN)) == 0)
return tx ? clklfreq : cgenFreq/4.0;
else
return tx ? cgenFreq : clklfreq/4.0;
}
/** @brief Sets CLKGEN frequency, calculations use receiver'r reference clock
@param freq_Hz desired frequency in Hz
@param retainNCOfrequencies recalculate NCO coefficients to keep currently set frequencies
@param output if not null outputs calculated CGEN parameters
@return 0-succes, other-cannot deliver desired frequency
*/
int LMS7002M::SetFrequencyCGEN(const float_type freq_Hz, const bool retainNCOfrequencies, CGEN_details* output)
{
stringstream ss;
LMS7002M_SelfCalState state(this);
float_type dFvco;
float_type dFrac;
int16_t iHdiv;
//remember NCO frequencies
Channel chBck = this->GetActiveChannel();
vector<vector<float_type> > rxNCO(2);
vector<vector<float_type> > txNCO(2);
bool rxModeNCO = false;
bool txModeNCO = false;
if(retainNCOfrequencies)
{
rxModeNCO = Get_SPI_Reg_bits(LMS7param(MODE_RX), true);
txModeNCO = Get_SPI_Reg_bits(LMS7param(MODE_TX), true);
for (int ch = 0; ch < 2; ++ch)
{
this->SetActiveChannel((ch == 0)?ChA:ChB);
for (int i = 0; i < 16 && rxModeNCO == 0; ++i)
rxNCO[ch].push_back(GetNCOFrequency(LMS7002M::Rx, i, false));
for (int i = 0; i < 16 && txModeNCO == 0; ++i)
txNCO[ch].push_back(GetNCOFrequency(LMS7002M::Tx, i, false));
}
}
//VCO frequency selection according to F_CLKH
vector<float_type> vcoFreqs;
for (iHdiv = 0; iHdiv < 256; ++iHdiv)
{
dFvco = 2 * (iHdiv + 1) * freq_Hz;
if (dFvco >= gCGEN_VCO_frequencies[0] && dFvco <= gCGEN_VCO_frequencies[1])
vcoFreqs.push_back(dFvco);
}
if (vcoFreqs.size() == 0)
return ReportError(ERANGE, "SetFrequencyCGEN(%g MHz) - cannot deliver requested frequency", freq_Hz / 1e6);
dFvco = vcoFreqs[vcoFreqs.size() / 2];
iHdiv = dFvco / freq_Hz / 2 - 1;
//Integer division
uint16_t gINT = (uint16_t)(dFvco/GetReferenceClk_SX(Rx) - 1);
//Fractional division
dFrac = dFvco/GetReferenceClk_SX(Rx) - (uint32_t)(dFvco/GetReferenceClk_SX(Rx));
uint32_t gFRAC = (uint32_t)(dFrac * 1048576);
Modify_SPI_Reg_bits(LMS7param(INT_SDM_CGEN), gINT); //INT_SDM_CGEN
Modify_SPI_Reg_bits(0x0087, 15, 0, gFRAC&0xFFFF); //INT_SDM_CGEN[15:0]
Modify_SPI_Reg_bits(0x0088, 3, 0, gFRAC>>16); //INT_SDM_CGEN[19:16]
Modify_SPI_Reg_bits(LMS7param(DIV_OUTCH_CGEN), iHdiv); //DIV_OUTCH_CGEN
ss << "INT: " << gINT << "\tFRAC: " << gFRAC
<< "\tDIV_OUTCH_CGEN: " << (uint16_t)iHdiv << endl;
ss << "VCO: " << dFvco/1e6 << " MHz";
ss << "\tRefClk: " << GetReferenceClk_SX(Rx)/1e6 << " MHz" << endl;
if (output)
{
output->frequency = freq_Hz;
output->frequencyVCO = dFvco;
output->referenceClock = GetReferenceClk_SX(LMS7002M::Rx);
output->INT = gINT;
output->FRAC = gFRAC;
output->div_outch_cgen = iHdiv;
output->success = true;
}
//recalculate NCO
for (int ch = 0; ch < 2 && retainNCOfrequencies; ++ch)
{
this->SetActiveChannel((ch == 0)?ChA:ChB);
for (int i = 0; i < 16 && rxModeNCO == 0; ++i)
SetNCOFrequency(LMS7002M::Rx, i, rxNCO[ch][i]);
for (int i = 0; i < 16 && txModeNCO == 0; ++i)
SetNCOFrequency(LMS7002M::Tx, i, txNCO[ch][i]);
}
this->SetActiveChannel(chBck);
#ifndef NDEBUG
printf("CGEN: Freq=%g MHz, VCO=%g GHz, INT=%i, FRAC=%i, DIV_OUTCH_CGEN=%i\n", freq_Hz/1e6, dFvco/1e9, gINT, gFRAC, iHdiv);
#endif // NDEBUG
//adjust VCO bias current to lock on 491.52 MHz
if(abs(freq_Hz - 491.52e6) < 2e6)
{
if(Modify_SPI_Reg_bits(LMS7param(ICT_VCO_CGEN), 31) == 0)
{
#ifndef NDEBUG
printf("CGEN ICT_VCO_CGEN changed to %i\n", 31);
#endif // NDEBUG
}
}
if(TuneVCO(VCO_CGEN) != 0)
{
if (output)
{
output->success = false;
output->csw = Get_SPI_Reg_bits(LMS7param(CSW_VCO_CGEN));
}
ss << GetLastErrorMessage();
return ReportError(-1, "SetFrequencyCGEN(%g MHz) failed:\n%s", freq_Hz/1e6, ss.str().c_str());
}
if (output)
output->csw = Get_SPI_Reg_bits(LMS7param(CSW_VCO_CGEN));
return 0;
}
bool LMS7002M::GetCGENLocked(void)
{
return (Get_SPI_Reg_bits(LMS7param(VCO_CMPHO_CGEN).address, 13, 12, true) & 0x3) == 2;
}
bool LMS7002M::GetSXLocked(bool tx)
{
SetActiveChannel(tx?ChSXT:ChSXR);
return (Get_SPI_Reg_bits(LMS7param(VCO_CMPHO).address, 13, 12, true) & 0x3) == 2;
}
/** @brief Performs VCO tuning operations for CLKGEN, SXR, SXT modules
@param module module selection for tuning 0-cgen, 1-SXR, 2-SXT
@return 0-success, other-failure
*/
int LMS7002M::TuneVCO(VCO_Module module) // 0-cgen, 1-SXR, 2-SXT
{
auto settlingTime = chrono::microseconds(50); //can be lower
struct CSWInteval
{
int16_t high;
int16_t low;
};
CSWInteval cswSearch[2];
stringstream ss; //tune progress report
const char* moduleName = (module == VCO_CGEN) ? "CGEN" : ((module == VCO_SXR) ? "SXR" : "SXT");
checkConnection();
uint8_t cmphl; //comparators
uint16_t addrVCOpd; // VCO power down address
uint16_t addrCSW_VCO;
uint16_t addrCMP; //comparator address
uint8_t lsb; //SWC lsb index
uint8_t msb; //SWC msb index
Channel ch = this->GetActiveChannel(); //remember used channel
if(module != VCO_CGEN) //set addresses to SX module
{
this->SetActiveChannel(Channel(module));
addrVCOpd = LMS7param(PD_VCO).address;
addrCSW_VCO = LMS7param(CSW_VCO).address;
lsb = LMS7param(CSW_VCO).lsb;
msb = LMS7param(CSW_VCO).msb;
addrCMP = LMS7param(VCO_CMPHO).address;
ss << "ICT_VCO: " << Get_SPI_Reg_bits(LMS7param(ICT_VCO)) << endl;
}
else //set addresses to CGEN module
{
addrVCOpd = LMS7param(PD_VCO_CGEN).address;
addrCSW_VCO = LMS7param(CSW_VCO_CGEN).address;
lsb = LMS7param(CSW_VCO_CGEN).lsb;
msb = LMS7param(CSW_VCO_CGEN).msb;
addrCMP = LMS7param(VCO_CMPHO_CGEN).address;
ss << "ICT_VCO_CGEN: " << Get_SPI_Reg_bits(LMS7param(ICT_VCO_CGEN)) << endl;
}
// Initialization activate VCO and comparator
if(int status = Modify_SPI_Reg_bits (addrVCOpd, 2, 1, 0) != 0)
return status;
if (Get_SPI_Reg_bits(addrVCOpd, 2, 1) != 0)
return ReportError(-1, "TuneVCO(%s) - VCO is powered down", moduleName);
//check if lock is within VCO range
{
Modify_SPI_Reg_bits (addrCSW_VCO , msb, lsb , 0);
this_thread::sleep_for(settlingTime);
cmphl = (uint8_t)Get_SPI_Reg_bits(addrCMP, 13, 12, true);
if(cmphl == 3) //VCO too high
{
this->SetActiveChannel(ch); //restore previously used channel
return ReportError(-1, "TuneVCO(%s) - VCO too high", moduleName);
}
Modify_SPI_Reg_bits (addrCSW_VCO , msb, lsb , 255);
this_thread::sleep_for(settlingTime);
cmphl = (uint8_t)Get_SPI_Reg_bits(addrCMP, 13, 12, true);
if(cmphl == 0) //VCO too low
{
this->SetActiveChannel(ch); //restore previously used channel
return ReportError(-1, "TuneVCO(%s) - VCO too low", moduleName);
}
}
//search intervals [0-127][128-255]
for(int t=0; t<2; ++t)
{
cswSearch[t].low = 128*(t+1);
cswSearch[t].high = 128*t; //search interval lowest value
