1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-27 02:09:14 -05:00
sdrangel/plugins/samplemimo/limesdrmimo/limesdrmimo.cpp

2201 lines
78 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2020 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QDebug>
#include <QNetworkReply>
#include <QNetworkAccessManager>
#include <QBuffer>
#include "SWGDeviceSettings.h"
#include "SWGLimeSdrMIMOSettings.h"
#include "SWGDeviceState.h"
#include "SWGDeviceReport.h"
#include "SWGDeviceActions.h"
#include "SWGLimeSdrMIMOReport.h"
#include "device/deviceapi.h"
#include "dsp/dspcommands.h"
#include "dsp/dspengine.h"
#include "dsp/dspdevicemimoengine.h"
#include "dsp/devicesamplesource.h"
#include "dsp/devicesamplesink.h"
#include "limesdr/devicelimesdrparam.h"
#include "limesdr/devicelimesdrshared.h"
#include "limesdrmithread.h"
#include "limesdrmothread.h"
#include "limesdrmimo.h"
MESSAGE_CLASS_DEFINITION(LimeSDRMIMO::MsgConfigureLimeSDRMIMO, Message)
MESSAGE_CLASS_DEFINITION(LimeSDRMIMO::MsgGetStreamInfo, Message)
MESSAGE_CLASS_DEFINITION(LimeSDRMIMO::MsgGetDeviceInfo, Message)
MESSAGE_CLASS_DEFINITION(LimeSDRMIMO::MsgReportStreamInfo, Message)
MESSAGE_CLASS_DEFINITION(LimeSDRMIMO::MsgStartStop, Message)
LimeSDRMIMO::LimeSDRMIMO(DeviceAPI *deviceAPI) :
m_deviceAPI(deviceAPI),
m_settings(),
m_sourceThread(nullptr),
m_sinkThread(nullptr),
m_deviceDescription("LimeSDRMIMO"),
m_runningRx(false),
m_runningTx(false),
m_deviceParams(nullptr),
m_open(false)
{
for (unsigned int channel = 0; channel < 2; channel++)
{
m_rxChannelEnabled[channel] = false;
m_txChannelEnabled[channel] = false;
m_rxStreamStarted[channel] = false;
m_txStreamStarted[channel] = false;
m_rxStreams[channel].handle = 0;
m_txStreams[channel].handle = 0;
}
m_open = openDevice();
m_mimoType = MIMOHalfSynchronous;
m_sampleMIFifo.init(2, 4096 * 64);
m_sampleMOFifo.init(2, 4096 * 64);
m_deviceAPI->setNbSourceStreams(m_deviceParams->m_nbRxChannels);
m_deviceAPI->setNbSinkStreams(m_deviceParams->m_nbTxChannels);
m_networkManager = new QNetworkAccessManager();
QObject::connect(
m_networkManager,
&QNetworkAccessManager::finished,
this,
&LimeSDRMIMO::networkManagerFinished
);
}
LimeSDRMIMO::~LimeSDRMIMO()
{
QObject::disconnect(
m_networkManager,
&QNetworkAccessManager::finished,
this,
&LimeSDRMIMO::networkManagerFinished
);
delete m_networkManager;
closeDevice();
}
bool LimeSDRMIMO::openDevice()
{
m_deviceParams = new DeviceLimeSDRParams();
char serial[256];
strcpy(serial, qPrintable(m_deviceAPI->getSamplingDeviceSerial()));
if (!m_deviceParams->open(serial)) {
return false;
}
for (unsigned int rxChannel = 0; rxChannel < m_deviceParams->m_nbRxChannels; rxChannel++)
{
if (LMS_EnableChannel(m_deviceParams->getDevice(), LMS_CH_RX, rxChannel, true) != 0)
{
qCritical("LimeSDRMIMO::openDevice: cannot enable Rx channel %d", rxChannel);
return false;
}
else
{
qDebug("LimeSDRMIMO::openDevice: Rx channel %d enabled", rxChannel);
m_rxChannelEnabled[rxChannel] = true;
}
}
for (unsigned int txChannel = 0; txChannel < m_deviceParams->m_nbTxChannels; txChannel++)
{
if (LMS_EnableChannel(m_deviceParams->getDevice(), LMS_CH_TX, txChannel, true) != 0)
{
qCritical("LimeSDRMIMO::openDevice: cannot enable Tx channel %d", txChannel);
return false;
}
else
{
qDebug("LimeSDRMIMO::openDevice: Tx channel %d enabled", txChannel);
m_txChannelEnabled[txChannel] = true;
}
}
return true;
}
void LimeSDRMIMO::closeDevice()
{
if (m_deviceParams == nullptr) { // was never open
return;
}
if (m_runningRx) {
stopRx();
}
if (m_runningTx) {
stopTx();
}
for (unsigned int rxChannel = 0; rxChannel < m_deviceParams->m_nbRxChannels; rxChannel++)
{
if (LMS_EnableChannel(m_deviceParams->getDevice(), LMS_CH_RX, rxChannel, false) != 0) {
qWarning("LimeSDRMIMO::closeDevice: cannot disable Rx channel %d", rxChannel);
} else {
qDebug("LimeSDRMIMO::closeDevice: Rx channel %d disabled", rxChannel);
}
}
for (unsigned int txChannel = 0; txChannel < m_deviceParams->m_nbTxChannels; txChannel++)
{
if (LMS_EnableChannel(m_deviceParams->getDevice(), LMS_CH_TX, txChannel, false) != 0) {
qWarning("LimeSDROutput::closeDevice: cannot disable Tx channel %d", txChannel);
} else {
qDebug("LimeSDROutput::closeDevice: Tx channel %d released", txChannel);
}
}
m_deviceParams->close();
delete m_deviceParams;
m_deviceParams = nullptr;
}
bool LimeSDRMIMO::setupRxStream(unsigned int channel)
{
// channel index out of range
if (channel >= m_deviceAPI->getNbSourceStreams()) {
return false;
}
// set up the stream
m_rxStreams[channel].channel = channel | LMS_ALIGN_CH_PHASE; // channel number
m_rxStreams[channel].fifoSize = 1024 * 256; // fifo size in samples
m_rxStreams[channel].throughputVsLatency = 0.5; // optimize for min latency
m_rxStreams[channel].isTx = false; // RX channel
m_rxStreams[channel].dataFmt = lms_stream_t::LMS_FMT_I12; // 12-bit integers
if (LMS_SetupStream(m_deviceParams->getDevice(), &m_rxStreams[channel]) != 0)
{
qCritical("LimeSDRMIMO::setupRxStream: cannot setup the stream on Rx channel %d", channel);
return false;
}
else
{
qDebug("LimeSDRMIMO::setupRxStream: stream set up on Rx channel %d", channel);
}
return true;
}
void LimeSDRMIMO::destroyRxStream(unsigned int channel)
{
// destroy the stream
if (LMS_DestroyStream(m_deviceParams->getDevice(), &m_rxStreams[channel]) != 0) {
qWarning("LimeSDRMIMO::destroyRxStream: cannot destroy the stream on Rx channel %d", channel);
} else {
qDebug("LimeSDRMIMO::destroyRxStream: stream destroyed on Rx channel %d", channel);
}
m_rxStreams[channel].handle = 0;
}
bool LimeSDRMIMO::setupTxStream(unsigned int channel)
{
// channel index out of range
if (channel >= m_deviceAPI->getNbSinkStreams()) {
return false;
}
// set up the stream
m_txStreams[channel].channel = channel | LMS_ALIGN_CH_PHASE; // channel number
m_txStreams[channel].fifoSize = 1024 * 256; // fifo size in samples
m_txStreams[channel].throughputVsLatency = 0.5; // optimize for min latency
m_txStreams[channel].isTx = true; // TX channel
m_txStreams[channel].dataFmt = lms_stream_t::LMS_FMT_I12; // 12-bit integers
if (LMS_SetupStream(m_deviceParams->getDevice(), &m_txStreams[channel]) != 0)
{
qCritical("LimeSDROutput::setupTxStream: cannot setup the stream on Tx channel %d", channel);
return false;
}
else
{
qDebug("LimeSDROutput::setupTxStream: stream set up on Tx channel %d", channel);
}
return true;
}
void LimeSDRMIMO::destroyTxStream(unsigned int channel)
{
// destroy the stream
if (LMS_DestroyStream(m_deviceParams->getDevice(), &m_txStreams[channel]) != 0) {
qWarning("LimeSDROutput::destroyTxStream: cannot destroy the stream on Tx channel %d", channel);
} else {
qDebug("LimeSDROutput::destroyTxStream: stream destroyed on Tx channel %d", channel);
}
m_txStreams[channel].handle = 0;
}
void LimeSDRMIMO::destroy()
{
delete this;
}
void LimeSDRMIMO::init()
{
applySettings(m_settings, QList<QString>(), true);
}
bool LimeSDRMIMO::startRx()
{
qDebug("LimeSDRMIMO::startRx");
lms_stream_t *streams[2];
if (!m_open)
{
qCritical("LimeSDRMIMO::startRx: device was not opened");
return false;
}
QMutexLocker mutexLocker(&m_mutex);
if (m_runningRx) {
stopRx();
}
for (unsigned int channel = 0; channel < 2; channel++)
{
if (channel < m_deviceAPI->getNbSourceStreams())
{
if (setupRxStream(channel))
{
streams[channel] = &m_rxStreams[channel];
m_rxStreamStarted[channel] = true;
}
else
{
qInfo("LimeSDRMIMO::startRx: stream Rx %u not started", channel);
streams[channel] = nullptr;
m_rxStreamStarted[channel] = false;
}
}
else
{
streams[channel] = nullptr;
m_rxStreamStarted[channel] = false;
}
}
m_sourceThread = new LimeSDRMIThread(streams[0], streams[1]);
m_sampleMIFifo.reset();
m_sourceThread->setFifo(&m_sampleMIFifo);
m_sourceThread->setLog2Decimation(m_settings.m_log2SoftDecim);
m_sourceThread->setIQOrder(m_settings.m_iqOrder);
m_sourceThread->startWork();
mutexLocker.unlock();
m_runningRx = true;
return true;
}
void LimeSDRMIMO::stopRx()
{
qDebug("LimeSDRMIMO::stopRx");
if (!m_sourceThread) {
return;
}
QMutexLocker mutexLocker(&m_mutex);
m_sourceThread->stopWork();
delete m_sourceThread;
m_sourceThread = nullptr;
m_runningRx = false;
for (unsigned int channel = 0; channel < 2; channel++)
{
if (m_rxStreamStarted[channel]) {
destroyRxStream(channel);
}
}
}
bool LimeSDRMIMO::startTx()
