1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-12-23 10:05:46 -05:00
sdrangel/plugins/samplesink/bladerf2output/bladerf2outputthread.cpp

252 lines
7.9 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2018-2019 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <algorithm>
#include "dsp/samplesourcefifo.h"
#include "bladerf2outputthread.h"
BladeRF2OutputThread::BladeRF2OutputThread(struct bladerf* dev, unsigned int nbTxChannels, QObject* parent) :
QThread(parent),
m_running(false),
m_dev(dev),
m_nbChannels(nbTxChannels)
{
qDebug("BladeRF2OutputThread::BladeRF2OutputThread");
m_channels = new Channel[nbTxChannels];
m_buf = new qint16[2*DeviceBladeRF2::blockSize*nbTxChannels];
}
BladeRF2OutputThread::~BladeRF2OutputThread()
{
qDebug("BladeRF2OutputThread::~BladeRF2OutputThread");
if (m_running) {
stopWork();
}
delete[] m_buf;
delete[] m_channels;
}
void BladeRF2OutputThread::startWork()
{
m_startWaitMutex.lock();
start();
while(!m_running) {
m_startWaiter.wait(&m_startWaitMutex, 100);
}
m_startWaitMutex.unlock();
}
void BladeRF2OutputThread::stopWork()
{
m_running = false;
wait();
}
void BladeRF2OutputThread::run()
{
int res;
m_running = true;
m_startWaiter.wakeAll();
unsigned int nbFifos = getNbFifos();
if ((m_nbChannels > 0) && (nbFifos > 0))
{
int status;
if (m_nbChannels > 1) {
status = bladerf_sync_config(m_dev, BLADERF_TX_X2, BLADERF_FORMAT_SC16_Q11, 128, 16384, 32, 1500);
} else {
status = bladerf_sync_config(m_dev, BLADERF_TX_X1, BLADERF_FORMAT_SC16_Q11, 64, 8192, 32, 1500);
}
if (status < 0)
{
qCritical("BladeRF2OutputThread::run: cannot configure streams: %s", bladerf_strerror(status));
}
else
{
qDebug("BladeRF2OutputThread::run: start running loop");
while (m_running)
{
if (m_nbChannels > 1)
{
callbackMO(m_buf, DeviceBladeRF2::blockSize);
res = bladerf_sync_tx(m_dev, m_buf, DeviceBladeRF2::blockSize*m_nbChannels, 0, 1500);
}
else
{
callbackSO(m_buf, DeviceBladeRF2::blockSize);
res = bladerf_sync_tx(m_dev, m_buf, DeviceBladeRF2::blockSize, 0, 1500);
}
if (res < 0)
{
qCritical("BladeRF2OutputThread::run sync Rx error: %s", bladerf_strerror(res));
break;
}
}
qDebug("BladeRF2OutputThread::run: stop running loop");
}
}
else
{
qWarning("BladeRF2OutputThread::run: no channels or FIFO allocated. Aborting");
}
m_running = false;
}
unsigned int BladeRF2OutputThread::getNbFifos()
{
unsigned int fifoCount = 0;
for (unsigned int i = 0; i < m_nbChannels; i++)
{
if (m_channels[i].m_sampleFifo) {
fifoCount++;
}
}
return fifoCount;
}
void BladeRF2OutputThread::setLog2Interpolation(unsigned int channel, unsigned int log2_interp)
{
if (channel < m_nbChannels) {
m_channels[channel].m_log2Interp = log2_interp;
}
}
unsigned int BladeRF2OutputThread::getLog2Interpolation(unsigned int channel) const
{
if (channel < m_nbChannels) {
return m_channels[channel].m_log2Interp;
} else {
return 0;
}
}
void BladeRF2OutputThread::setFifo(unsigned int channel, SampleSourceFifo *sampleFifo)
{
if (channel < m_nbChannels) {
m_channels[channel].m_sampleFifo = sampleFifo;
}
}
SampleSourceFifo *BladeRF2OutputThread::getFifo(unsigned int channel)
{
if (channel < m_nbChannels) {
return m_channels[channel].m_sampleFifo;
} else {
return 0;
}
}
void BladeRF2OutputThread::callbackMO(qint16* buf, qint32 samplesPerChannel)
{
for (unsigned int channel = 0; channel < m_nbChannels; channel++)
{
if (m_channels[channel].m_sampleFifo) {
callbackSO(&buf[2*samplesPerChannel*channel], samplesPerChannel, channel);
} else {
std::fill(&buf[2*samplesPerChannel*channel], &buf[2*samplesPerChannel*channel]+2*samplesPerChannel, 0); // fill with zero samples
}
}
// TODO: write a set of interpolators that can write interleaved samples in output directly
int status = bladerf_interleave_stream_buffer(BLADERF_TX_X2, BLADERF_FORMAT_SC16_Q11 , samplesPerChannel*m_nbChannels, (void *) buf);
if (status < 0)
{
qCritical("BladeRF2OutputThread::callbackMO: cannot interleave buffer: %s", bladerf_strerror(status));
return;
}
}
// Interpolate according to specified log2 (ex: log2=4 => decim=16). len is a number of samples (not a number of I or Q)
void BladeRF2OutputThread::callbackSO(qint16* buf, qint32 len, unsigned int channel)
{
if (m_channels[channel].m_sampleFifo)
{
SampleVector& data = m_channels[channel].m_sampleFifo->getData();
unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End;
m_channels[channel].m_sampleFifo->read(len/(1<<m_channels[channel].m_log2Interp), iPart1Begin, iPart1End, iPart2Begin, iPart2End);
if (iPart1Begin != iPart1End) {
callbackPart(buf, data, iPart1Begin, iPart1End, channel);
}
unsigned int shift = (iPart1End - iPart1Begin)*(1<<m_channels[channel].m_log2Interp);
if (iPart2Begin != iPart2End) {
callbackPart(buf + 2*shift, data, iPart2Begin, iPart2End, channel);
}
}
else
{
std::fill(buf, buf+2*len, 0);
}
}
void BladeRF2OutputThread::callbackPart(qint16* buf, SampleVector& data, unsigned int iBegin, unsigned int iEnd, unsigned int channel)
{
SampleVector::iterator beginRead = data.begin() + iBegin;
int len = 2*(iEnd - iBegin)*(1<<m_channels[channel].m_log2Interp);
if (m_channels[channel].m_log2Interp == 0)
{
m_channels[channel].m_interpolators.interpolate1(&beginRead, buf, len);
}
else
{
switch (m_channels[channel].m_log2Interp)
{
case 1:
m_channels[channel].m_interpolators.interpolate2_cen(&beginRead, buf, len);
break;
case 2:
m_channels[channel].m_interpolators.interpolate4_cen(&beginRead, buf, len);
break;
case 3:
m_channels[channel].m_interpolators.interpolate8_cen(&beginRead, buf, len);
break;
case 4:
m_channels[channel].m_interpolators.interpolate16_cen(&beginRead, buf, len);
break;
case 5:
m_channels[channel].m_interpolators.interpolate32_cen(&beginRead, buf, len);
break;
case 6:
m_channels[channel].m_interpolators.interpolate64_cen(&beginRead, buf, len);
break;
default:
break;
}
}
}