Modify_SPI_Reg_bits (addrCSW_VCO , msb, lsb , cswSearch[t].high);
for(int i=6; i>=0; --i)
{
cswSearch[t].high |= 1 << i; //CSW_VCO<i>=1
Modify_SPI_Reg_bits (addrCSW_VCO, msb, lsb, cswSearch[t].high);
this_thread::sleep_for(settlingTime);
cmphl = (uint8_t)Get_SPI_Reg_bits(addrCMP, 13, 12, true);
ss << "csw=" << cswSearch[t].high << "\t" << "cmphl=" << (int16_t)cmphl << endl;
if(cmphl & 0x01) // reduce CSW
cswSearch[t].high &= ~(1 << i); //CSW_VCO<i>=0
if(cmphl == 2 && cswSearch[t].high < cswSearch[t].low)
cswSearch[t].low = cswSearch[t].high;
}
while(cswSearch[t].low <= cswSearch[t].high && cswSearch[t].low > t*128)
{
--cswSearch[t].low;
Modify_SPI_Reg_bits(addrCSW_VCO, msb, lsb, cswSearch[t].low);
this_thread::sleep_for(settlingTime);
if(Get_SPI_Reg_bits(addrCMP, 13, 12, true) != 2)
{
++cswSearch[t].low;
break;
}
}
if(cmphl == 2)
{
ss << "CSW_lowest =" << cswSearch[t].low << endl;
ss << "CSW_highest =" << cswSearch[t].high << endl;
ss << "CSW_selected=" << cswSearch[t].low+(cswSearch[t].high-cswSearch[t].low)/2 << endl;
}
else
ss << "Failed to lock" << endl;
}
//check if the intervals are joined
int16_t cswHigh, cswLow;
if(cswSearch[0].high == cswSearch[1].low-1)
{
cswHigh = cswSearch[1].high;
cswLow = cswSearch[0].low;
}
//compare which interval is wider
else
{
uint8_t intervalIndex = (cswSearch[1].high-cswSearch[1].low > cswSearch[0].high-cswSearch[0].low);
cswHigh = cswSearch[intervalIndex].high;
cswLow = cswSearch[intervalIndex].low;
}
if(cswHigh-cswLow == 1)
{
//check which of two values really locks
Modify_SPI_Reg_bits(addrCSW_VCO, msb, lsb, cswLow);
this_thread::sleep_for(settlingTime);
cmphl = (uint8_t)Get_SPI_Reg_bits(addrCMP, 13, 12, true);
if(cmphl != 2)
Modify_SPI_Reg_bits(addrCSW_VCO, msb, lsb, cswHigh);
}
else
Modify_SPI_Reg_bits(addrCSW_VCO, msb, lsb, cswLow+(cswHigh-cswLow)/2);
this_thread::sleep_for(settlingTime);
cmphl = (uint8_t)Get_SPI_Reg_bits(addrCMP, 13, 12, true);
ss << " cmphl=" << (uint16_t)cmphl;
this->SetActiveChannel(ch); //restore previously used channel
if(cmphl == 2)
return 0;
return ReportError(EINVAL, "TuneVCO(%s) - failed to lock (cmphl != 2)\n%s", moduleName, ss.str().c_str());
}
/** @brief Returns given parameter value from chip register
@param param LMS7002M control parameter
@param fromChip read directly from chip
@return parameter value
*/
uint16_t LMS7002M::Get_SPI_Reg_bits(const LMS7Parameter &param, bool fromChip)
{
return Get_SPI_Reg_bits(param.address, param.msb, param.lsb, fromChip);
}
/** @brief Returns given parameter value from chip register
@param address register address
@param msb most significant bit index
@param lsb least significant bit index
@param fromChip read directly from chip
@return register bits from selected interval, shifted to right by lsb bits
*/
uint16_t LMS7002M::Get_SPI_Reg_bits(uint16_t address, uint8_t msb, uint8_t lsb, bool fromChip)
{
return (SPI_read(address, fromChip) & (~(~0<<(msb+1)))) >> lsb; //shift bits to LSB
}
/** @brief Change given parameter value
@param param LMS7002M control parameter
@param fromChip read initial value directly from chip
@param value new parameter value
*/
int LMS7002M::Modify_SPI_Reg_bits(const LMS7Parameter &param, const uint16_t value, bool fromChip)
{
return Modify_SPI_Reg_bits(param.address, param.msb, param.lsb, value, fromChip);
}
/** @brief Change given parameter value
@param address register address
@param value new bits value, the value is shifted left by lsb bits
@param fromChip read initial value directly from chip
*/
int LMS7002M::Modify_SPI_Reg_bits(const uint16_t address, const uint8_t msb, const uint8_t lsb, const uint16_t value, bool fromChip)
{
uint16_t spiDataReg = SPI_read(address, fromChip); //read current SPI reg data
uint16_t spiMask = (~(~0 << (msb - lsb + 1))) << (lsb); // creates bit mask
spiDataReg = (spiDataReg & (~spiMask)) | ((value << lsb) & spiMask);//clear bits
return SPI_write(address, spiDataReg); //write modified data back to SPI reg
}
/** @brief Modifies given registers with values applied using masks
@param addr array of register addresses
@param masks array of applied masks
@param values array of values to be written
@param start starting index of given arrays
@param stop end index of given arrays
*/
int LMS7002M::Modify_SPI_Reg_mask(const uint16_t *addr, const uint16_t *masks, const uint16_t *values, uint8_t start, uint8_t stop)
{
int status;
uint16_t reg_data;
vector<uint16_t> addresses;
vector<uint16_t> data;
while (start <= stop)
{
reg_data = SPI_read(addr[start], true, &status); //read current SPI reg data
reg_data &= ~masks[start];//clear bits
reg_data |= (values[start] & masks[start]);
addresses.push_back(addr[start]);
data.push_back(reg_data);
++start;
}
if (status != 0)
return status;
SPI_write_batch(&addresses[0], &data[0], addresses.size());
return status;
}
/** @brief Sets SX frequency
@param Tx Rx/Tx module selection
@param freq_Hz desired frequency in Hz
@param output if not null outputs intermediate calculation values
@return 0-success, other-cannot deliver requested frequency
*/
int LMS7002M::SetFrequencySX(bool tx, float_type freq_Hz, SX_details* output)
{
stringstream ss; //VCO tuning report
const char* vcoNames[] = {"VCOL", "VCOM", "VCOH"};
checkConnection();
const uint8_t sxVCO_N = 2; //number of entries in VCO frequencies
const float_type m_dThrF = 5500e6; //threshold to enable additional divider
float_type VCOfreq;
int8_t div_loch;
int8_t sel_vco;
bool canDeliverFrequency = false;
uint16_t integerPart;
uint32_t fractionalPart;
int16_t csw_value;
uint32_t boardId = controlPort->GetDeviceInfo().boardSerialNumber;
//find required VCO frequency
for (div_loch = 6; div_loch >= 0; --div_loch)
{
VCOfreq = (1 << (div_loch + 1)) * freq_Hz;
if ((VCOfreq >= gVCO_frequency_table[0][0]) && (VCOfreq <= gVCO_frequency_table[2][sxVCO_N - 1]))
{
canDeliverFrequency = true;
break;
}
}
if (canDeliverFrequency == false)
return ReportError(ERANGE, "SetFrequencySX%s(%g MHz) - required VCO frequency is out of range [%g-%g] MHz",
tx?"T":"R", freq_Hz / 1e6,
gVCO_frequency_table[0][0]/1e6,
gVCO_frequency_table[2][sxVCO_N - 1]/1e6);
const float_type refClk_Hz = GetReferenceClk_SX(tx);
integerPart = (uint16_t)(VCOfreq / (refClk_Hz * (1 + (VCOfreq > m_dThrF))) - 4);
fractionalPart = (uint32_t)((VCOfreq / (refClk_Hz * (1 + (VCOfreq > m_dThrF))) - (uint32_t)(VCOfreq / (refClk_Hz * (1 + (VCOfreq > m_dThrF))))) * 1048576);
Channel ch = this->GetActiveChannel();
this->SetActiveChannel(tx?ChSXT:ChSXR);
Modify_SPI_Reg_bits(LMS7param(EN_INTONLY_SDM), 0);