{
qDebug("LimeSDRMIMO::startTx");
lms_stream_t *streams[2];
if (!m_open)
{
qCritical("LimeSDRMIMO::startTx: device was not opened");
return false;
}
QMutexLocker mutexLocker(&m_mutex);
if (m_runningTx) {
stopTx();
}
for (unsigned int channel = 0; channel < 2; channel++)
{
if (channel < m_deviceAPI->getNbSinkStreams())
{
if (setupTxStream(channel))
{
streams[channel] = &m_txStreams[channel];
m_txStreamStarted[channel] = true;
}
else
{
qInfo("LimeSDRMIMO::startTx: stream Tx %u not started", channel);
streams[channel] = nullptr;
m_txStreamStarted[channel] = false;
}
}
else
{
streams[channel] = nullptr;
m_txStreamStarted[channel] = false;
}
}
m_sinkThread = new LimeSDRMOThread(streams[0], streams[1]);
m_sampleMOFifo.reset();
m_sinkThread->setFifo(&m_sampleMOFifo);
m_sinkThread->setLog2Interpolation(m_settings.m_log2SoftInterp);
m_sinkThread->startWork();
mutexLocker.unlock();
m_runningTx = true;
return true;
}
void LimeSDRMIMO::stopTx()
{
qDebug("LimeSDRMIMO::stopTx");
if (!m_sinkThread) {
return;
}
QMutexLocker mutexLocker(&m_mutex);
m_sinkThread->stopWork();
delete m_sinkThread;
m_sinkThread = nullptr;
m_runningTx = false;
for (unsigned int channel = 0; channel < 2; channel++)
{
if (m_txStreamStarted[channel]) {
destroyTxStream(channel);
}
}
}
QByteArray LimeSDRMIMO::serialize() const
{
return m_settings.serialize();
}
bool LimeSDRMIMO::deserialize(const QByteArray& data)
{
bool success = true;
if (!m_settings.deserialize(data))
{
m_settings.resetToDefaults();
success = false;
}
MsgConfigureLimeSDRMIMO* message = MsgConfigureLimeSDRMIMO::create(m_settings, QList<QString>(), true);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue)
{
MsgConfigureLimeSDRMIMO* messageToGUI = MsgConfigureLimeSDRMIMO::create(m_settings, QList<QString>(), true);
m_guiMessageQueue->push(messageToGUI);
}
return success;
}
const QString& LimeSDRMIMO::getDeviceDescription() const
{
return m_deviceDescription;
}
int LimeSDRMIMO::getSourceSampleRate(int index) const
{
(void) index;
int rate = m_settings.m_devSampleRate;
return (rate / (1<<m_settings.m_log2SoftDecim));
}
int LimeSDRMIMO::getSinkSampleRate(int index) const
{
(void) index;
int rate = m_settings.m_devSampleRate;
return (rate / (1<<m_settings.m_log2SoftInterp));
}
quint64 LimeSDRMIMO::getSourceCenterFrequency(int index) const
{
(void) index;
return m_settings.m_rxCenterFrequency;
}
void LimeSDRMIMO::setSourceCenterFrequency(qint64 centerFrequency, int index)
{
(void) index;
LimeSDRMIMOSettings settings = m_settings;
settings.m_rxCenterFrequency = centerFrequency;
MsgConfigureLimeSDRMIMO* message = MsgConfigureLimeSDRMIMO::create(settings, QList<QString>{"rxCenterFrequency"}, false);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue)
{
MsgConfigureLimeSDRMIMO* messageToGUI = MsgConfigureLimeSDRMIMO::create(settings, QList<QString>{"rxCenterFrequency"}, false);
m_guiMessageQueue->push(messageToGUI);
}
}
quint64 LimeSDRMIMO::getSinkCenterFrequency(int index) const
{
(void) index;
return m_settings.m_txCenterFrequency;
}
void LimeSDRMIMO::setSinkCenterFrequency(qint64 centerFrequency, int index)
{
(void) index;
LimeSDRMIMOSettings settings = m_settings;
settings.m_txCenterFrequency = centerFrequency;
MsgConfigureLimeSDRMIMO* message = MsgConfigureLimeSDRMIMO::create(settings, QList<QString>{"txCenterFrequency"}, false);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue)
{
MsgConfigureLimeSDRMIMO* messageToGUI = MsgConfigureLimeSDRMIMO::create(settings, QList<QString>{"txCenterFrequency"}, false);
m_guiMessageQueue->push(messageToGUI);
}
}
bool LimeSDRMIMO::handleMessage(const Message& message)
{
if (MsgConfigureLimeSDRMIMO::match(message))
{
MsgConfigureLimeSDRMIMO& conf = (MsgConfigureLimeSDRMIMO&) message;
qDebug() << "LimeSDRMIMO::handleMessage: MsgConfigureLimeSDRMIMO";
bool success = applySettings(conf.getSettings(), conf.getSettingsKeys(), conf.getForce());
if (!success) {
qDebug("LimeSDRMIMO::handleMessage: config error");
}
return true;
}
else if (MsgStartStop::match(message))
{
MsgStartStop& cmd = (MsgStartStop&) message;
qDebug() << "LimeSDRMIMO::handleMessage: "
<< " " << (cmd.getRxElseTx() ? "Rx" : "Tx")
<< " MsgStartStop: " << (cmd.getStartStop() ? "start" : "stop");
bool startStopRxElseTx = cmd.getRxElseTx();
if (cmd.getStartStop())
{
if (m_deviceAPI->initDeviceEngine(startStopRxElseTx ? 0 : 1)) {
m_deviceAPI->startDeviceEngine(startStopRxElseTx ? 0 : 1);
}
}
else
{
m_deviceAPI->stopDeviceEngine(startStopRxElseTx ? 0 : 1);
}
if (m_settings.m_useReverseAPI) {
webapiReverseSendStartStop(cmd.getStartStop());
}
return true;
}
else if (MsgGetStreamInfo::match(message))
{
MsgGetStreamInfo& cmd = (MsgGetStreamInfo&) message;
lms_stream_status_t status;
lms_stream_t *stream;
if (cmd.getRxElseTx() && (cmd.getChannel() == 0) && m_rxStreams[0].handle) {
stream = &m_rxStreams[0];
} else if (cmd.getRxElseTx() && (cmd.getChannel() == 1) && m_rxStreams[1].handle) {
stream = &m_rxStreams[1];
} else if (!cmd.getRxElseTx() && (cmd.getChannel() == 0) && m_txStreams[0].handle) {
stream = &m_txStreams[0];
} else if (!cmd.getRxElseTx() && (cmd.getChannel() == 1) && m_txStreams[1].handle) {
stream = &m_txStreams[1];
} else {
stream = nullptr;
}
if (stream && (LMS_GetStreamStatus(stream, &status) == 0))
{
if (getMessageQueueToGUI())
{
MsgReportStreamInfo *report = MsgReportStreamInfo::create(
true, // Success
status.active,
status.fifoFilledCount,
status.fifoSize,
status.underrun,
status.overrun,
status.droppedPackets,
status.linkRate,
status.timestamp);
getMessageQueueToGUI()->push(report);
}
}
else
{
if (m_deviceAPI->getSamplingDeviceGUIMessageQueue())
{
MsgReportStreamInfo *report = MsgReportStreamInfo::create(
false, // Success
false, // status.active,
0, // status.fifoFilledCount,
16384, // status.fifoSize,
0, // status.underrun,
0, // status.overrun,
0, // status.droppedPackets,
0, // status.linkRate,
0); // status.timestamp);
m_deviceAPI->getSamplingDeviceGUIMessageQueue()->push(report);
}
}
return true;
}
else if (MsgGetDeviceInfo::match(message))
{
double temp = 0.0;
uint8_t gpioPins = 0;
if (m_deviceParams->getDevice() && (LMS_GetChipTemperature(m_deviceParams->getDevice(), 0, &temp) != 0)) {
qDebug("LimeSDRMIMO::handleMessage: MsgGetDeviceInfo: cannot get temperature");
}
if ((m_deviceParams->m_type != DeviceLimeSDRParams::LimeMini)
&& (m_deviceParams->m_type != DeviceLimeSDRParams::LimeUndefined))
{
if (m_deviceParams->getDevice() && (LMS_GPIORead(m_deviceParams->getDevice(), &gpioPins, 1) != 0)) {
qDebug("LimeSDRMIMO::handleMessage: MsgGetDeviceInfo: cannot get GPIO pins values");
}
}
// send to oneself
if (getMessageQueueToGUI())
{
DeviceLimeSDRShared::MsgReportDeviceInfo *report = DeviceLimeSDRShared::MsgReportDeviceInfo::create(temp, gpioPins);
getMessageQueueToGUI()->push(report);
}
return true;
}
else
{
return false;
}
}
bool LimeSDRMIMO::applySettings(const LimeSDRMIMOSettings& settings, const QList<QString>& settingsKeys, bool force)
{
qDebug() << "LimeSDRMIMO::applySettings: force:" << force << settings.getDebugString(settingsKeys, force);
bool forwardChangeRxDSP = false;
bool forwardChangeTxDSP = false;
double clockGenFreq = 0.0;
bool doCalibrationRx0 = false;
bool doCalibrationRx1 = false;
bool doLPCalibrationRx0 = false;
bool doLPCalibrationRx1 = false;
bool doCalibrationTx0 = false;
bool doCalibrationTx1 = false;
bool doLPCalibrationTx0 = false;
bool doLPCalibrationTx1 = false;
bool forceRxNCOFrequency = false;
bool forceTxNCOFrequency = false;
qint64 rxDeviceCenterFrequency = settings.m_rxCenterFrequency;
rxDeviceCenterFrequency -= settings.m_rxTransverterMode ? settings.m_rxTransverterDeltaFrequency : 0;
rxDeviceCenterFrequency = rxDeviceCenterFrequency < 0 ? 0 : rxDeviceCenterFrequency;
qint64 txDeviceCenterFrequency = settings.m_txCenterFrequency;
txDeviceCenterFrequency -= settings.m_txTransverterMode ? settings.m_txTransverterDeltaFrequency : 0;
txDeviceCenterFrequency = txDeviceCenterFrequency < 0 ? 0 : txDeviceCenterFrequency;
// Common
if (LMS_GetClockFreq(m_deviceParams->getDevice(), LMS_CLOCK_CGEN, &clockGenFreq) != 0) {
qCritical("LimeSDRMIMO::applySettings: could not get clock gen frequency");
} else {
qDebug() << "LimeSDRMIMO::applySettings: clock gen frequency: " << clockGenFreq;
