1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2026-02-14 05:33:39 -05:00

100 lines
4.2 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany //
// written by Christian Daniel //
// Copyright (C) 2015-2019 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef INCLUDE_NCO_H
#define INCLUDE_NCO_H
#include "dsp/dsptypes.h"
#include "export.h"
// Numerically Controlled Oscillator (NCO), using 2^12 entry 32-bit LUT and Q12.20 fixed-point phase accumulator with linear interpolation
// With a 2^12 32-bit LUT, SFDR is 144 dBc. 2^13 would be 156 dBc.
// Fractional part can be set to 0 by setting integerPhase = true, to increase SFDR while decreasing frequency accuracy.
// Frequency accuracy = sampleRate / 2^PhaseBits.
// So:
// 48k / 2^32 = 0.00001 Hz
// 48k / 2^12 = 15.2 Hz (integer only)
// 2M / 2^32 = 0.00046 Hz
// 2M / 2^12 = 488 Hz (integer only)
class SDRBASE_API NCO {
private:
#ifdef NCO_64_BIT
constexpr static unsigned PhaseBits = 64;
typedef uint64_t Phase;
typedef double Frac;
#else
constexpr static unsigned PhaseBits = 32;
typedef uint32_t Phase;
typedef float Frac;
#endif
constexpr static unsigned TableBits = 12;
constexpr static unsigned TableSize = 1 << TableBits;
constexpr static unsigned IntShift = PhaseBits - TableBits;
constexpr static Phase IntMask = TableSize - 1u;
constexpr static Phase FracMask = ((1ull << IntShift) - 1u);
constexpr static Frac Denom = 1ull << IntShift;
static Real m_table[TableSize];
static bool m_tableInitialized;
static void initTable();
uint64_t prsg63();
Phase m_phaseIncrement;
Phase m_phase;
Phase m_phaseDithered;
uint64_t m_lfsr; // Linear feedback shift register for psuedo random number generation
Phase m_ditherMask; // Bit mask to select bits from lfsr to use for phase dithering
public:
NCO();
void setFreq(Real freq, Real sampleRate, bool integerPhase = false, int ditherBits = 0);
void setPhase(Phase phase) { m_phase = phase; }
void nextPhase() //!< Increment phase
{
m_phase += m_phaseIncrement; // No need to wrap, as that is handled by overflow
m_phaseDithered = m_phase;
if (m_ditherMask) {
m_phaseDithered += prsg63() & m_ditherMask;
}
}
Real next(); //!< Return next real sample
Complex nextIQ(); //!< Return next complex sample
Complex nextQI(); //!< Return next complex sample (reversed)
Complex nextIQ(float imbalance); //!< Return next complex sample with an imbalance factor on I
void nextIQMul(Real& i, Real& q); //!< multiply I,Q separately with next sample
Real get() const; //!< Return current real sample (no phase increment)
Complex getIQ() const; //!< Return current complex sample (no phase increment)
void getIQ(Complex& c) const; //!< Sets to the current complex sample (no phase increment)
Complex getQI() const; //!< Return current complex sample (no phase increment, reversed)
void getQI(Complex& c) const; //!< Sets to the current complex sample (no phase increment, reversed)
};
#endif // INCLUDE_NCO_H