Modify_SPI_Reg_bits(LMS7param(INT_SDM), integerPart); //INT_SDM
Modify_SPI_Reg_bits(0x011D, 15, 0, fractionalPart & 0xFFFF); //FRAC_SDM[15:0]
Modify_SPI_Reg_bits(0x011E, 3, 0, (fractionalPart >> 16)); //FRAC_SDM[19:16]
Modify_SPI_Reg_bits(LMS7param(DIV_LOCH), div_loch); //DIV_LOCH
Modify_SPI_Reg_bits(LMS7param(EN_DIV2_DIVPROG), (VCOfreq > m_dThrF)); //EN_DIV2_DIVPROG
ss << "INT: " << integerPart << "\tFRAC: " << fractionalPart << endl;
ss << "DIV_LOCH: " << (int16_t)div_loch << "\t EN_DIV2_DIVPROG: " << (VCOfreq > m_dThrF) << endl;
ss << "VCO: " << VCOfreq/1e6 << "MHz\tRefClk: " << refClk_Hz/1e6 << " MHz" << endl;
if (output)
{
output->frequency = freq_Hz;
output->frequencyVCO = VCOfreq;
output->referenceClock = GetReferenceClk_SX(tx);
output->INT = integerPart;
output->FRAC = fractionalPart;
output->en_div2_divprog = (VCOfreq > m_dThrF);
output->div_loch = div_loch;
}
//find which VCO supports required frequency
Modify_SPI_Reg_bits(LMS7param(PD_VCO), 0); //
Modify_SPI_Reg_bits(LMS7param(PD_VCO_COMP), 0); //
bool foundInCache = false;
int vco_query;
int csw_query;
if(useCache)
{
foundInCache = (mValueCache->GetVCO_CSW(boardId, freq_Hz, mdevIndex, tx, &vco_query, &csw_query) == 0);
}
if(foundInCache)
{
printf("SetFrequency using cache values vco:%i, csw:%i\n", vco_query, csw_query);
sel_vco = vco_query;
csw_value = csw_query;
}
else
{
canDeliverFrequency = false;
int tuneScore[] = { -128, -128, -128 }; //best is closest to 0
for (sel_vco = 0; sel_vco < 3; ++sel_vco)
{
Modify_SPI_Reg_bits(LMS7param(SEL_VCO), sel_vco);
int status = TuneVCO(tx ? VCO_SXT : VCO_SXR);
if(status == 0)
{
tuneScore[sel_vco] = -128 + Get_SPI_Reg_bits(LMS7param(CSW_VCO), true);
canDeliverFrequency = true;
}
ss << vcoNames[sel_vco] << " : csw=" << tuneScore[sel_vco]+128 << " ";
ss << (status == 0 ? "tune ok" : "tune fail") << endl;
}
if (abs(tuneScore[0]) < abs(tuneScore[1]))
{
if (abs(tuneScore[0]) < abs(tuneScore[2]))
sel_vco = 0;
else
sel_vco = 2;
}
else
{
if (abs(tuneScore[1]) < abs(tuneScore[2]))
sel_vco = 1;
else
sel_vco = 2;
}
csw_value = tuneScore[sel_vco] + 128;
ss << "\tSelected : " << vcoNames[sel_vco] << endl;
}
if(useCache && !foundInCache)
{
mValueCache->InsertVCO_CSW(boardId, freq_Hz, mdevIndex, tx, sel_vco, csw_value);
}
if (output)
{
if (canDeliverFrequency)
output->success = true;
output->sel_vco = sel_vco;
output->csw = csw_value;
}
Modify_SPI_Reg_bits(LMS7param(SEL_VCO), sel_vco);
Modify_SPI_Reg_bits(LMS7param(CSW_VCO), csw_value);
this->SetActiveChannel(ch); //restore used channel
if (canDeliverFrequency == false)
return ReportError(EINVAL, "SetFrequencySX%s(%g MHz) - cannot deliver frequency\n%s", tx?"T":"R", freq_Hz / 1e6, ss.str().c_str());
return 0;
}
/** @brief Sets SX frequency with Reference clock spur cancelation
@param Tx Rx/Tx module selection
@param freq_Hz desired frequency in Hz
@return 0-success, other-cannot deliver requested frequency
*/
int LMS7002M::SetFrequencySXWithSpurCancelation(bool tx, float_type freq_Hz, float_type BW)
{
const float BWOffset = 2e6;
BW += BWOffset; //offset to avoid ref clock on BW edge
bool needCancelation = false;
float_type refClk = GetReferenceClk_SX(false);
int low = (freq_Hz-BW/2)/refClk;
int high = (freq_Hz+BW/2)/refClk;
if(low != high)
needCancelation = true;
int status;
float newFreq;
if(needCancelation)
{
newFreq = (int)(freq_Hz/refClk+0.5)*refClk;
TuneRxFilter(BW-BWOffset+2*abs(freq_Hz-newFreq));
status = SetFrequencySX(tx, newFreq);
}
else
status = SetFrequencySX(tx, freq_Hz);
if(status != 0)
return status;
const int ch = Get_SPI_Reg_bits(LMS7param(MAC));
for(int i=0; i<2; ++i)
{
Modify_SPI_Reg_bits(LMS7param(MAC), i+1);
SetNCOFrequency(LMS7002M::Rx, 15, 0);
}
if(needCancelation)
{
Modify_SPI_Reg_bits(LMS7param(MAC), ch);
Modify_SPI_Reg_bits(LMS7param(EN_INTONLY_SDM), 1);
/*uint16_t gINT = Get_SPI_Reg_bits(0x011E, 13, 0); // read whole register to reduce SPI transfers
uint32_t gFRAC = ((gINT&0xF) * 65536) | Get_SPI_Reg_bits(0x011D, 15, 0);
bool upconvert = gFRAC > (1 << 19);
gINT = gINT >> 4;
if(upconvert)
{
gINT+=;
Modify_SPI_Reg_bits(LMS7param(INT_SDM), gINT);
}
Modify_SPI_Reg_bits(0x011D, 15, 0, 0);
Modify_SPI_Reg_bits(0x011E, 3, 0, 0);*/
//const float_type refClk_Hz = GetReferenceClk_SX(tx);
//float actualFreq = (float_type)refClk_Hz / (1 << (Get_SPI_Reg_bits(LMS7param(DIV_LOCH)) + 1));
//actualFreq *= (gINT + 4) * (Get_SPI_Reg_bits(LMS7param(EN_DIV2_DIVPROG)) + 1);
float actualFreq = newFreq;
float userFreq = freq_Hz;
bool upconvert = actualFreq > userFreq;
for(int i=0; i<2; ++i)
{
Modify_SPI_Reg_bits(LMS7param(MAC), i+1);
Modify_SPI_Reg_bits(LMS7param(CMIX_SC_RXTSP), !upconvert);
Modify_SPI_Reg_bits(LMS7param(CMIX_BYP_RXTSP), 0);
Modify_SPI_Reg_bits(LMS7param(SEL_RX), 15);
Modify_SPI_Reg_bits(LMS7param(CMIX_GAIN_RXTSP), 1);
SetNCOFrequency(LMS7002M::Rx, 14, 0);
SetNCOFrequency(LMS7002M::Rx, 15, abs(actualFreq-userFreq));
}
}
Modify_SPI_Reg_bits(LMS7param(MAC), ch);
return 0;
}
/** @brief Returns currently set SXR/SXT frequency
@return SX frequency Hz
*/
float_type LMS7002M::GetFrequencySX(bool tx)
{
Channel ch = this->GetActiveChannel(); //remember previously used channel
float_type dMul;
this->SetActiveChannel(tx?ChSXT:ChSXR);
uint16_t gINT = Get_SPI_Reg_bits(0x011E, 13, 0); // read whole register to reduce SPI transfers
uint32_t gFRAC = ((gINT&0xF) * 65536) | Get_SPI_Reg_bits(0x011D, 15, 0);
const float_type refClk_Hz = GetReferenceClk_SX(tx);
dMul = (float_type)refClk_Hz / (1 << (Get_SPI_Reg_bits(LMS7param(DIV_LOCH)) + 1));
//Calculate real frequency according to the calculated parameters
dMul = dMul * ((gINT >> 4) + 4 + (float_type)gFRAC / 1048576.0) * (Get_SPI_Reg_bits(LMS7param(EN_DIV2_DIVPROG)) + 1);
this->SetActiveChannel(ch); //restore used channel
return dMul;
}
/** @brief Sets chosen NCO's frequency
@param tx transmitter or receiver selection
@param index NCO index from 0 to 15
@param freq_Hz desired NCO frequency
@return 0-success, other-failure
*/
int LMS7002M::SetNCOFrequency(bool tx, uint8_t index, float_type freq_Hz)
{
if(index > 15)
return ReportError(ERANGE, "SetNCOFrequency(index = %d) - index out of range [0, 15]", int(index));
float_type refClk_Hz = GetReferenceClk_TSP(tx);
if(freq_Hz < 0 || freq_Hz/refClk_Hz > 0.5)
return ReportError(ERANGE, "SetNCOFrequency(index = %d) - Frequency(%g MHz) out of range [0-%g) MHz", int(index), freq_Hz/1e6, refClk_Hz/2e6);
uint16_t addr = tx ? 0x0240 : 0x0440;
uint32_t fcw = uint32_t((freq_Hz/refClk_Hz)*4294967296);
SPI_write(addr+2+index*2, (fcw >> 16)); //NCO frequency control word register MSB part.