}
// Rx
if (settingsKeys.contains("dcBlock") ||
settingsKeys.contains("iqCorrection") || force)
{
m_deviceAPI->configureCorrections(settings.m_dcBlock, settings.m_iqCorrection, 0);
m_deviceAPI->configureCorrections(settings.m_dcBlock, settings.m_iqCorrection, 1);
}
if (settingsKeys.contains("devSampleRate")
|| settingsKeys.contains("log2HardDecim") || force)
{
forwardChangeRxDSP = true;
if (m_deviceParams->getDevice())
{
if (LMS_SetSampleRateDir(
m_deviceParams->getDevice(),
LMS_CH_RX,
settings.m_devSampleRate,
1<<settings.m_log2HardDecim) < 0)
{
qCritical("LimeSDRMIMO::applySettings: could not set sample rate to %d with Rx oversampling of %d",
settings.m_devSampleRate,
1<<settings.m_log2HardDecim);
}
else
{
m_deviceParams->m_log2OvSRRx = settings.m_log2HardDecim;
m_deviceParams->m_sampleRate = settings.m_devSampleRate;
forceRxNCOFrequency = true;
qDebug("LimeSDRMIMO::applySettings: set sample rate set to %d with Rx oversampling of %d",
settings.m_devSampleRate,
1<<settings.m_log2HardDecim);
}
}
}
if (settingsKeys.contains("rxCenterFrequency")
|| settingsKeys.contains("rxTransverterMode")
|| settingsKeys.contains("rxTransverterDeltaFrequency")
|| force)
{
forwardChangeRxDSP = true;
if (m_deviceParams->getDevice())
{
if (LMS_SetClockFreq(m_deviceParams->getDevice(), LMS_CLOCK_SXR, rxDeviceCenterFrequency) < 0)
{
qCritical("LimeSDRMIMO::applySettings: could not set Rx frequency to %lld", rxDeviceCenterFrequency);
}
else
{
doCalibrationRx0 = true;
doCalibrationRx1 = true;
qDebug("LimeSDRMIMO::applySettings: Rx frequency set to %lld", rxDeviceCenterFrequency);
}
}
}
if (settingsKeys.contains("ncoFrequencyRx") ||
settingsKeys.contains("ncoEnableRx") || force || forceRxNCOFrequency)
{
forwardChangeRxDSP = true;
applyRxNCOFrequency(0, settings.m_ncoEnableRx, settings.m_ncoFrequencyRx);
applyRxNCOFrequency(1, settings.m_ncoEnableRx, settings.m_ncoFrequencyRx);
}
// Rx0/1
if (settingsKeys.contains("gainModeRx0") || force)
{
applyRxGainMode(
0,
doCalibrationRx0,
settings.m_gainModeRx0,
m_settings.m_gainRx0,
m_settings.m_lnaGainRx0,
m_settings.m_tiaGainRx0,
m_settings.m_pgaGainRx0
);
}
if (settingsKeys.contains("gainModeRx1") || force)
{
applyRxGainMode(
1,
doCalibrationRx1,
settings.m_gainModeRx1,
m_settings.m_gainRx1,
m_settings.m_lnaGainRx1,
m_settings.m_tiaGainRx1,
m_settings.m_pgaGainRx1
);
}
if ((m_settings.m_gainModeRx0 == LimeSDRMIMOSettings::GAIN_AUTO) && settingsKeys.contains("gainRx0"))
{
applyRxGain(0, doCalibrationRx0, settings.m_gainRx0);
}
if ((m_settings.m_gainModeRx1 == LimeSDRMIMOSettings::GAIN_AUTO) && settingsKeys.contains("gainRx1"))
{
applyRxGain(1, doCalibrationRx1, settings.m_gainRx1);
}
if ((m_settings.m_gainModeRx0 == LimeSDRMIMOSettings::GAIN_MANUAL) && settingsKeys.contains("lnaGainRx0"))
{
applyRxLNAGain(0, doCalibrationRx0, settings.m_lnaGainRx0);
}
if ((m_settings.m_gainModeRx1 == LimeSDRMIMOSettings::GAIN_MANUAL) && settingsKeys.contains("lnaGainRx1"))
{
applyRxLNAGain(1, doCalibrationRx1, settings.m_lnaGainRx1);
}
if ((m_settings.m_gainModeRx0 == LimeSDRMIMOSettings::GAIN_MANUAL) && settingsKeys.contains("tiaGainRx0"))
{
applyRxLNAGain(0, doCalibrationRx0, settings.m_tiaGainRx0);
}
if ((m_settings.m_gainModeRx1 == LimeSDRMIMOSettings::GAIN_MANUAL) && settingsKeys.contains("tiaGainRx1"))
{
applyRxLNAGain(1, doCalibrationRx1, settings.m_tiaGainRx1);
}
if ((m_settings.m_gainModeRx0 == LimeSDRMIMOSettings::GAIN_MANUAL) && settingsKeys.contains("pgaGainRx0"))
{
applyRxLNAGain(0, doCalibrationRx0, settings.m_pgaGainRx0);
}
if ((m_settings.m_gainModeRx1 == LimeSDRMIMOSettings::GAIN_MANUAL) && settingsKeys.contains("pgaGainRx1"))
{
applyRxLNAGain(1, doCalibrationRx1, settings.m_pgaGainRx1);
}
if (settingsKeys.contains("lpfBWRx0") || force)
{
doLPCalibrationRx0 = true;
}
if (settingsKeys.contains("lpfBWRx1") || force)
{
doLPCalibrationRx1 = true;
}
if (settingsKeys.contains("lpfFIRBWx0") ||
settingsKeys.contains("lpfFIREnableRx0") || force)
{
applyRxLPFIRBW(0, settings.m_lpfFIREnableRx0, settings.m_lpfFIRBWRx0);
}
if (settingsKeys.contains("lpfFIRBWx1") ||
settingsKeys.contains("lpfFIREnableRx1") || force)
{
applyRxLPFIRBW(1, settings.m_lpfFIREnableRx1, settings.m_lpfFIRBWRx1);
}
if (settingsKeys.contains("log2SoftDecim") || force)
{
if (m_sourceThread)
{
m_sourceThread->setLog2Decimation(settings.m_log2SoftDecim);
qDebug() << "LimeSDRMIMO::applySettings: set soft decimation to " << (1<<settings.m_log2SoftDecim);
}
}
if (settingsKeys.contains("iqOrder") || force)
{
if (m_sourceThread) {
m_sourceThread->setIQOrder(settings.m_iqOrder);
}
}
if (settingsKeys.contains("antennaPathRx0") || force)
{
applyRxAntennaPath(0, doCalibrationRx0, settings.m_antennaPathRx0);
}
if (settingsKeys.contains("antennaPathRx1") || force)
{
applyRxAntennaPath(1, doCalibrationRx1, settings.m_antennaPathRx1);
}
// Tx
if (settingsKeys.contains("gainTx0") || force)
{
applyTxGain(0, doCalibrationTx0, settings.m_gainTx0);
}
if (settingsKeys.contains("gainTx1") || force)
{
applyTxGain(1, doCalibrationTx1, settings.m_gainTx1);
}
if (settingsKeys.contains("devSampleRate")
|| settingsKeys.contains("log2HardInterp") || force)
{
forwardChangeTxDSP = true;
if (m_deviceParams->getDevice())
{
if (LMS_SetSampleRateDir(
m_deviceParams->getDevice(),
LMS_CH_TX,
settings.m_devSampleRate,
1<<settings.m_log2HardInterp) < 0)
{
qCritical("LimeSDRMIMO::applySettings: could not set sample rate to %d with Tx oversampling of %d",
settings.m_devSampleRate,
1<<settings.m_log2HardInterp);
}
else
{
m_deviceParams->m_log2OvSRTx = settings.m_log2HardInterp;
m_deviceParams->m_sampleRate = settings.m_devSampleRate;
forceTxNCOFrequency = true;
qDebug("LimeSDRMIMO::applySettings: set sample rate set to %d with Tx oversampling of %d",
settings.m_devSampleRate,
1<<settings.m_log2HardInterp);
}
}
}
if (settingsKeys.contains("devSampleRate")
|| settingsKeys.contains("log2SoftInterp") || force)
{
#if defined(_MSC_VER)
unsigned int fifoRate = (unsigned int) settings.m_devSampleRate / (1<<settings.m_log2SoftInterp);
fifoRate = fifoRate < 48000U ? 48000U : fifoRate;
#else
unsigned int fifoRate = std::max(
(unsigned int) settings.m_devSampleRate / (1<<settings.m_log2SoftInterp),
DeviceLimeSDRShared::m_sampleFifoMinRate);
#endif
m_sampleMOFifo.resize(SampleMOFifo::getSizePolicy(fifoRate));
qDebug("LimeSDRMIMO::applySettings: resize MO FIFO: rate %u", fifoRate);
}
if (settingsKeys.contains("txCenterFrequency")
|| settingsKeys.contains("txTransverterMode")
|| settingsKeys.contains("txTransverterDeltaFrequency")
|| force)
{
forwardChangeTxDSP = true;
if (m_deviceParams->getDevice())
{
if (LMS_SetClockFreq(m_deviceParams->getDevice(), LMS_CLOCK_SXT, txDeviceCenterFrequency) < 0)
{
qCritical("LimeSDRMIMO::applySettings: could not set Tx frequency to %lld", txDeviceCenterFrequency);
}
else
{
doCalibrationTx0 = true;
doCalibrationTx1 = true;
qDebug("LimeSDRMIMO::applySettings: Tx frequency set to %lld", txDeviceCenterFrequency);
}
}
}
if (settingsKeys.contains("ncoFrequencyTx") ||
settingsKeys.contains("ncoEnableTx") || force || forceTxNCOFrequency)
{
forwardChangeTxDSP = true;
applyTxNCOFrequency(0, settings.m_ncoEnableTx, settings.m_ncoFrequencyTx);
applyTxNCOFrequency(1, settings.m_ncoEnableTx, settings.m_ncoFrequencyTx);
}
// Tx 0/1
if (settingsKeys.contains("lpfBWTx0") || force)
{
doLPCalibrationTx0 = true;
}
if (settingsKeys.contains("lpfBWTx1") || force)
{
doLPCalibrationTx1 = true;
}
if (settingsKeys.contains("lpfFIRBWTx0") ||
settingsKeys.contains("lpfFIREnableTx0") || force)
{
applyTxLPFIRBW(0, settings.m_lpfFIREnableTx0, settings.m_lpfFIRBWTx0);
}
if (settingsKeys.contains("lpfFIRBWTx1") ||
settingsKeys.contains("lpfFIREnableTx1") || force)
{
applyTxLPFIRBW(1, settings.m_lpfFIREnableTx1, settings.m_lpfFIRBWTx1);
}
if (settingsKeys.contains("log2SoftInterp") || force)
{
if (m_sinkThread)
{
m_sinkThread->setLog2Interpolation(settings.m_log2SoftInterp);
qDebug() << "LimeSDRMIMO::applySettings: set soft interpolation to " << (1<<settings.m_log2SoftInterp);
}
}
if (settingsKeys.contains("antennaPathTx0") || force)
{
applyTxAntennaPath(0, doCalibrationTx0, settings.m_antennaPathTx0);
}
if (settingsKeys.contains("antennaPathTx1") || force)
{
applyTxAntennaPath(1, doCalibrationTx1, settings.m_antennaPathTx1);
}
// Post common
if (settingsKeys.contains("extClock") ||
(settings.m_extClock && settingsKeys.contains("extClockFreq")) || force)
{
if (DeviceLimeSDR::setClockSource(m_deviceParams->getDevice(),
settings.m_extClock,
settings.m_extClockFreq))
{
doCalibrationRx0 = true;
doCalibrationRx1 = true;
qDebug("LimeSDRMIMO::applySettings: clock set to %s (Ext: %d Hz)",
settings.m_extClock ? "external" : "internal",
settings.m_extClockFreq);
}
else
{
qCritical("LimeSDRMIMO::applySettings: could not set clock to %s (Ext: %d Hz)",
settings.m_extClock ? "external" : "internal",
settings.m_extClockFreq);
}
}
if ((m_deviceParams->m_type != DeviceLimeSDRParams::LimeMini)
&& (m_deviceParams->m_type != DeviceLimeSDRParams::LimeUndefined))
{
if (settingsKeys.contains("gpioDir") || force)
{
if (LMS_GPIODirWrite(m_deviceParams->getDevice(), &settings.m_gpioDir, 1) != 0) {
qCritical("LimeSDRMIMO::applySettings: could not set GPIO directions to %u", settings.m_gpioDir);
} else {
qDebug("LimeSDRMIMO::applySettings: GPIO directions set to %u", settings.m_gpioDir);
}
}
if (settingsKeys.contains("gpioPins") || force)
{
if (LMS_GPIOWrite(m_deviceParams->getDevice(), &settings.m_gpioPins, 1) != 0) {
qCritical("LimeSDRMIMO::applySettings: could not set GPIO pins to %u", settings.m_gpioPins);
} else {
qDebug("LimeSDRMIMO::applySettings: GPIO pins set to %u", settings.m_gpioPins);
}
}
}
if (settingsKeys.contains("useReverseAPI"))
{
bool fullUpdate = (settingsKeys.contains("useReverseAPI") && settings.m_useReverseAPI) ||
settingsKeys.contains("reverseAPIAddress") ||
settingsKeys.contains("reverseAPIPort") ||
settingsKeys.contains("reverseAPIDeviceIndex");
webapiReverseSendSettings(settingsKeys, settings, fullUpdate || force);
}
if (force) {
m_settings = settings;
} else {
m_settings.applySettings(settingsKeys, settings);
}
double clockGenFreqAfter = 0.0;
if (LMS_GetClockFreq(m_deviceParams->getDevice(), LMS_CLOCK_CGEN, &clockGenFreqAfter) != 0)
{
qCritical("LimeSDRMIMO::applySettings: could not get clock gen frequency");
}
else
{
qDebug() << "LimeSDRMIMO::applySettings: clock gen frequency after: " << clockGenFreqAfter;
doCalibrationRx0 = doCalibrationRx0 || (clockGenFreqAfter != clockGenFreq);
doCalibrationRx1 = doCalibrationRx1 || (clockGenFreqAfter != clockGenFreq);
doCalibrationTx0 = doCalibrationTx0 || (clockGenFreqAfter != clockGenFreq);
doCalibrationTx1 = doCalibrationTx1 || (clockGenFreqAfter != clockGenFreq);
}
if (doCalibrationRx0 || doLPCalibrationRx0 || doCalibrationRx1 || doLPCalibrationRx1)
{
bool ownThreadWasRunning = false;
if (m_sourceThread && m_sourceThread->isRunning())
{
m_sourceThread->stopWork();
ownThreadWasRunning = true;
}
if (doLPCalibrationRx0) {
applyRxLPCalibration(0, settings.m_lpfBWRx0);
}
if (doLPCalibrationRx1) {
applyRxLPCalibration(1, settings.m_lpfBWRx1);
}
if (doCalibrationRx0) {
applyRxCalibration(0, settings.m_devSampleRate);
}
if (doCalibrationRx1) {
applyRxCalibration(1, settings.m_devSampleRate);
}
if (ownThreadWasRunning) {
m_sourceThread->startWork();
}
}
if (doCalibrationTx0 || doLPCalibrationTx0 || doCalibrationTx1 || doLPCalibrationTx1)
{
bool ownThreadWasRunning = false;
if (m_sinkThread && m_sinkThread->isRunning())
{
m_sinkThread->stopWork();
ownThreadWasRunning = true;
}
if (doLPCalibrationTx0) {
applyTxLPCalibration(0, settings.m_lpfBWTx0);
}
if (doLPCalibrationTx1) {
applyTxLPCalibration(1, settings.m_lpfBWTx1);
}
if (doCalibrationTx0) {
applyTxCalibration(0, settings.m_devSampleRate);
}
if (doCalibrationTx1) {
applyTxCalibration(1, settings.m_devSampleRate);
}
if (ownThreadWasRunning) {
m_sinkThread->startWork();
}
}
// forward changes
if (forwardChangeRxDSP)
{
int sampleRate = settings.m_devSampleRate/(1<<settings.m_log2SoftDecim);
int ncoShift = m_settings.m_ncoEnableRx ? m_settings.m_ncoFrequencyRx : 0;
DSPMIMOSignalNotification *notif0 = new DSPMIMOSignalNotification(sampleRate, settings.m_rxCenterFrequency + ncoShift, true, 0);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif0);
DSPMIMOSignalNotification *notif1 = new DSPMIMOSignalNotification(sampleRate, settings.m_rxCenterFrequency + ncoShift, true, 1);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif1);
}
if (forwardChangeTxDSP)
{
int sampleRate = settings.m_devSampleRate/(1<<settings.m_log2SoftInterp);
int ncoShift = m_settings.m_ncoEnableTx ? m_settings.m_ncoFrequencyTx : 0;
DSPMIMOSignalNotification *notif0 = new DSPMIMOSignalNotification(sampleRate, settings.m_txCenterFrequency + ncoShift, false, 0);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif0);
DSPMIMOSignalNotification *notif1 = new DSPMIMOSignalNotification(sampleRate, settings.m_txCenterFrequency + ncoShift, false, 1);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif1);
}
return true;
}
void LimeSDRMIMO::applyRxGainMode(
unsigned int channel,
bool& doCalibration,
LimeSDRMIMOSettings::RxGainMode gainMode,
uint32_t gain,
uint32_t lnaGain,
uint32_t tiaGain,
uint32_t pgaGain)
{
if (gainMode == LimeSDRMIMOSettings::GAIN_AUTO)
{
if (m_deviceParams->getDevice() != 0 && m_rxChannelEnabled[channel])
{
if (LMS_SetGaindB(m_deviceParams->getDevice(),
LMS_CH_RX,
channel,
gain) < 0)
{
qDebug("LimeSDRMIMO::applyRxGainMode: LMS_SetGaindB() Rx%u failed", channel);
}
else
{
doCalibration = true;
qDebug("LimeSDRMIMO::applyRxGainMode: Gain (auto) Rx%u set to %u" , channel, gain);
}
}
}
else
{
if (m_deviceParams->getDevice() != 0 && m_rxChannelEnabled[channel])
{
if (DeviceLimeSDR::SetRFELNA_dB(m_deviceParams->getDevice(),
channel,
lnaGain))
{
doCalibration = true;
qDebug("LimeSDRMIMO::applyRxGainMode: LNA gain (manual) Rx%u set to %u", channel, lnaGain);
}
else
{
qDebug("LimeSDRMIMO::applyRxGainMode: DeviceLimeSDR::SetRFELNA_dB() Rx%u failed", channel);
}
if (DeviceLimeSDR::SetRFETIA_dB(m_deviceParams->getDevice(),
channel,
tiaGain))
{
doCalibration = true;
qDebug("LimeSDRMIMO::applyRxGainMode: TIA gain (manual) Rx%u set to %u", channel, tiaGain);
}
else
{
qDebug("LimeSDRMIMO::applyRxGainMode: DeviceLimeSDR::SetRFETIA_dB() Rx%u failed", channel);
}
if (DeviceLimeSDR::SetRBBPGA_dB(m_deviceParams->getDevice(),
channel,
pgaGain))
{
doCalibration = true;
qDebug("LimeSDRMIMO::applyRxGainMode: PGA gain (manual) Rx%u set to %u", channel, pgaGain);
}
else
{
qDebug("LimeSDRMIMO::applyRxGainMode: DeviceLimeSDR::SetRBBPGA_dB() Rx%u failed", channel);
}
}
}
}
void LimeSDRMIMO::applyRxGain(unsigned int channel, bool& doCalibration, uint32_t gain)
{
if (m_deviceParams->getDevice() != 0 && m_rxChannelEnabled[channel])
{
if (LMS_SetGaindB(
m_deviceParams->getDevice(),
LMS_CH_RX,
channel,
gain) < 0)
{
qDebug("LimeSDRInput::applySettings: LMS_SetGaindB() Rx%u failed", channel);
}
else
{
doCalibration = true;
qDebug("LimeSDRInput::applySettings: Gain (auto) Rx%u set to %u", channel, gain);
}
}
}
void LimeSDRMIMO::applyRxLNAGain(unsigned int channel, bool& doCalibration, uint32_t lnaGain)
{
if (m_deviceParams->getDevice() && m_rxChannelEnabled[channel])
{
if (DeviceLimeSDR::SetRFELNA_dB(
m_deviceParams->getDevice(),
channel,
lnaGain))
{
doCalibration = true;
qDebug("LimeSDRMIMO::applyRxLNAGain: LNA gain (manual) Rx%u set to %u", channel, lnaGain);
}
else
{
qDebug("LimeSDRMIMO::applyRxLNAGain: DeviceLimeSDR::SetRFELNA_dB() Rx%u failed", channel);
}
}
}
void LimeSDRMIMO::applyRxTIAGain(unsigned int channel, bool& doCalibration, uint32_t tiaGain)
{
if (m_deviceParams->getDevice() && m_rxChannelEnabled[channel])
{
if (DeviceLimeSDR::SetRFETIA_dB(
m_deviceParams->getDevice(),
channel,
tiaGain))
{
doCalibration = true;
qDebug("LimeSDRMIMO::applyRxTIAGain: TIA gain (manual) Rx%u set to %u", channel, tiaGain);
}
else
{
qDebug("LimeSDRMIMO::applyRxTIAGain: DeviceLimeSDR::SetRFETIA_dB() Rx%u failed", channel);
}
}
}
void LimeSDRMIMO::applyRxPGAGain(unsigned int channel, bool& doCalibration, uint32_t pgaGain)
{
if (m_deviceParams->getDevice() != 0 && m_rxChannelEnabled[channel])
{
if (DeviceLimeSDR::SetRBBPGA_dB(
m_deviceParams->getDevice(),
channel,
pgaGain))
{
doCalibration = true;
qDebug("LimeSDRMIMO::applyRxPGAGain: PGA gain (manual) Rx%u set to %u", channel, pgaGain);
}
else
{
qDebug("LimeSDRMIMO::applyRxPGAGain: DeviceLimeSDR::SetRBBPGA_dB() Rx%u failed", channel);
}
}
}