SPI_write(addr+3+index*2, fcw); //NCO frequency control word register LSB part.
return 0;
}
/** @brief Returns chosen NCO's frequency in Hz
@param tx transmitter or receiver selection
@param index NCO index from 0 to 15
@param fromChip read frequency directly from chip or local registers
@return NCO frequency in Hz
*/
float_type LMS7002M::GetNCOFrequency(bool tx, uint8_t index, bool fromChip)
{
if(index > 15)
return ReportError(ERANGE, "GetNCOFrequency_MHz(index = %d) - index out of range [0, 15]", int(index));
float_type refClk_Hz = GetReferenceClk_TSP(tx);
uint16_t addr = tx ? 0x0240 : 0x0440;
uint32_t fcw = 0;
fcw |= SPI_read(addr + 2 + index * 2, fromChip) << 16; //NCO frequency control word register MSB part.
fcw |= SPI_read(addr + 3 + index * 2, fromChip); //NCO frequency control word register LSB part.
return refClk_Hz*(fcw/4294967296.0);
}
/** @brief Sets chosen NCO phase offset angle when memory table MODE is 0
@param tx transmitter or receiver selection
@param angle_deg phase offset angle in degrees
@return 0-success, other-failure
*/
int LMS7002M::SetNCOPhaseOffsetForMode0(bool tx, float_type angle_deg)
{
uint16_t addr = tx ? 0x0241 : 0x0441;
uint16_t pho = (uint16_t)(65536 * (angle_deg / 360 ));
SPI_write(addr, pho);
return 0;
}
/** @brief Sets chosen NCO's phase offset angle
@param tx transmitter or receiver selection
@param index PHO index from 0 to 15
@param angle_deg phase offset angle in degrees
@return 0-success, other-failure
*/
int LMS7002M::SetNCOPhaseOffset(bool tx, uint8_t index, float_type angle_deg)
{
if(index > 15)
return ReportError(ERANGE, "SetNCOPhaseOffset(index = %d) - index out of range [0, 15]", int(index));
uint16_t addr = tx ? 0x0244 : 0x0444;
uint16_t pho = (uint16_t)(65536*(angle_deg / 360));
SPI_write(addr+index, pho);
return 0;
}
/** @brief Returns chosen NCO's phase offset angle in radians
@param tx transmitter or receiver selection
@param index PHO index from 0 to 15
@return phase offset angle in degrees
*/
float_type LMS7002M::GetNCOPhaseOffset_Deg(bool tx, uint8_t index)
{
if(index > 15)
return ReportError(ERANGE, "GetNCOPhaseOffset_Deg(index = %d) - index out of range [0, 15]", int(index));
uint16_t addr = tx ? 0x0244 : 0x0444;
uint16_t pho = SPI_read(addr+index);
float_type angle = 360*pho/65536.0;
return angle;
}
/** @brief Uploads given FIR coefficients to chip
@param tx Transmitter or receiver selection
@param GFIR_index GIR index from 0 to 2
@param coef array of coefficients
@param coefCount number of coefficients
@return 0-success, other-failure
This function does not change GFIR*_L or GFIR*_N parameters, they have to be set manually
*/
int LMS7002M::SetGFIRCoefficients(bool tx, uint8_t GFIR_index, const int16_t *coef, uint8_t coefCount)
{
uint8_t index;
uint8_t coefLimit;
uint16_t startAddr;
if (GFIR_index == 0)
startAddr = 0x0280;
else if (GFIR_index == 1)
startAddr = 0x02C0;
else
startAddr = 0x0300;
if (tx == false)
startAddr += 0x0200;
if (GFIR_index < 2)
coefLimit = 40;
else
coefLimit = 120;
if (coefCount > coefLimit)
return ReportError(ERANGE, "SetGFIRCoefficients(coefCount=%d) - exceeds coefLimit=%d", int(coefCount), int(coefLimit));
vector<uint16_t> addresses;
for (index = 0; index < coefCount; ++index)
addresses.push_back(startAddr + index + 24 * (index / 40));
SPI_write_batch(&addresses[0], (uint16_t*)coef, coefCount);
return 0;
}
/** @brief Returns currently loaded FIR coefficients
@param tx Transmitter or receiver selection
@param GFIR_index GIR index from 0 to 2
@param coef array of returned coefficients
@param coefCount number of coefficients to read
@return 0-success, other-failure
*/
int LMS7002M::GetGFIRCoefficients(bool tx, uint8_t GFIR_index, int16_t *coef, uint8_t coefCount)
{
checkConnection();
int status = -1;
uint8_t index;
uint8_t coefLimit;
uint16_t startAddr;
if(GFIR_index == 0)
startAddr = 0x0280;
else if (GFIR_index == 1)
startAddr = 0x02C0;
else
startAddr = 0x0300;
if (tx == false)
startAddr += 0x0200;
if (GFIR_index < 2)
coefLimit = 40;
else
coefLimit = 120;
if (coefCount > coefLimit)
return ReportError(ERANGE, "GetGFIRCoefficients(coefCount=%d) - exceeds coefLimit=%d", int(coefCount), int(coefLimit));
std::vector<uint16_t> addresses;
for (index = 0; index < coefCount; ++index)
addresses.push_back(startAddr + index + 24 * (index / 40));
uint16_t spiData[120];
memset(spiData, 0, 120 * sizeof(uint16_t));
if (controlPort->IsOpen())
{
status = SPI_read_batch(&addresses[0], spiData, coefCount);
for (index = 0; index < coefCount; ++index)
coef[index] = spiData[index];
}
else
{
const int channel = Get_SPI_Reg_bits(LMS7param(MAC), false) > 1 ? 1 : 0;
for (index = 0; index < coefCount; ++index)
coef[index] = mRegistersMap->GetValue(channel, addresses[index]);
status = 0;
}
return status;
}
/** @brief Write given data value to whole register
@param address SPI address
@param data new register value
@return 0-succes, other-failure
*/
int LMS7002M::SPI_write(uint16_t address, uint16_t data)
{
if(address == 0x0640 || address == 0x0641)
{
MCU_BD* mcu = GetMCUControls();
SPI_write(0x002D, address);
SPI_write(0x020C, data);
mcu->RunProcedure(7);
mcu->WaitForMCU(50);
return SPI_read(0x040B);
}
else
return this->SPI_write_batch(&address, &data, 1);
}
/** @brief Reads whole register value from given address
@param address SPI address
@param status operation status(optional)
@param fromChip read value directly from chip
@return register value
*/
uint16_t LMS7002M::SPI_read(uint16_t address, bool fromChip, int *status)
{
if (!controlPort || fromChip == false)
{
if (status && !controlPort)
*status = ReportError(ENOTCONN, "chip not connected");
int mac = mRegistersMap->GetValue(0, LMS7param(MAC).address) & 0x0003;
int regNo = (mac == 2)? 1 : 0; //only when MAC is B -> use register space B
if (address < 0x0100) regNo = 0; //force A when below MAC mapped register space
return mRegistersMap->GetValue(regNo, address);
}
if(controlPort)
{
uint16_t data = 0;
int st;
if(address == 0x0640 || address == 0x0641)
{
MCU_BD* mcu = GetMCUControls();
SPI_write(0x002D, address);