void LimeSDRMIMO::applyRxLPFIRBW(unsigned int channel, bool lpfFIREnable, float lpfFIRBW)
{
if (m_deviceParams->getDevice() && m_rxChannelEnabled[channel])
{
if (LMS_SetGFIRLPF(m_deviceParams->getDevice(),
LMS_CH_RX,
channel,
lpfFIREnable,
lpfFIRBW) < 0)
{
qCritical("LimeSDRMIMO::applyLPFIRBwRx: Rx%u could %s and set LPF FIR to %f Hz",
channel,
lpfFIREnable ? "enable" : "disable",
lpfFIRBW);
}
else
{
//doCalibration = true;
qDebug("LimeSDRMIMO::applyLPFIRBwRx: Rx%u %sd and set LPF FIR to %f Hz",
channel,
lpfFIREnable ? "enable" : "disable",
lpfFIRBW);
}
}
}
void LimeSDRMIMO::applyRxNCOFrequency(unsigned int channel, bool ncoEnable, int ncoFrequency)
{
if (m_deviceParams->getDevice() != 0 && m_rxChannelEnabled[channel])
{
if (DeviceLimeSDR::setNCOFrequency(m_deviceParams->getDevice(),
LMS_CH_RX,
channel,
ncoEnable,
ncoFrequency))
{
//doCalibration = true;
qDebug("LimeSDRMIMO::applyRxNCOFrequency: Rx%u %sd and set NCO to %d Hz",
channel,
ncoEnable ? "enable" : "disable",
ncoFrequency);
}
else
{
qCritical("LimeSDRMIMO::applyRxNCOFrequency: Rx%u could not %s and set NCO to %d Hz",
channel,
ncoEnable ? "enable" : "disable",
ncoFrequency);
}
}
}
void LimeSDRMIMO::applyRxAntennaPath(unsigned int channel, bool& doCalibration, LimeSDRMIMOSettings::PathRxRFE path)
{
if (m_deviceParams->getDevice() != 0 && m_rxChannelEnabled[channel])
{
if (DeviceLimeSDR::setRxAntennaPath(
m_deviceParams->getDevice(),
channel,
path))
{
doCalibration = true;
qDebug("LimeSDRMIMO::applyRxAntennaPath: set antenna path to %d on Rx channel %u",
(int) path, channel);
}
else
{
qCritical("LimeSDRMIMO::applyRxAntennaPath: could not set antenna path to %d on Rx channel %u",
(int) path, channel);
}
}
}
void LimeSDRMIMO::applyRxCalibration(unsigned int channel, qint32 devSampleRate)
{
if (m_deviceParams->getDevice() && m_rxStreamStarted[channel])
{
if (LMS_Calibrate(
m_deviceParams->getDevice(),
LMS_CH_RX,
channel,
devSampleRate,
0) < 0)
{
qCritical("LimeSDRMIMO::applyRxCalibration: calibration failed on Rx channel %u", channel);
}
else
{
qDebug("LimeSDRMIMO::applyRxCalibration: calibration successful on Rx channel %u", channel);
}
}
}
void LimeSDRMIMO::applyRxLPCalibration(unsigned int channel, float lpfBW)
{
if (m_deviceParams->getDevice() && m_rxStreamStarted[channel])
{
if (LMS_SetLPFBW(m_deviceParams->getDevice(),
LMS_CH_RX,
channel,
lpfBW) < 0)
{
qCritical("LimeSDRMIMO::applyRxLPCalibration: could not set LPF to %f Hz on Rx channel %u",
lpfBW, channel);
}
else
{
qDebug("LimeSDRMIMO::applyRxLPCalibration: LPF set to %f Hz on Rx channel %u",
lpfBW, channel);
}
}
}
void LimeSDRMIMO::applyTxGain(unsigned int channel, bool& doCalibration, uint32_t gain)
{
if (m_deviceParams->getDevice() != 0 && m_txChannelEnabled[channel])
{
if (LMS_SetGaindB(m_deviceParams->getDevice(),
LMS_CH_TX,
channel,
gain) < 0)
{
qDebug("LimeSDRMIMO::applyTxGain: Tx%u LMS_SetGaindB() failed", channel);
}
else
{
doCalibration = true;
qDebug("LimeSDROutput::applySettings: Tx%u Gain set to %u", channel, gain);
}
}
}
void LimeSDRMIMO::applyTxLPFIRBW(unsigned int channel, bool lpfFIREnable, float lpfFIRBW)
{
if (m_deviceParams->getDevice() != 0 && m_txChannelEnabled[channel])
{
if (LMS_SetGFIRLPF(
m_deviceParams->getDevice(),
LMS_CH_TX,
channel,
lpfFIREnable,
lpfFIRBW) < 0)
{
qCritical("LimeSDRMIMO::applyTxLPFIRBW: Tx%u could %s and set LPF FIR to %f Hz",
channel,
lpfFIREnable ? "enable" : "disable",
lpfFIRBW);
}
else
{
qDebug("LimeSDRMIMO::applyTxLPFIRBW: Tx%u %sd and set LPF FIR to %f Hz",
channel,
lpfFIREnable ? "enable" : "disable",
lpfFIRBW);
}
}
}
void LimeSDRMIMO::applyTxNCOFrequency(unsigned int channel, bool ncoEnable, int ncoFrequency)
{
if (m_deviceParams->getDevice() && m_txChannelEnabled[channel])
{
if (DeviceLimeSDR::setNCOFrequency(
m_deviceParams->getDevice(),
LMS_CH_TX,
channel,
ncoEnable,
ncoFrequency))
{
qDebug("LimeSDRMIMO::applyTxNCOFrequency: Tx%u %sd and set NCO to %d Hz",
channel,
ncoEnable ? "enable" : "disable",
ncoFrequency);
}
else
{
qCritical("LimeSDRMIMO::applyTxNCOFrequency: Tx%u could not %s and set NCO to %d Hz",
channel,
ncoEnable ? "enable" : "disable",
ncoFrequency);
}
}
}
void LimeSDRMIMO::applyTxAntennaPath(unsigned int channel, bool& doCalibration, LimeSDRMIMOSettings::PathTxRFE path)
{
if (m_deviceParams->getDevice() && m_txChannelEnabled[channel])
{
if (DeviceLimeSDR::setTxAntennaPath(
m_deviceParams->getDevice(),
channel,
path))
{
doCalibration = true;
qDebug("LimeSDRMIMO::applyTxAntennaPath: Tx%u set antenna path to %d",
channel, (int) path);
}
else
{
qCritical("LimeSDRMIMO::applyTxAntennaPath: Tx%u could not set antenna path to %d",
channel, (int) path);
}
}
}
void LimeSDRMIMO::applyTxCalibration(unsigned int channel, qint32 devSampleRate)
{
if (m_deviceParams->getDevice() && m_txStreamStarted[channel])
{
if (m_deviceParams->getDevice())
{
if (LMS_Calibrate(
m_deviceParams->getDevice(),
LMS_CH_TX,
channel,
devSampleRate,
0) < 0)
{
qCritical("LimeSDRMIMO::applyTxCalibration: calibration failed on Tx channel %d", channel);
}
else
{
qDebug("LimeSDRMIMO::applyTxCalibration: calibration successful on Tx channel %d", channel);
}
}
}
}
void LimeSDRMIMO::applyTxLPCalibration(unsigned int channel, float lpfBW)
{
if (m_deviceParams->getDevice() && m_txStreamStarted[channel])
{
if (LMS_SetLPFBW(
m_deviceParams->getDevice(),
LMS_CH_TX,
channel,
lpfBW) < 0)
{
qCritical("LimeSDRMIMO::applyTxLPCalibration: could not set LPF to %f Hz", lpfBW);
}
else
{
qDebug("LimeSDRMIMO::applyTxLPCalibration: LPF set to %f Hz", lpfBW);
}
}
}
void LimeSDRMIMO::getRxFrequencyRange(uint64_t& min, uint64_t& max, int& step)
{
min = m_deviceParams->m_loRangeRx.min;
max = m_deviceParams->m_loRangeRx.max;
step = m_deviceParams->m_loRangeRx.step;
}
void LimeSDRMIMO::getRxSampleRateRange(int& min, int& max, int& step)
{
min = m_deviceParams->m_srRangeRx.min;
max = m_deviceParams->m_srRangeRx.max;
step = m_deviceParams->m_srRangeRx.step;
}
void LimeSDRMIMO::getRxLPFRange(int& min, int& max, int& step)
{
min = m_deviceParams->m_lpfRangeRx.min;
max = m_deviceParams->m_lpfRangeRx.max;
step = m_deviceParams->m_lpfRangeRx.step;
}
void LimeSDRMIMO::getTxFrequencyRange(uint64_t& min, uint64_t& max, int& step)
{
min = m_deviceParams->m_loRangeTx.min;
max = m_deviceParams->m_loRangeTx.max;
step = m_deviceParams->m_loRangeTx.step;
}
void LimeSDRMIMO::getTxSampleRateRange(int& min, int& max, int& step)
{
min = m_deviceParams->m_srRangeTx.min;
max = m_deviceParams->m_srRangeTx.max;
step = m_deviceParams->m_srRangeTx.step;
}
void LimeSDRMIMO::getTxLPFRange(int& min, int& max, int& step)
{
min = m_deviceParams->m_lpfRangeTx.min;
max = m_deviceParams->m_lpfRangeTx.max;
step = m_deviceParams->m_lpfRangeTx.step;
}
int LimeSDRMIMO::webapiSettingsGet(
SWGSDRangel::SWGDeviceSettings& response,
QString& errorMessage)
{
(void) errorMessage;
response.setLimeSdrMimoSettings(new SWGSDRangel::SWGLimeSdrMIMOSettings());
response.getLimeSdrMimoSettings()->init();
webapiFormatDeviceSettings(response, m_settings);
return 200;
}
int LimeSDRMIMO::webapiSettingsPutPatch(
bool force,
const QStringList& deviceSettingsKeys,
SWGSDRangel::SWGDeviceSettings& response, // query + response
QString& errorMessage)
{
(void) errorMessage;
LimeSDRMIMOSettings settings = m_settings;
webapiUpdateDeviceSettings(settings, deviceSettingsKeys, response);
MsgConfigureLimeSDRMIMO *msg = MsgConfigureLimeSDRMIMO::create(settings, deviceSettingsKeys, force);
m_inputMessageQueue.push(msg);
if (getMessageQueueToGUI()) // forward to GUI if any
{
MsgConfigureLimeSDRMIMO *msgToGUI = MsgConfigureLimeSDRMIMO::create(settings, deviceSettingsKeys, force);
getMessageQueueToGUI()->push(msgToGUI);
}
webapiFormatDeviceSettings(response, settings);
return 200;
}
int LimeSDRMIMO::webapiReportGet(
SWGSDRangel::SWGDeviceReport& response,
QString& errorMessage)
{
(void) errorMessage;
response.setLimeSdrMimoReport(new SWGSDRangel::SWGLimeSdrMIMOReport());
response.getLimeSdrMimoReport()->init();
webapiFormatDeviceReport(response);
return 200;
}
int LimeSDRMIMO::webapiRunGet(
int subsystemIndex,
SWGSDRangel::SWGDeviceState& response,
QString& errorMessage)
{
(void) subsystemIndex;
(void) errorMessage;
m_deviceAPI->getDeviceEngineStateStr(*response.getState());
return 200;
}
int LimeSDRMIMO::webapiRun(