mcu->RunProcedure(8);
mcu->WaitForMCU(50);
uint16_t rdVal = SPI_read(0x040B, true, status);
return rdVal;
}
else
st = this->SPI_read_batch(&address, &data, 1);
if (status != nullptr) *status = st;
return data;
}
return 0;
}
/** @brief Batches multiple register writes into least ammount of transactions
@param spiAddr spi register addresses to be written
@param spiData registers data to be written
@param cnt number of registers to write
@return 0-success, other-failure
*/
int LMS7002M::SPI_write_batch(const uint16_t* spiAddr, const uint16_t* spiData, uint16_t cnt)
{
int mac = mRegistersMap->GetValue(0, LMS7param(MAC).address) & 0x0003;
std::vector<uint32_t> data(cnt);
for (size_t i = 0; i < cnt; ++i)
{
data[i] = (1 << 31) | (uint32_t(spiAddr[i]) << 16) | spiData[i]; //msbit 1=SPI write
//write which register cache based on MAC bits
//or always when below the MAC mapped register space
bool wr0 = ((mac & 0x1) != 0) or (spiAddr[i] < 0x0100);
bool wr1 = ((mac & 0x2) != 0) and (spiAddr[i] >= 0x0100);
if (wr0) mRegistersMap->SetValue(0, spiAddr[i], spiData[i]);
if (wr1) mRegistersMap->SetValue(1, spiAddr[i], spiData[i]);
//refresh mac, because batch might also change active channel
if(spiAddr[i] == LMS7param(MAC).address)
mac = mRegistersMap->GetValue(0, LMS7param(MAC).address) & 0x0003;
}
checkConnection();
return controlPort->WriteLMS7002MSPI(data.data(), cnt,mdevIndex);
}
/** @brief Batches multiple register reads into least amount of transactions
@param spiAddr SPI addresses to read
@param spiData array for read data
@param cnt number of registers to read
@return 0-success, other-failure
*/
int LMS7002M::SPI_read_batch(const uint16_t* spiAddr, uint16_t* spiData, uint16_t cnt)
{
checkConnection();
std::vector<uint32_t> dataWr(cnt);
std::vector<uint32_t> dataRd(cnt);
for (size_t i = 0; i < cnt; ++i)
{
dataWr[i] = (uint32_t(spiAddr[i]) << 16);
}
int status = controlPort->ReadLMS7002MSPI(dataWr.data(), dataRd.data(), cnt,mdevIndex);
if (status != 0) return status;
int mac = mRegistersMap->GetValue(0, LMS7param(MAC).address) & 0x0003;
for (size_t i = 0; i < cnt; ++i)
{
spiData[i] = dataRd[i] & 0xffff;
//write which register cache based on MAC bits
//or always when below the MAC mapped register space
bool wr0 = ((mac & 0x1) != 0) or (spiAddr[i] < 0x0100);
bool wr1 = ((mac & 0x2) != 0) and (spiAddr[i] >= 0x0100);
if (wr0) mRegistersMap->SetValue(0, spiAddr[i], spiData[i]);
if (wr1) mRegistersMap->SetValue(1, spiAddr[i], spiData[i]);
}
return 0;
}
/** @brief Performs registers test by writing known data and confirming readback data
@return 0-registers test passed, other-failure
*/
int LMS7002M::RegistersTest(const char* fileName)
{
char chex[16];
checkConnection();
int status;
Channel ch = this->GetActiveChannel();
//backup both channel data for restoration after test
vector<uint16_t> ch1Addresses;
for (uint8_t i = 0; i < MEMORY_SECTIONS_COUNT; ++i)
for (uint16_t addr = MemorySectionAddresses[i][0]; addr <= MemorySectionAddresses[i][1]; ++addr)
ch1Addresses.push_back(addr);
vector<uint16_t> ch1Data;
ch1Data.resize(ch1Addresses.size(), 0);
//backup A channel
this->SetActiveChannel(ChA);
status = SPI_read_batch(&ch1Addresses[0], &ch1Data[0], ch1Addresses.size());
if (status != 0)
return status;
vector<uint16_t> ch2Addresses;
for (uint8_t i = 0; i < MEMORY_SECTIONS_COUNT; ++i)
for (uint16_t addr = MemorySectionAddresses[i][0]; addr <= MemorySectionAddresses[i][1]; ++addr)
if (addr >= 0x0100)
ch2Addresses.push_back(addr);
vector<uint16_t> ch2Data;
ch2Data.resize(ch2Addresses.size(), 0);
this->SetActiveChannel(ChB);
status = SPI_read_batch(&ch2Addresses[0], &ch2Data[0], ch2Addresses.size());
if (status != 0)
return status;
//test registers
ResetChip();
Modify_SPI_Reg_bits(LMS7param(MIMO_SISO), 0);
Modify_SPI_Reg_bits(LMS7param(PD_RX_AFE2), 0);
Modify_SPI_Reg_bits(LMS7param(PD_TX_AFE2), 0);
this->SetActiveChannel(ChA);
stringstream ss;
//check single channel memory sections
vector<MemorySection> modulesToCheck = { AFE, BIAS, XBUF, CGEN, LDO, BIST, CDS, TRF, TBB, RFE, RBB, SX,
TxTSP, TxNCO, TxGFIR1, TxGFIR2, TxGFIR3a, TxGFIR3b, TxGFIR3c,
RxTSP, RxNCO, RxGFIR1, RxGFIR2, RxGFIR3a, RxGFIR3b, RxGFIR3c, LimeLight };
const char* moduleNames[] = { "AFE", "BIAS", "XBUF", "CGEN", "LDO", "BIST", "CDS", "TRF", "TBB", "RFE", "RBB", "SX",
"TxTSP", "TxNCO", "TxGFIR1", "TxGFIR2", "TxGFIR3a", "TxGFIR3b", "TxGFIR3c",
"RxTSP", "RxNCO", "RxGFIR1", "RxGFIR2", "RxGFIR3a", "RxGFIR3b", "RxGFIR3c", "LimeLight" };
const uint16_t patterns[] = { 0xAAAA, 0x5555 };
const uint8_t patternsCount = 2;
bool allTestSuccess = true;
for (unsigned i = 0; i < modulesToCheck.size(); ++i)
{
bool moduleTestsSuccess = true;
uint16_t startAddr = MemorySectionAddresses[modulesToCheck[i]][0];
uint16_t endAddr = MemorySectionAddresses[modulesToCheck[i]][1];
uint8_t channelCount = startAddr >= 0x0100 ? 2 : 1;
for (int cc = 1; cc <= channelCount; ++cc)
{
Modify_SPI_Reg_bits(LMS7param(MAC), cc);
sprintf(chex, "0x%04X", startAddr);
ss << moduleNames[i] << " [" << chex << ":";
sprintf(chex, "0x%04X", endAddr);
ss << chex << "]";
if (startAddr >= 0x0100) {
ss << " Ch." << (cc == 1 ? "A" : "B");
}
ss << endl;
for (uint8_t p = 0; p < patternsCount; ++p)
moduleTestsSuccess &= RegistersTestInterval(startAddr, endAddr, patterns[p], ss) == 0;
}
allTestSuccess &= moduleTestsSuccess;
}
//restore register values
this->SetActiveChannel(ChA);
SPI_write_batch(&ch1Addresses[0], &ch1Data[0], ch1Addresses.size());
this->SetActiveChannel(ChB);
SPI_write_batch(&ch2Addresses[0], &ch2Data[0], ch2Addresses.size());
this->SetActiveChannel(ch);
if (fileName)
{
fstream fout;
fout.open(fileName, ios::out);
fout << ss.str() << endl;
fout.close();
}
if (allTestSuccess) return 0;
ReportError(-1, "RegistersTest() failed - %s", GetLastErrorMessage());
return -1;
}
/** @brief Performs registers test for given address interval by writing given pattern data
@param startAddr first register address
@param endAddr last reigster address
@param pattern data to be written into registers
@return 0-register test passed, other-failure
*/
int LMS7002M::RegistersTestInterval(uint16_t startAddr, uint16_t endAddr, uint16_t pattern, stringstream &ss)
{
vector<uint16_t> addrToWrite;
vector<uint16_t> dataToWrite;
vector<uint16_t> dataReceived;
vector<uint16_t> dataMasks;
for (uint16_t addr = startAddr; addr <= endAddr; ++addr)
{
addrToWrite.push_back(addr);
}
dataMasks.resize(addrToWrite.size(), 0xFFFF);
for (uint16_t j = 0; j < sizeof(readOnlyRegisters)/sizeof(uint16_t); ++j)
for (uint16_t k = 0; k < addrToWrite.size(); ++k)
if (readOnlyRegisters[j] == addrToWrite[k])
{
dataMasks[k] = readOnlyRegistersMasks[j];
break;
}
dataToWrite.clear();
dataReceived.clear();
for (uint16_t j = 0; j < addrToWrite.size(); ++j)
{
if (addrToWrite[j] == 0x00A6)
dataToWrite.push_back(0x1 | (pattern & ~0x2));
else if (addrToWrite[j] == 0x0084)
dataToWrite.push_back(pattern & ~0x19);
else
dataToWrite.push_back(pattern & dataMasks[j]);
}
dataReceived.resize(addrToWrite.size(), 0);
int status;
status = SPI_write_batch(&addrToWrite[0], &dataToWrite[0], addrToWrite.size());
if (status != 0)
return status;
status = SPI_read_batch(&addrToWrite[0], &dataReceived[0], addrToWrite.size());
if (status != 0)
return status;
bool registersMatch = true;
char ctemp[16];
for (uint16_t j = 0; j < dataToWrite.size(); ++j)
{
if (dataToWrite[j] != (dataReceived[j] & dataMasks[j]))
{
registersMatch = false;
sprintf(ctemp, "0x%04X", addrToWrite[j]);
ss << "\t" << ctemp << "(wr/rd): ";
sprintf(ctemp, "0x%04X", dataToWrite[j]);
ss << ctemp << "/";
sprintf(ctemp, "0x%04X", dataReceived[j]);
ss << ctemp << endl;
}
}
if (registersMatch)
{
sprintf(ctemp, "0x%04X", pattern);
ss << "\tRegisters OK (" << ctemp << ")\n";
}
if (registersMatch) return 0;
return ReportError(-1, "RegistersTestInterval(startAddr=0x%x, endAddr=0x%x) - failed", startAddr, endAddr);
}
/** @brief Sets Rx Dc offsets by converting two's complementary numbers to sign and magnitude
*/
void LMS7002M::SetRxDCOFF(int8_t offsetI, int8_t offsetQ)
{
uint16_t valToSend = 0;
if (offsetI < 0)
valToSend |= 0x40;
valToSend |= labs(offsetI);
valToSend = valToSend << 7;
if (offsetQ < 0)
valToSend |= 0x40;
valToSend |= labs(offsetQ);
SPI_write(0x010E, valToSend);
}
/** @brief Sets given module registers to default values
@return 0-success, other-failure
*/
int LMS7002M::SetDefaults(MemorySection module)
{
int status = 0;
vector<uint16_t> addrs;
vector<uint16_t> values;
for(uint32_t address = MemorySectionAddresses[module][0]; address <= MemorySectionAddresses[module][1]; ++address)
{
addrs.push_back(address);
values.push_back(mRegistersMap->GetDefaultValue(address));
}
status = SPI_write_batch(&addrs[0], &values[0], addrs.size());
return status;
}
/** @brief Reads all chip configuration and checks if it matches with local registers copy
*/
bool LMS7002M::IsSynced()
{
if (!controlPort || controlPort->IsOpen() == false)
return false;
bool isSynced = true;
int status;
Channel ch = this->GetActiveChannel();
vector<uint16_t> addrToRead = mRegistersMap->GetUsedAddresses(0);
vector<uint16_t> dataReceived;
dataReceived.resize(addrToRead.size(), 0);
this->SetActiveChannel(ChA);
std::vector<uint32_t> dataWr(addrToRead.size());
std::vector<uint32_t> dataRd(addrToRead.size());
for(size_t i = 0; i < addrToRead.size(); ++i)
dataWr[i] = (uint32_t(addrToRead[i]) << 16);
status = controlPort->ReadLMS7002MSPI(dataWr.data(), dataRd.data(), dataWr.size(),mdevIndex);
for(size_t i=0; i<addrToRead.size(); ++i)
dataReceived[i] = dataRd[i] & 0xFFFF;
if (status != 0)
{
isSynced = false;
goto isSyncedEnding;
}
//check if local copy matches chip
for (uint16_t i = 0; i < addrToRead.size(); ++i)
{
uint16_t regValue = mRegistersMap->GetValue(0, addrToRead[i]);
if(addrToRead[i] <= readOnlyRegisters[sizeof(readOnlyRegisters)/sizeof(uint16_t)-1] && addrToRead[i] >= readOnlyRegisters[0])
{
//mask out readonly bits
for (uint16_t j = 0; j < sizeof(readOnlyRegisters) / sizeof(uint16_t); ++j)
if (readOnlyRegisters[j] == addrToRead[i])
{
dataReceived[i] &= readOnlyRegistersMasks[j];
regValue &= readOnlyRegistersMasks[j];
break;
}
}
if (dataReceived[i] != regValue)
{
printf("Addr: 0x%04X gui: 0x%04X chip: 0x%04X\n", addrToRead[i], regValue, dataReceived[i]);
isSynced = false;
goto isSyncedEnding;
}
}
addrToRead.clear(); //add only B channel addresses
addrToRead = mRegistersMap->GetUsedAddresses(1);
dataWr.resize(addrToRead.size());
dataRd.resize(addrToRead.size());
for(size_t i = 0; i < addrToRead.size(); ++i)
dataWr[i] = (uint32_t(addrToRead[i]) << 16);
status = controlPort->ReadLMS7002MSPI(dataWr.data(), dataRd.data(), dataWr.size(),mdevIndex);
for(size_t i=0; i<addrToRead.size(); ++i)
dataReceived[i] = dataRd[i] & 0xFFFF;
if (status != 0)
{
isSynced = false;
goto isSyncedEnding;
}
this->SetActiveChannel(ChB);
//check if local copy matches chip
for (uint16_t i = 0; i < addrToRead.size(); ++i)
{
uint16_t regValue = mRegistersMap->GetValue(1, addrToRead[i]);
if(addrToRead[i] <= readOnlyRegisters[sizeof(readOnlyRegisters)/sizeof(uint16_t)-1] && addrToRead[i] >= readOnlyRegisters[0])
{
//mask out readonly bits
for (uint16_t j = 0; j < sizeof(readOnlyRegisters) / sizeof(uint16_t); ++j)
if (readOnlyRegisters[j] == addrToRead[i])
{
dataReceived[i] &= readOnlyRegistersMasks[j];
regValue &= readOnlyRegistersMasks[j];
break;
}
}
if (dataReceived[i] != regValue)
{
printf("Addr: 0x%04X gui: 0x%04X chip: 0x%04X\n", addrToRead[i], regValue, dataReceived[i]);
isSynced = false;
goto isSyncedEnding;
}
}
isSyncedEnding:
this->SetActiveChannel(ch); //restore previously used channel
return isSynced;
}
/** @brief Writes all registers from host to chip
*/
int LMS7002M::UploadAll()
{
checkConnection();
Channel ch = this->GetActiveChannel(); //remember used channel
int status;
vector<uint16_t> addrToWrite;
vector<uint16_t> dataToWrite;
uint16_t x0020_value = mRegistersMap->GetValue(0, 0x0020);
this->SetActiveChannel(ChA); //select A channel
addrToWrite = mRegistersMap->GetUsedAddresses(0);
//remove 0x0020 register from list, to not change MAC
addrToWrite.erase( find(addrToWrite.begin(), addrToWrite.end(), 0x0020) );