bool run,
int subsystemIndex,
SWGSDRangel::SWGDeviceState& response,
QString& errorMessage)
{
(void) errorMessage;
m_deviceAPI->getDeviceEngineStateStr(*response.getState());
MsgStartStop *message = MsgStartStop::create(run, subsystemIndex == 0);
m_inputMessageQueue.push(message);
if (getMessageQueueToGUI()) // forward to GUI if any
{
MsgStartStop *msgToGUI = MsgStartStop::create(run, subsystemIndex == 0);
getMessageQueueToGUI()->push(msgToGUI);
}
return 200;
}
void LimeSDRMIMO::webapiFormatDeviceSettings(
SWGSDRangel::SWGDeviceSettings& response,
const LimeSDRMIMOSettings& settings)
{
// Common
response.getLimeSdrMimoSettings()->setDevSampleRate(settings.m_devSampleRate);
response.getLimeSdrMimoSettings()->setExtClock(settings.m_extClock ? 1 : 0);
response.getLimeSdrMimoSettings()->setExtClockFreq(settings.m_extClockFreq);
response.getLimeSdrMimoSettings()->setGpioDir(settings.m_gpioDir);
response.getLimeSdrMimoSettings()->setGpioPins(settings.m_gpioPins);
response.getLimeSdrMimoSettings()->setUseReverseApi(settings.m_useReverseAPI ? 1 : 0);
if (response.getLimeSdrMimoSettings()->getReverseApiAddress()) {
*response.getLimeSdrMimoSettings()->getReverseApiAddress() = settings.m_reverseAPIAddress;
} else {
response.getLimeSdrMimoSettings()->setReverseApiAddress(new QString(settings.m_reverseAPIAddress));
}
response.getLimeSdrMimoSettings()->setReverseApiPort(settings.m_reverseAPIPort);
response.getLimeSdrMimoSettings()->setReverseApiDeviceIndex(settings.m_reverseAPIDeviceIndex);
// Rx
response.getLimeSdrMimoSettings()->setRxCenterFrequency(settings.m_rxCenterFrequency);
response.getLimeSdrMimoSettings()->setDcBlock(settings.m_dcBlock ? 1 : 0);
response.getLimeSdrMimoSettings()->setIqCorrection(settings.m_iqCorrection ? 1 : 0);
response.getLimeSdrMimoSettings()->setLog2HardDecim(settings.m_log2HardDecim);
response.getLimeSdrMimoSettings()->setLog2SoftDecim(settings.m_log2SoftDecim);
response.getLimeSdrMimoSettings()->setIqOrder(settings.m_iqOrder ? 1 : 0);
response.getLimeSdrMimoSettings()->setNcoEnableRx(settings.m_ncoEnableRx ? 1 : 0);
response.getLimeSdrMimoSettings()->setNcoFrequencyRx(settings.m_ncoFrequencyRx);
response.getLimeSdrMimoSettings()->setRxTransverterDeltaFrequency(settings.m_rxTransverterDeltaFrequency);
response.getLimeSdrMimoSettings()->setRxTransverterMode(settings.m_rxTransverterMode ? 1 : 0);
// Rx0
response.getLimeSdrMimoSettings()->setAntennaPathRx0((int) settings.m_antennaPathRx0);
response.getLimeSdrMimoSettings()->setGainRx0(settings.m_gainRx0);
response.getLimeSdrMimoSettings()->setGainModeRx0((int) settings.m_gainModeRx0);
response.getLimeSdrMimoSettings()->setLnaGainRx0(settings.m_lnaGainRx0);
response.getLimeSdrMimoSettings()->setTiaGainRx0(settings.m_tiaGainRx0);
response.getLimeSdrMimoSettings()->setPgaGainRx0(settings.m_pgaGainRx0);
response.getLimeSdrMimoSettings()->setLpfBwRx0(settings.m_lpfBWRx0);
response.getLimeSdrMimoSettings()->setLpfFirEnableRx0(settings.m_lpfFIREnableRx0 ? 1 : 0);
response.getLimeSdrMimoSettings()->setLpfFirbwRx0(settings.m_lpfFIRBWRx0);
// Rx1
response.getLimeSdrMimoSettings()->setAntennaPathRx1((int) settings.m_antennaPathRx1);
response.getLimeSdrMimoSettings()->setGainRx1(settings.m_gainRx1);
response.getLimeSdrMimoSettings()->setGainModeRx1((int) settings.m_gainModeRx1);
response.getLimeSdrMimoSettings()->setLnaGainRx1(settings.m_lnaGainRx1);
response.getLimeSdrMimoSettings()->setTiaGainRx1(settings.m_tiaGainRx1);
response.getLimeSdrMimoSettings()->setPgaGainRx1(settings.m_pgaGainRx1);
response.getLimeSdrMimoSettings()->setLpfBwRx1(settings.m_lpfBWRx1);
response.getLimeSdrMimoSettings()->setLpfFirEnableRx1(settings.m_lpfFIREnableRx1 ? 1 : 0);
response.getLimeSdrMimoSettings()->setLpfFirbwRx1(settings.m_lpfFIRBWRx1);
// Tx
response.getLimeSdrMimoSettings()->setTxCenterFrequency(settings.m_txCenterFrequency);
response.getLimeSdrMimoSettings()->setLog2HardInterp(settings.m_log2HardInterp);
response.getLimeSdrMimoSettings()->setLog2SoftInterp(settings.m_log2SoftInterp);
response.getLimeSdrMimoSettings()->setNcoEnableTx(settings.m_ncoEnableTx ? 1 : 0);
response.getLimeSdrMimoSettings()->setNcoFrequencyTx(settings.m_ncoFrequencyTx);
response.getLimeSdrMimoSettings()->setTxTransverterDeltaFrequency(settings.m_txTransverterDeltaFrequency);
response.getLimeSdrMimoSettings()->setTxTransverterMode(settings.m_txTransverterMode ? 1 : 0);
// Tx0
response.getLimeSdrMimoSettings()->setAntennaPathTx0((int) settings.m_antennaPathTx0);
response.getLimeSdrMimoSettings()->setGainTx0(settings.m_gainTx0);
response.getLimeSdrMimoSettings()->setLpfBwTx0(settings.m_lpfBWTx0);
response.getLimeSdrMimoSettings()->setLpfFirEnableTx0(settings.m_lpfFIREnableTx0 ? 1 : 0);
response.getLimeSdrMimoSettings()->setLpfFirbwTx0(settings.m_lpfFIRBWTx0);
// Tx1
response.getLimeSdrMimoSettings()->setAntennaPathTx1((int) settings.m_antennaPathTx1);
response.getLimeSdrMimoSettings()->setGainTx1(settings.m_gainTx1);
response.getLimeSdrMimoSettings()->setLpfBwTx1(settings.m_lpfBWTx1);
response.getLimeSdrMimoSettings()->setLpfFirEnableTx1(settings.m_lpfFIREnableTx1 ? 1 : 0);
response.getLimeSdrMimoSettings()->setLpfFirbwTx1(settings.m_lpfFIRBWTx1);
}
void LimeSDRMIMO::webapiUpdateDeviceSettings(
LimeSDRMIMOSettings& settings,
const QStringList& deviceSettingsKeys,
SWGSDRangel::SWGDeviceSettings& response)
{
// Common
if (deviceSettingsKeys.contains("devSampleRate")) {
settings.m_devSampleRate = response.getLimeSdrMimoSettings()->getDevSampleRate();
}
if (deviceSettingsKeys.contains("extClock")) {
settings.m_extClock = response.getLimeSdrMimoSettings()->getExtClock() != 0;
}
if (deviceSettingsKeys.contains("extClockFreq")) {
settings.m_extClockFreq = response.getLimeSdrMimoSettings()->getExtClockFreq();
}
if (deviceSettingsKeys.contains("gpioDir")) {
settings.m_gpioDir = response.getLimeSdrMimoSettings()->getGpioDir() & 0xFF;
}
if (deviceSettingsKeys.contains("gpioPins")) {
settings.m_gpioPins = response.getLimeSdrMimoSettings()->getGpioPins() & 0xFF;
}
if (deviceSettingsKeys.contains("useReverseAPI")) {
settings.m_useReverseAPI = response.getLimeSdrMimoSettings()->getUseReverseApi() != 0;
}
if (deviceSettingsKeys.contains("reverseAPIAddress")) {
settings.m_reverseAPIAddress = *response.getLimeSdrMimoSettings()->getReverseApiAddress();
}
if (deviceSettingsKeys.contains("reverseAPIPort")) {
settings.m_reverseAPIPort = response.getLimeSdrMimoSettings()->getReverseApiPort();
}
if (deviceSettingsKeys.contains("reverseAPIDeviceIndex")) {
settings.m_reverseAPIDeviceIndex = response.getLimeSdrMimoSettings()->getReverseApiDeviceIndex();
}
// Rx
if (deviceSettingsKeys.contains("rxCenterFrequency")) {
settings.m_rxCenterFrequency = response.getLimeSdrMimoSettings()->getRxCenterFrequency();
}
if (deviceSettingsKeys.contains("dcBlock")) {
settings.m_dcBlock = response.getLimeSdrMimoSettings()->getDcBlock() != 0;
}
if (deviceSettingsKeys.contains("iqCorrection")) {
settings.m_iqCorrection = response.getLimeSdrMimoSettings()->getIqCorrection() != 0;
}
if (deviceSettingsKeys.contains("log2HardDecim")) {
settings.m_log2HardDecim = response.getLimeSdrMimoSettings()->getLog2HardDecim();
}
if (deviceSettingsKeys.contains("log2SoftDecim")) {
settings.m_log2SoftDecim = response.getLimeSdrMimoSettings()->getLog2SoftDecim();
}
if (deviceSettingsKeys.contains("iqOrder")) {
settings.m_iqOrder = response.getLimeSdrMimoSettings()->getIqOrder() != 0;
}
if (deviceSettingsKeys.contains("ncoEnableRx")) {
settings.m_ncoEnableRx = response.getLimeSdrMimoSettings()->getNcoEnableRx() != 0;
}
if (deviceSettingsKeys.contains("ncoFrequencyRx")) {
settings.m_ncoFrequencyRx = response.getLimeSdrMimoSettings()->getNcoFrequencyRx();
}
if (deviceSettingsKeys.contains("rxTransverterDeltaFrequency")) {
settings.m_rxTransverterDeltaFrequency = response.getLimeSdrMimoSettings()->getRxTransverterDeltaFrequency();
}
if (deviceSettingsKeys.contains("rxTransverterMode")) {
settings.m_rxTransverterMode = response.getLimeSdrMimoSettings()->getRxTransverterMode() != 0;
}
// Rx0
if (deviceSettingsKeys.contains("antennaPathRx0")) {
settings.m_antennaPathRx0 = (LimeSDRMIMOSettings::PathRxRFE) response.getLimeSdrMimoSettings()->getAntennaPathRx0();
}
if (deviceSettingsKeys.contains("gainModeRx0")) {