for (auto address : addrToWrite)
dataToWrite.push_back(mRegistersMap->GetValue(0, address));
status = SPI_write_batch(&addrToWrite[0], &dataToWrite[0], addrToWrite.size());
if (status != 0)
return status;
//after all channel A registers have been written, update 0x0020 register value
status = SPI_write(0x0020, x0020_value);
if (status != 0)
return status;
this->SetActiveChannel(ChB);
if (status != 0)
return status;
addrToWrite = mRegistersMap->GetUsedAddresses(1);
dataToWrite.clear();
for (auto address : addrToWrite)
{
dataToWrite.push_back(mRegistersMap->GetValue(1, address));
}
this->SetActiveChannel(ChB); //select B channel
status = SPI_write_batch(&addrToWrite[0], &dataToWrite[0], addrToWrite.size());
if (status != 0)
return status;
this->SetActiveChannel(ch); //restore last used channel
//update external band-selection to match
this->UpdateExternalBandSelect();
return 0;
}
/** @brief Reads all registers from the chip to host
*/
int LMS7002M::DownloadAll()
{
checkConnection();
int status;
Channel ch = this->GetActiveChannel(false);
vector<uint16_t> addrToRead = mRegistersMap->GetUsedAddresses(0);
vector<uint16_t> dataReceived;
dataReceived.resize(addrToRead.size(), 0);
this->SetActiveChannel(ChA);
status = SPI_read_batch(&addrToRead[0], &dataReceived[0], addrToRead.size());
if (status != 0)
return status;
for (uint16_t i = 0; i < addrToRead.size(); ++i)
{
mRegistersMap->SetValue(0, addrToRead[i], dataReceived[i]);
}
addrToRead.clear(); //add only B channel addresses
addrToRead = mRegistersMap->GetUsedAddresses(1);
dataReceived.resize(addrToRead.size(), 0);
this->SetActiveChannel(ChB);
status = SPI_read_batch(&addrToRead[0], &dataReceived[0], addrToRead.size());
if (status != 0)
return status;
for (uint16_t i = 0; i < addrToRead.size(); ++i)
mRegistersMap->SetValue(1, addrToRead[i], dataReceived[i]);
this->SetActiveChannel(ch); //retore previously used channel
//update external band-selection to match
this->UpdateExternalBandSelect();
return 0;
}
/** @brief Configures interfaces for desired frequency
@return 0-success, other-failure
Sets interpolation and decimation, changes MCLK sources and TSP clock dividers accordingly to selected interpolation and decimation
*/
int LMS7002M::SetInterfaceFrequency(float_type cgen_freq_Hz, const uint8_t interpolation, const uint8_t decimation)
{
int status = 0;
LMS7002M_SelfCalState state(this);
status = Modify_SPI_Reg_bits(LMS7param(HBD_OVR_RXTSP), decimation);
if(status != 0)
return status;
Modify_SPI_Reg_bits(LMS7param(HBI_OVR_TXTSP), interpolation);
//clock rate already set because the readback frequency is pretty-close,
//dont set the cgen frequency again to save time due to VCO selection
const auto freqDiff = std::abs(this->GetFrequencyCGEN() - cgen_freq_Hz);
if (not this->GetCGENLocked() or freqDiff > 10.0)
{
status = SetFrequencyCGEN(cgen_freq_Hz);
if (status != 0) return status;
}
int mclk2src = Get_SPI_Reg_bits(LMS7param(MCLK2SRC));
if (decimation == 7 || decimation == 0) //bypass
{
Modify_SPI_Reg_bits(LMS7param(RXTSPCLKA_DIV), 0);
Modify_SPI_Reg_bits(LMS7param(RXDIVEN), false);
Modify_SPI_Reg_bits(LMS7param(MCLK2SRC), (mclk2src & 1) | 0x2);
}
else
{
uint8_t divider = (uint8_t)pow(2.0, decimation);
if (divider > 1)
Modify_SPI_Reg_bits(LMS7param(RXTSPCLKA_DIV), (divider / 2) - 1);
else
Modify_SPI_Reg_bits(LMS7param(RXTSPCLKA_DIV), 0);
Modify_SPI_Reg_bits(LMS7param(RXDIVEN), true);
Modify_SPI_Reg_bits(LMS7param(MCLK2SRC), mclk2src & 1);
}
int mclk1src = Get_SPI_Reg_bits(LMS7param(MCLK1SRC));
if (interpolation == 7 || interpolation == 0) //bypass
{
Modify_SPI_Reg_bits(LMS7param(TXTSPCLKA_DIV), 0);
Modify_SPI_Reg_bits(LMS7param(TXDIVEN), false);
Modify_SPI_Reg_bits(LMS7param(MCLK1SRC), (mclk1src & 1) | 0x2);
}
else
{
uint8_t divider = (uint8_t)pow(2.0, interpolation);
if (divider > 1)
Modify_SPI_Reg_bits(LMS7param(TXTSPCLKA_DIV), (divider / 2) - 1);
else
Modify_SPI_Reg_bits(LMS7param(TXTSPCLKA_DIV), 0);
Modify_SPI_Reg_bits(LMS7param(TXDIVEN), true);
Modify_SPI_Reg_bits(LMS7param(MCLK1SRC), mclk1src & 1);
}
return status;
}
float_type LMS7002M::GetSampleRate(bool tx, Channel ch)
{
float_type interface_Hz;
auto chBck = GetActiveChannel();
SetActiveChannel(ch);
//if decimation/interpolation is 0(2^1) or 7(bypass), interface clocks should not be divided
if (tx)
{
int interpolation = Get_SPI_Reg_bits(LMS7param(HBI_OVR_TXTSP));
float_type interfaceTx_Hz = GetReferenceClk_TSP(LMS7002M::Tx);
if (interpolation != 7)
interfaceTx_Hz /= 2*pow(2.0, interpolation);
interface_Hz = interfaceTx_Hz;
}
else
{
int decimation = Get_SPI_Reg_bits(LMS7param(HBD_OVR_RXTSP));
float_type interfaceRx_Hz = GetReferenceClk_TSP(LMS7002M::Rx);
if (decimation != 7)
interfaceRx_Hz /= 2*pow(2.0, decimation);
interface_Hz = interfaceRx_Hz;
}
SetActiveChannel(chBck);
return interface_Hz;
}
void LMS7002M::ConfigureLML_RF2BB(
const LMLSampleSource s0,
const LMLSampleSource s1,
const LMLSampleSource s2,
const LMLSampleSource s3)
{
//map a sample source to a position
std::map<LMLSampleSource, int> m;
m[AI] = 1;
m[AQ] = 0;
m[BI] = 3;
m[BQ] = 2;
//load the same config on both LMLs
//only one will get used based on direction
this->Modify_SPI_Reg_bits(LMS7param(LML1_S3S), m[s3]);
this->Modify_SPI_Reg_bits(LMS7param(LML1_S2S), m[s2]);
this->Modify_SPI_Reg_bits(LMS7param(LML1_S1S), m[s1]);
this->Modify_SPI_Reg_bits(LMS7param(LML1_S0S), m[s0]);
this->Modify_SPI_Reg_bits(LMS7param(LML2_S3S), m[s3]);
this->Modify_SPI_Reg_bits(LMS7param(LML2_S2S), m[s2]);
this->Modify_SPI_Reg_bits(LMS7param(LML2_S1S), m[s1]);
this->Modify_SPI_Reg_bits(LMS7param(LML2_S0S), m[s0]);
}
void LMS7002M::ConfigureLML_BB2RF(
const LMLSampleSource s0,
const LMLSampleSource s1,
const LMLSampleSource s2,
const LMLSampleSource s3)
{
//map a sample source to a position
std::map<LMLSampleSource, int> m;
m[s3] = 2;
m[s2] = 3;
m[s0] = 1;
m[s1] = 0;
//load the same config on both LMLs
//only one will get used based on direction
this->Modify_SPI_Reg_bits(LMS7param(LML1_BQP), m[BQ]);
this->Modify_SPI_Reg_bits(LMS7param(LML1_BIP), m[BI]);
this->Modify_SPI_Reg_bits(LMS7param(LML1_AQP), m[AQ]);
this->Modify_SPI_Reg_bits(LMS7param(LML1_AIP), m[AI]);
this->Modify_SPI_Reg_bits(LMS7param(LML2_BQP), m[BQ]);
this->Modify_SPI_Reg_bits(LMS7param(LML2_BIP), m[BI]);
this->Modify_SPI_Reg_bits(LMS7param(LML2_AQP), m[AQ]);
this->Modify_SPI_Reg_bits(LMS7param(LML2_AIP), m[AI]);
}
int LMS7002M::SetRxDCRemoval(const bool enable)
{
this->Modify_SPI_Reg_bits(LMS7param(DC_BYP_RXTSP), enable?0:1);
this->Modify_SPI_Reg_bits(LMS7param(DCCORR_AVG_RXTSP), 0x7);
return 0;
}
bool LMS7002M::GetRxDCRemoval(void)
{
return this->Get_SPI_Reg_bits(LMS7param(DC_BYP_RXTSP)) == 0;
}
int LMS7002M::SetTxDCOffset(const float_type I, const float_type Q)
{
const bool bypass = I == 0.0 and Q == 0.0;
this->Modify_SPI_Reg_bits(LMS7param(DC_BYP_TXTSP), bypass?1:0);
this->Modify_SPI_Reg_bits(LMS7param(DCCORRI_TXTSP), std::lrint(I*128));
this->Modify_SPI_Reg_bits(LMS7param(DCCORRQ_TXTSP), std::lrint(Q*128));
return 0;
}
void LMS7002M::GetTxDCOffset(float_type &I, float_type &Q)
{
I = int8_t(this->Get_SPI_Reg_bits(LMS7param(DCCORRI_TXTSP)))/128.0; //signed 8-bit
Q = int8_t(this->Get_SPI_Reg_bits(LMS7param(DCCORRQ_TXTSP)))/128.0; //signed 8-bit
}
int LMS7002M::SetIQBalance(const bool tx, const float_type phase, const float_type gainI, const float_type gainQ)
{
const bool bypassPhase = (phase == 0.0);
const bool bypassGain = ((gainI == 1.0) and (gainQ == 1.0)) or ((gainI == 0.0) and (gainQ == 0.0));
int iqcorr = std::lrint(2047*(phase/(M_PI/2)));
int gcorri = std::lrint(2047*gainI);
int gcorrq = std::lrint(2047*gainQ);
this->Modify_SPI_Reg_bits(tx?LMS7param(PH_BYP_TXTSP):LMS7param(PH_BYP_RXTSP), bypassPhase?1:0);
this->Modify_SPI_Reg_bits(tx?LMS7param(GC_BYP_TXTSP):LMS7param(GC_BYP_RXTSP), bypassGain?1:0);
this->Modify_SPI_Reg_bits(tx?LMS7param(IQCORR_TXTSP):LMS7param(IQCORR_RXTSP), iqcorr);
this->Modify_SPI_Reg_bits(tx?LMS7param(GCORRI_TXTSP):LMS7param(GCORRI_RXTSP), gcorri);
this->Modify_SPI_Reg_bits(tx?LMS7param(GCORRQ_TXTSP):LMS7param(GCORRQ_RXTSP), gcorrq);
return 0;
}
void LMS7002M::GetIQBalance(const bool tx, float_type &phase, float_type &gainI, float_type &gainQ)
{
int iqcorr = int16_t(this->Get_SPI_Reg_bits(tx?LMS7param(IQCORR_TXTSP):LMS7param(IQCORR_RXTSP)) << 4) >> 4; //sign extend 12-bit
int gcorri = int16_t(this->Get_SPI_Reg_bits(tx?LMS7param(GCORRI_TXTSP):LMS7param(GCORRI_RXTSP))); //unsigned 11-bit
int gcorrq = int16_t(this->Get_SPI_Reg_bits(tx?LMS7param(GCORRQ_TXTSP):LMS7param(GCORRQ_RXTSP))); //unsigned 11-bit
phase = (M_PI/2)*iqcorr/2047.0;
gainI = gcorri/2047.0;
gainQ = gcorrq/2047.0;
}
void LMS7002M::EnterSelfCalibration(void)
{
if (controlPort && mSelfCalDepth == 0)
{
controlPort->EnterSelfCalibration(this->GetActiveChannelIndex());
}
mSelfCalDepth++;
}
void LMS7002M::ExitSelfCalibration(void)
{
mSelfCalDepth--;
if (controlPort && mSelfCalDepth == 0)
controlPort->ExitSelfCalibration(this->GetActiveChannelIndex());
}
LMS7002M_SelfCalState::LMS7002M_SelfCalState(LMS7002M *rfic):
rfic(rfic)
{
rfic->EnterSelfCalibration();
}
LMS7002M_SelfCalState::~LMS7002M_SelfCalState(void)
{
rfic->ExitSelfCalibration();
}
void LMS7002M::EnableValuesCache(bool enabled)
{
useCache = enabled;
}
bool LMS7002M::IsValuesCacheEnabled()
{
return useCache;
}
MCU_BD* LMS7002M::GetMCUControls() const
{
return mcuControl;
}
void LMS7002M::EnableCalibrationByMCU(bool enabled)
{
mCalibrationByMCU = enabled;
}
float_type LMS7002M::GetTemperature()
{
Modify_SPI_Reg_bits(LMS7_RSSI_PD, 0);
Modify_SPI_Reg_bits(LMS7_RSSI_RSSIMODE, 0);
Modify_SPI_Reg_bits(LMS7_DAC_CLKDIV, 32);
uint16_t biasMux = Get_SPI_Reg_bits(LMS7_MUX_BIAS_OUT);
Modify_SPI_Reg_bits(LMS7_MUX_BIAS_OUT, 2);
this_thread::sleep_for(chrono::microseconds(250));
const uint16_t reg606 = SPI_read(0x0606, true);
float Vtemp = (reg606 >> 8) & 0xFF;
Vtemp *= 3.515625;
float Vptat = reg606 & 0xFF;
Vptat *= 3.515625;
float Vdiff = Vptat-Vtemp;
Vdiff /= 3.9;
float temperature = 40.5+Vdiff;
Modify_SPI_Reg_bits(LMS7_MUX_BIAS_OUT, biasMux);
printf("Vtemp 0x%04X, Vptat 0x%04X, Vdiff = %.2f, temp= %.3f\n", (reg606 >> 8) & 0xFF, reg606 & 0xFF, Vdiff, temperature);
return temperature;
}
void LMS7002M::SetLogCallback(std::function<void(const char*, int)> callback)
{
log_callback = callback;
}
int LMS7002M::CopyChannelRegisters(const Channel src, const Channel dest, const bool copySX)
{
Channel ch = this->GetActiveChannel(); //remember used channel
vector<uint16_t> addrToWrite;
addrToWrite = mRegistersMap->GetUsedAddresses(1);
if(!copySX)
{
for(uint32_t address = MemorySectionAddresses[SX][0]; address <= MemorySectionAddresses[SX][1]; ++address)
addrToWrite.erase( find(addrToWrite.begin(), addrToWrite.end(), address));
}
for (auto address : addrToWrite)
{
uint16_t data = mRegistersMap->GetValue(src == ChA ? 0 : 1, address);
mRegistersMap->SetValue(dest == ChA ? 0 : 1, address, data);
}
if(controlPort)
UploadAll();
this->SetActiveChannel(ch);
//update external band-selection to match
this->UpdateExternalBandSelect();
return 0;
}
int LMS7002M::CalibrateAnalogRSSI_DC_Offset()
{
Modify_SPI_Reg_bits(LMS7param(PD_RSSI_RFE), 0);
Modify_SPI_Reg_bits(LMS7param(PD_TIA_RFE), 0);
Modify_SPI_Reg_bits(LMS7param(RSSIDC_RSEL), 26);
int value = -63;
uint8_t wrValue = abs(value);
if(value < 0)
wrValue |= 0x40;
Modify_SPI_Reg_bits(LMS7param(RSSIDC_DCO1), wrValue, true);
uint8_t cmp = Get_SPI_Reg_bits(LMS7param(RSSIDC_CMPSTATUS), true);
uint8_t cmpPrev = cmp;
vector<int8_t> edges;
for(value = -63; value < 64; ++value)
{
wrValue = abs(value);
if(value < 0)
wrValue |= 0x40;
Modify_SPI_Reg_bits(LMS7param(RSSIDC_DCO1), wrValue, true);
this_thread::sleep_for(chrono::microseconds(5));
cmp = Get_SPI_Reg_bits(LMS7param(RSSIDC_CMPSTATUS), true);
if(cmp != cmpPrev)
{
edges.push_back(value);
cmpPrev = cmp;
}
if(edges.size() > 1)
break;
}
if(edges.size() != 2)
{
printf("Not found\n");
return ReportError(EINVAL, "Failed to find value");
}
int8_t found = (edges[0]+edges[1])/2;
wrValue = abs(found);
if(found < 0)
wrValue |= 0x40;
Modify_SPI_Reg_bits(LMS7param(RSSIDC_DCO1), wrValue, true);
printf("Found %i\n", found);
return 0;
}