settings.m_gainModeRx0 = (LimeSDRMIMOSettings::RxGainMode) response.getLimeSdrMimoSettings()->getGainModeRx0();
}
if (deviceSettingsKeys.contains("gainRx0")) {
settings.m_gainRx0 = response.getLimeSdrMimoSettings()->getGainRx0();
}
if (deviceSettingsKeys.contains("lnaGainRx0")) {
settings.m_lnaGainRx0 = response.getLimeSdrMimoSettings()->getLnaGainRx0();
}
if (deviceSettingsKeys.contains("tiaGainRx0")) {
settings.m_tiaGainRx0 = response.getLimeSdrMimoSettings()->getTiaGainRx0();
}
if (deviceSettingsKeys.contains("pgaGainRx0")) {
settings.m_pgaGainRx0 = response.getLimeSdrMimoSettings()->getPgaGainRx0();
}
if (deviceSettingsKeys.contains("lpfBWRx0")) {
settings.m_lpfBWRx0 = response.getLimeSdrMimoSettings()->getLpfBwRx0();
}
if (deviceSettingsKeys.contains("lpfFIREnableRx0")) {
settings.m_lpfFIREnableRx0 = response.getLimeSdrMimoSettings()->getLpfFirEnableRx0() != 0;
}
if (deviceSettingsKeys.contains("lpfFIRBWRx0")) {
settings.m_lpfFIRBWRx0 = response.getLimeSdrMimoSettings()->getLpfFirbwRx0();
}
// Rx1
if (deviceSettingsKeys.contains("antennaPathRx1")) {
settings.m_antennaPathRx1 = (LimeSDRMIMOSettings::PathRxRFE) response.getLimeSdrMimoSettings()->getAntennaPathRx1();
}
if (deviceSettingsKeys.contains("gainModeRx1")) {
settings.m_gainModeRx1 = (LimeSDRMIMOSettings::RxGainMode) response.getLimeSdrMimoSettings()->getGainModeRx1();
}
if (deviceSettingsKeys.contains("gainRx1")) {
settings.m_gainRx1 = response.getLimeSdrMimoSettings()->getGainRx1();
}
if (deviceSettingsKeys.contains("lnaGainRx1")) {
settings.m_lnaGainRx1 = response.getLimeSdrMimoSettings()->getLnaGainRx1();
}
if (deviceSettingsKeys.contains("tiaGainRx1")) {
settings.m_tiaGainRx1 = response.getLimeSdrMimoSettings()->getTiaGainRx1();
}
if (deviceSettingsKeys.contains("pgaGainRx1")) {
settings.m_pgaGainRx1 = response.getLimeSdrMimoSettings()->getPgaGainRx1();
}
if (deviceSettingsKeys.contains("lpfBWRx1")) {
settings.m_lpfBWRx1 = response.getLimeSdrMimoSettings()->getLpfBwRx1();
}
if (deviceSettingsKeys.contains("lpfFIREnableRx1")) {
settings.m_lpfFIREnableRx1 = response.getLimeSdrMimoSettings()->getLpfFirEnableRx1() != 0;
}
if (deviceSettingsKeys.contains("lpfFIRBWRx1")) {
settings.m_lpfFIRBWRx1 = response.getLimeSdrMimoSettings()->getLpfFirbwRx1();
}
// Tx
if (deviceSettingsKeys.contains("txCenterFrequency")) {
settings.m_txCenterFrequency = response.getLimeSdrMimoSettings()->getTxCenterFrequency();
}
if (deviceSettingsKeys.contains("log2HardInterp")) {
settings.m_log2HardInterp = response.getLimeSdrMimoSettings()->getLog2HardInterp();
}
if (deviceSettingsKeys.contains("log2SoftInterp")) {
settings.m_log2SoftInterp = response.getLimeSdrMimoSettings()->getLog2SoftInterp();
}
if (deviceSettingsKeys.contains("ncoEnableTx")) {
settings.m_ncoEnableTx = response.getLimeSdrMimoSettings()->getNcoEnableTx() != 0;
}
if (deviceSettingsKeys.contains("ncoFrequencyTx")) {
settings.m_ncoFrequencyTx = response.getLimeSdrMimoSettings()->getNcoFrequencyTx();
}
if (deviceSettingsKeys.contains("txTransverterDeltaFrequency")) {
settings.m_txTransverterDeltaFrequency = response.getLimeSdrMimoSettings()->getTxTransverterDeltaFrequency();
}
if (deviceSettingsKeys.contains("txTransverterMode")) {
settings.m_txTransverterMode = response.getLimeSdrMimoSettings()->getTxTransverterMode() != 0;
}
// Tx0
if (deviceSettingsKeys.contains("antennaPathTx0")) {
settings.m_antennaPathTx0 = (LimeSDRMIMOSettings::PathTxRFE) response.getLimeSdrMimoSettings()->getAntennaPathTx0();
}
if (deviceSettingsKeys.contains("gainTx0")) {
settings.m_gainTx0 = response.getLimeSdrMimoSettings()->getGainTx0();
}
if (deviceSettingsKeys.contains("lpfBWTx0")) {
settings.m_lpfBWTx0 = response.getLimeSdrMimoSettings()->getLpfBwTx0();
}
if (deviceSettingsKeys.contains("lpfFIREnableTx0")) {
settings.m_lpfFIREnableTx0 = response.getLimeSdrMimoSettings()->getLpfFirEnableTx0() != 0;
}
if (deviceSettingsKeys.contains("lpfFIRBWTx0")) {
settings.m_lpfFIRBWTx0 = response.getLimeSdrMimoSettings()->getLpfFirbwTx0();
}
// Tx1
if (deviceSettingsKeys.contains("antennaPathTx1")) {
settings.m_antennaPathTx1 = (LimeSDRMIMOSettings::PathTxRFE) response.getLimeSdrMimoSettings()->getAntennaPathTx0();
}
if (deviceSettingsKeys.contains("gainTx1")) {
settings.m_gainTx1 = response.getLimeSdrMimoSettings()->getGainTx1();
}
if (deviceSettingsKeys.contains("lpfBWTx1")) {
settings.m_lpfBWTx1 = response.getLimeSdrMimoSettings()->getLpfBwTx1();
}
if (deviceSettingsKeys.contains("lpfFIREnableTx1")) {
settings.m_lpfFIREnableTx1 = response.getLimeSdrMimoSettings()->getLpfFirEnableTx1() != 0;
}
if (deviceSettingsKeys.contains("lpfFIRBWTx1")) {
settings.m_lpfFIRBWTx1 = response.getLimeSdrMimoSettings()->getLpfFirbwTx1();
}
}
void LimeSDRMIMO::webapiFormatDeviceReport(SWGSDRangel::SWGDeviceReport& response)
{
bool success = false;
double temp = 0.0;
uint8_t gpioDir = 0;
uint8_t gpioPins = 0;
lms_stream_status_t status;
status.active = false;
status.fifoFilledCount = 0;
status.fifoSize = 1;
status.underrun = 0;
status.overrun = 0;
status.droppedPackets = 0;
status.linkRate = 0.0;
status.timestamp = 0;
if (m_rxStreams[0].handle) {
success = (m_rxStreams[0].handle && (LMS_GetStreamStatus(&m_rxStreams[0], &status) == 0));
}
response.getLimeSdrMimoReport()->setSuccessRx(success ? 1 : 0);
response.getLimeSdrMimoReport()->setStreamActiveRx(status.active ? 1 : 0);
response.getLimeSdrMimoReport()->setFifoSizeRx(status.fifoSize);
response.getLimeSdrMimoReport()->setFifoFillRx(status.fifoFilledCount);
response.getLimeSdrMimoReport()->setUnderrunCountRx(status.underrun);
response.getLimeSdrMimoReport()->setOverrunCountRx(status.overrun);
response.getLimeSdrMimoReport()->setDroppedPacketsCountRx(status.droppedPackets);
response.getLimeSdrMimoReport()->setLinkRateRx(status.linkRate);
response.getLimeSdrMimoReport()->setHwTimestamp(status.timestamp);
if (m_deviceParams->getDevice())
{
LMS_GetChipTemperature(m_deviceParams->getDevice(), 0, &temp);
LMS_GPIODirRead(m_deviceParams->getDevice(), &gpioDir, 1);
LMS_GPIORead(m_deviceParams->getDevice(), &gpioPins, 1);
}
response.getLimeSdrMimoReport()->setTemperature(temp);
response.getLimeSdrMimoReport()->setGpioDir(gpioDir);
response.getLimeSdrMimoReport()->setGpioPins(gpioPins);
success = false;
status.active = false;
status.fifoFilledCount = 0;
status.fifoSize = 1;
status.underrun = 0;
status.overrun = 0;
status.droppedPackets = 0;
status.linkRate = 0.0;
if (m_txStreams[0].handle) {
success = (m_txStreams[0].handle && (LMS_GetStreamStatus(&m_txStreams[0], &status) == 0));
}
response.getLimeSdrMimoReport()->setSuccessTx(success ? 1 : 0);
response.getLimeSdrMimoReport()->setStreamActiveTx(status.active ? 1 : 0);
response.getLimeSdrMimoReport()->setFifoSizeTx(status.fifoSize);
response.getLimeSdrMimoReport()->setFifoFillTx(status.fifoFilledCount);
response.getLimeSdrMimoReport()->setUnderrunCountTx(status.underrun);
response.getLimeSdrMimoReport()->setOverrunCountTx(status.overrun);
response.getLimeSdrMimoReport()->setDroppedPacketsCountTx(status.droppedPackets);
response.getLimeSdrMimoReport()->setLinkRateTx(status.linkRate);
}
void LimeSDRMIMO::webapiReverseSendSettings(const QList<QString>& deviceSettingsKeys, const LimeSDRMIMOSettings& settings, bool force)
{
SWGSDRangel::SWGDeviceSettings *swgDeviceSettings = new SWGSDRangel::SWGDeviceSettings();
swgDeviceSettings->setDirection(2); // MIMO
swgDeviceSettings->setOriginatorIndex(m_deviceAPI->getDeviceSetIndex());
swgDeviceSettings->setDeviceHwType(new QString("LimeSDR"));
swgDeviceSettings->setLimeSdrMimoSettings(new SWGSDRangel::SWGLimeSdrMIMOSettings());
SWGSDRangel::SWGLimeSdrMIMOSettings *swgLimeSdrMIMOSettings = swgDeviceSettings->getLimeSdrMimoSettings();
// Common
if (deviceSettingsKeys.contains("devSampleRate") || force) {
swgLimeSdrMIMOSettings->setDevSampleRate(settings.m_devSampleRate);
}
if (deviceSettingsKeys.contains("extClock") || force) {
swgLimeSdrMIMOSettings->setExtClock(settings.m_extClock ? 1 : 0);
}
if (deviceSettingsKeys.contains("extClockFreq") || force) {
swgLimeSdrMIMOSettings->setExtClockFreq(settings.m_extClockFreq);
}
if (deviceSettingsKeys.contains("gpioDir") || force) {
swgLimeSdrMIMOSettings->setGpioDir(settings.m_gpioDir & 0xFF);
}
if (deviceSettingsKeys.contains("gpioPins") || force) {
swgLimeSdrMIMOSettings->setGpioPins(settings.m_gpioPins & 0xFF);
}
if (deviceSettingsKeys.contains("useReverseAPI") || force) {
swgLimeSdrMIMOSettings->setUseReverseApi(settings.m_useReverseAPI ? 1 : 0);
}
if (deviceSettingsKeys.contains("reverseAPIAddress") || force) {
swgLimeSdrMIMOSettings->setReverseApiAddress(new QString(settings.m_reverseAPIAddress));
}
if (deviceSettingsKeys.contains("reverseAPIPort") || force) {
swgLimeSdrMIMOSettings->setReverseApiPort(settings.m_reverseAPIPort);
}
if (deviceSettingsKeys.contains("reverseAPIDeviceIndex") || force) {
swgLimeSdrMIMOSettings->setReverseApiDeviceIndex(settings.m_reverseAPIDeviceIndex);
}
// Rx
if (deviceSettingsKeys.contains("rxCenterFrequency") || force) {
swgLimeSdrMIMOSettings->setRxCenterFrequency(settings.m_rxCenterFrequency);
}
if (deviceSettingsKeys.contains("dcBlock") || force) {
swgLimeSdrMIMOSettings->setDcBlock(settings.m_dcBlock ? 1 : 0);
}
if (deviceSettingsKeys.contains("iqCorrection") || force) {
swgLimeSdrMIMOSettings->setIqCorrection(settings.m_iqCorrection ? 1 : 0);
}
if (deviceSettingsKeys.contains("log2HardDecim") || force) {
swgLimeSdrMIMOSettings->setLog2HardDecim(settings.m_log2HardDecim);
}
if (deviceSettingsKeys.contains("log2SoftDecim") || force) {
swgLimeSdrMIMOSettings->setLog2SoftDecim(settings.m_log2SoftDecim);
}
if (deviceSettingsKeys.contains("iqOrder") || force) {
swgLimeSdrMIMOSettings->setIqOrder(settings.m_iqOrder ? 1 : 0);
}
if (deviceSettingsKeys.contains("ncoEnableRx") || force) {
swgLimeSdrMIMOSettings->setNcoEnableRx(settings.m_ncoEnableRx ? 1 : 0);
}
if (deviceSettingsKeys.contains("ncoFrequencyRx") || force) {
swgLimeSdrMIMOSettings->setNcoFrequencyRx(settings.m_ncoFrequencyRx);
}
if (deviceSettingsKeys.contains("rxTransverterDeltaFrequency") || force) {
swgLimeSdrMIMOSettings->setRxTransverterDeltaFrequency(settings.m_rxTransverterDeltaFrequency);
}
if (deviceSettingsKeys.contains("rxTransverterMode") || force) {
swgLimeSdrMIMOSettings->setRxTransverterMode(settings.m_rxTransverterMode ? 1 : 0);
}
// Rx0
if (deviceSettingsKeys.contains("antennaPathRx0") || force) {
swgLimeSdrMIMOSettings->setAntennaPathRx0((int) settings.m_antennaPathRx0);
}
if (deviceSettingsKeys.contains("gainModeRx0") || force) {
swgLimeSdrMIMOSettings->setGainModeRx0((int) settings.m_gainModeRx0);
}
if (deviceSettingsKeys.contains("gainRx0") || force) {
swgLimeSdrMIMOSettings->setGainRx0(settings.m_gainRx0);
}
if (deviceSettingsKeys.contains("lnaGainRx0") || force) {
swgLimeSdrMIMOSettings->setLnaGainRx0(settings.m_lnaGainRx0);
}
if (deviceSettingsKeys.contains("tiaGainRx0") || force) {
swgLimeSdrMIMOSettings->setTiaGainRx0(settings.m_tiaGainRx0);
}
if (deviceSettingsKeys.contains("pgaGainRx0") || force) {
swgLimeSdrMIMOSettings->setPgaGainRx0(settings.m_pgaGainRx0);
}
if (deviceSettingsKeys.contains("lpfBWRx0") || force) {
swgLimeSdrMIMOSettings->setLpfBwRx0(settings.m_lpfBWRx0);
}
if (deviceSettingsKeys.contains("lpfFIREnableRx0") || force) {
swgLimeSdrMIMOSettings->setLpfFirEnableRx0(settings.m_lpfFIREnableRx0 ? 1 : 0);
}
if (deviceSettingsKeys.contains("lpfFIRBWRx0") || force) {
swgLimeSdrMIMOSettings->setLpfFirbwRx0(settings.m_lpfFIRBWRx0);
}
// Rx1
if (deviceSettingsKeys.contains("antennaPathRx1") || force) {
swgLimeSdrMIMOSettings->setAntennaPathRx1((int) settings.m_antennaPathRx1);
}
if (deviceSettingsKeys.contains("gainModeRx1") || force) {
swgLimeSdrMIMOSettings->setGainModeRx1((int) settings.m_gainModeRx1);
}
if (deviceSettingsKeys.contains("gainRx1") || force) {
swgLimeSdrMIMOSettings->setGainRx1(settings.m_gainRx1);
}
if (deviceSettingsKeys.contains("lnaGainRx1") || force) {
swgLimeSdrMIMOSettings->setLnaGainRx1(settings.m_lnaGainRx1);
}
if (deviceSettingsKeys.contains("tiaGainRx1") || force) {
swgLimeSdrMIMOSettings->setTiaGainRx1(settings.m_tiaGainRx1);
}
if (deviceSettingsKeys.contains("pgaGainRx1") || force) {
swgLimeSdrMIMOSettings->setPgaGainRx1(settings.m_pgaGainRx1);
}
if (deviceSettingsKeys.contains("lpfBWRx1") || force) {
swgLimeSdrMIMOSettings->setLpfBwRx1(settings.m_lpfBWRx1);
}
if (deviceSettingsKeys.contains("lpfFIREnableRx1") || force) {
swgLimeSdrMIMOSettings->setLpfFirEnableRx1(settings.m_lpfFIREnableRx1 ? 1 : 0);
}
if (deviceSettingsKeys.contains("lpfFIRBWRx1") || force) {
swgLimeSdrMIMOSettings->setLpfFirbwRx1(settings.m_lpfFIRBWRx1);
}
// Tx
if (deviceSettingsKeys.contains("txCenterFrequency") || force) {
swgLimeSdrMIMOSettings->setTxCenterFrequency(settings.m_txCenterFrequency);
}
if (deviceSettingsKeys.contains("log2HardInterp") || force) {
swgLimeSdrMIMOSettings->setLog2HardInterp(settings.m_log2HardInterp);
}
if (deviceSettingsKeys.contains("log2SoftInterp") || force) {
swgLimeSdrMIMOSettings->setLog2SoftInterp(settings.m_log2SoftInterp);
}
if (deviceSettingsKeys.contains("ncoEnableTx") || force) {
swgLimeSdrMIMOSettings->setNcoEnableTx(settings.m_ncoEnableTx ? 1 : 0);
}
if (deviceSettingsKeys.contains("ncoFrequencyTx") || force) {
swgLimeSdrMIMOSettings->setNcoFrequencyTx(settings.m_ncoFrequencyTx);
}
if (deviceSettingsKeys.contains("txTransverterDeltaFrequency") || force) {
swgLimeSdrMIMOSettings->setTxTransverterDeltaFrequency(settings.m_txTransverterDeltaFrequency);
}
if (deviceSettingsKeys.contains("txTransverterMode") || force) {
swgLimeSdrMIMOSettings->setTxTransverterMode(settings.m_txTransverterMode ? 1 : 0);
}
// Tx0
if (deviceSettingsKeys.contains("antennaPathTx0") || force) {
swgLimeSdrMIMOSettings->setAntennaPathTx0((int) settings.m_antennaPathTx0);
}
if (deviceSettingsKeys.contains("gainTx0") || force) {
swgLimeSdrMIMOSettings->setGainTx0(settings.m_gainTx0);
}
if (deviceSettingsKeys.contains("lpfBWTx0") || force) {
swgLimeSdrMIMOSettings->setLpfBwTx0(settings.m_lpfBWTx0);
}
if (deviceSettingsKeys.contains("lpfFIREnableTx0") || force) {
swgLimeSdrMIMOSettings->setLpfFirEnableTx0(settings.m_lpfFIREnableTx0 ? 1 : 0);
}
if (deviceSettingsKeys.contains("lpfFIRBWTx0") || force) {
swgLimeSdrMIMOSettings->setLpfFirbwTx0(settings.m_lpfFIRBWTx0);
}
// Tx1
if (deviceSettingsKeys.contains("antennaPathTx1") || force) {
swgLimeSdrMIMOSettings->setAntennaPathTx1((int) settings.m_antennaPathTx1);
}
if (deviceSettingsKeys.contains("gainTx1") || force) {
swgLimeSdrMIMOSettings->setGainTx1(settings.m_gainTx1);
}
if (deviceSettingsKeys.contains("lpfBWTx1") || force) {
swgLimeSdrMIMOSettings->setLpfBwTx1(settings.m_lpfBWTx1);
}
if (deviceSettingsKeys.contains("lpfFIREnableTx1") || force) {
swgLimeSdrMIMOSettings->setLpfFirEnableTx1(settings.m_lpfFIREnableTx1 ? 1 : 0);
}
if (deviceSettingsKeys.contains("lpfFIRBWTx1") || force) {
swgLimeSdrMIMOSettings->setLpfFirbwTx1(settings.m_lpfFIRBWTx1);
}
}
void LimeSDRMIMO::webapiReverseSendStartStop(bool start)
{
SWGSDRangel::SWGDeviceSettings *swgDeviceSettings = new SWGSDRangel::SWGDeviceSettings();
swgDeviceSettings->setDirection(2); // MIMO
swgDeviceSettings->setOriginatorIndex(m_deviceAPI->getDeviceSetIndex());
swgDeviceSettings->setDeviceHwType(new QString("LimeSDR"));
QString deviceSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/device/run")
.arg(m_settings.m_reverseAPIAddress)
.arg(m_settings.m_reverseAPIPort)
.arg(m_settings.m_reverseAPIDeviceIndex);
m_networkRequest.setUrl(QUrl(deviceSettingsURL));
m_networkRequest.setHeader(QNetworkRequest::ContentTypeHeader, "application/json");
QBuffer *buffer = new QBuffer();
buffer->open((QBuffer::ReadWrite));
buffer->write(swgDeviceSettings->asJson().toUtf8());
buffer->seek(0);
QNetworkReply *reply;
if (start) {
reply = m_networkManager->sendCustomRequest(m_networkRequest, "POST", buffer);
} else {
reply = m_networkManager->sendCustomRequest(m_networkRequest, "DELETE", buffer);
}
buffer->setParent(reply);
delete swgDeviceSettings;
}
void LimeSDRMIMO::networkManagerFinished(QNetworkReply *reply)
{
QNetworkReply::NetworkError replyError = reply->error();
if (replyError)
{
qWarning() << "LimeSDRMIMO::networkManagerFinished:"
<< " error(" << (int) replyError
<< "): " << replyError
<< ": " << reply->errorString();
}
else
{
QString answer = reply->readAll();
answer.chop(1); // remove last \n
qDebug("LimeSDRMIMO::networkManagerFinished: reply:\n%s", answer.toStdString().c_str());
}
reply->deleteLater();
}