1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-12-11 17:35:16 -05:00
sdrangel/plugins/samplesource/xtrxinput/xtrxinput.cpp

1652 lines
59 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017, 2018 Edouard Griffiths, F4EXB //
// Copyright (C) 2017 Sergey Kostanbaev, Fairwaves Inc. //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <cstddef>
#include <string.h>
#include "xtrx_api.h"
#include <QMutexLocker>
#include <QDebug>
#include <QNetworkReply>
#include <QBuffer>
#include "SWGDeviceSettings.h"
#include "SWGXtrxInputSettings.h"
#include "SWGDeviceState.h"
#include "SWGDeviceReport.h"
#include "SWGXtrxInputReport.h"
#include "device/deviceapi.h"
#include "dsp/dspcommands.h"
#include "xtrxinput.h"
#include "xtrxinputthread.h"
#include "xtrx/devicextrxparam.h"
#include "xtrx/devicextrxshared.h"
#include "xtrx/devicextrx.h"
MESSAGE_CLASS_DEFINITION(XTRXInput::MsgConfigureXTRX, Message)
MESSAGE_CLASS_DEFINITION(XTRXInput::MsgGetStreamInfo, Message)
MESSAGE_CLASS_DEFINITION(XTRXInput::MsgGetDeviceInfo, Message)
MESSAGE_CLASS_DEFINITION(XTRXInput::MsgReportClockGenChange, Message)
MESSAGE_CLASS_DEFINITION(XTRXInput::MsgReportStreamInfo, Message)
MESSAGE_CLASS_DEFINITION(XTRXInput::MsgStartStop, Message)
XTRXInput::XTRXInput(DeviceAPI *deviceAPI) :
m_deviceAPI(deviceAPI),
m_settings(),
m_XTRXInputThread(nullptr),
m_deviceDescription("XTRXInput"),
m_running(false)
{
openDevice();
m_deviceAPI->setNbSourceStreams(1);
m_networkManager = new QNetworkAccessManager();
connect(m_networkManager, SIGNAL(finished(QNetworkReply*)), this, SLOT(networkManagerFinished(QNetworkReply*)));
}
XTRXInput::~XTRXInput()
{
disconnect(m_networkManager, SIGNAL(finished(QNetworkReply*)), this, SLOT(networkManagerFinished(QNetworkReply*)));
delete m_networkManager;
if (m_running) {
stop();
}
closeDevice();
}
void XTRXInput::destroy()
{
delete this;
}
bool XTRXInput::openDevice()
{
if (!m_sampleFifo.setSize(96000 * 4))
{
qCritical("XTRXInput::openDevice: could not allocate SampleFifo");
return false;
}
else
{
qDebug("XTRXInput::openDevice: allocated SampleFifo");
}
// look for Rx buddies and get reference to the device object
if (m_deviceAPI->getSourceBuddies().size() > 0) // look source sibling first
{
qDebug("XTRXInput::openDevice: look in Rx buddies");
DeviceAPI *sourceBuddy = m_deviceAPI->getSourceBuddies()[0];
DeviceXTRXShared *deviceXTRXShared = (DeviceXTRXShared*) sourceBuddy->getBuddySharedPtr();
if (deviceXTRXShared == 0)
{
qCritical("XTRXInput::openDevice: the source buddy shared pointer is null");
return false;
}
DeviceXTRX *device = deviceXTRXShared->m_dev;
if (device == 0)
{
qCritical("XTRXInput::openDevice: cannot get device pointer from Rx buddy");
return false;
}
m_deviceShared.m_dev = device;
}
// look for Tx buddies and get reference to the device object
else if (m_deviceAPI->getSinkBuddies().size() > 0) // then sink
{
qDebug("XTRXInput::openDevice: look in Tx buddies");
DeviceAPI *sinkBuddy = m_deviceAPI->getSinkBuddies()[0];
DeviceXTRXShared *deviceXTRXShared = (DeviceXTRXShared*) sinkBuddy->getBuddySharedPtr();
if (deviceXTRXShared == 0)
{
qCritical("XTRXInput::openDevice: the sink buddy shared pointer is null");
return false;
}
DeviceXTRX *device = deviceXTRXShared->m_dev;
if (device == 0)
{
qCritical("XTRXInput::openDevice: cannot get device pointer from Tx buddy");
return false;
}
m_deviceShared.m_dev = device;
}
// There are no buddies then create the first BladeRF2 device
else
{
qDebug("XTRXInput::openDevice: open device here");
m_deviceShared.m_dev = new DeviceXTRX();
char serial[256];
strcpy(serial, qPrintable(m_deviceAPI->getSamplingDeviceSerial()));
if (!m_deviceShared.m_dev->open(serial))
{
qCritical("XTRXInput::openDevice: cannot open BladeRF2 device");
return false;
}
}
m_deviceShared.m_channel = m_deviceAPI->getDeviceItemIndex(); // publicly allocate channel
m_deviceShared.m_source = this;
m_deviceAPI->setBuddySharedPtr(&m_deviceShared); // propagate common parameters to API
return true;
}
void XTRXInput::closeDevice()
{
if (m_deviceShared.m_dev == 0) { // was never open
return;
}
if (m_running) {
stop();
}
if (m_XTRXInputThread) { // stills own the thread => transfer to a buddy
moveThreadToBuddy();
}
m_deviceShared.m_channel = -1; // publicly release channel
m_deviceShared.m_source = 0;
// No buddies so effectively close the device
if ((m_deviceAPI->getSinkBuddies().size() == 0) && (m_deviceAPI->getSourceBuddies().size() == 0))
{
m_deviceShared.m_dev->close();
delete m_deviceShared.m_dev;
m_deviceShared.m_dev = 0;
}
}
void XTRXInput::init()
{
applySettings(m_settings, true, false);
}
XTRXInputThread *XTRXInput::findThread()
{
if (!m_XTRXInputThread) // this does not own the thread
{
XTRXInputThread *xtrxInputThread = nullptr;
// find a buddy that has allocated the thread
const std::vector<DeviceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceAPI*>::const_iterator it = sourceBuddies.begin();
for (; it != sourceBuddies.end(); ++it)
{
XTRXInput *buddySource = ((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_source;
if (buddySource)
{
xtrxInputThread = buddySource->getThread();
if (xtrxInputThread) {
break;
}
}
}
return xtrxInputThread;
}
else
{
return m_XTRXInputThread; // own thread
}
}
void XTRXInput::moveThreadToBuddy()
{
const std::vector<DeviceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceAPI*>::const_iterator it = sourceBuddies.begin();
for (; it != sourceBuddies.end(); ++it)
{
XTRXInput *buddySource = ((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_source;
if (buddySource)
{
buddySource->setThread(m_XTRXInputThread);
m_XTRXInputThread = nullptr; // zero for others
}
}
}
bool XTRXInput::start()
{
// There is a single thread per physical device (Rx side). This thread is unique and referenced by a unique
// buddy in the group of source buddies associated with this physical device.
//
// This start method is responsible for managing the thread when the streaming of a Rx channel is started
//
// It checks the following conditions
// - the thread is allocated or not (by itself or one of its buddies). If it is it grabs the thread pointer.
// - the requested channel is another channel (one is already streaming).
//
// The XTRX support library lets you work in two possible modes:
// - Single Input (SI) with only one channel streaming. This can be channel 0 or 1 (channels can be swapped - unlike with BladeRF2).
// - Multiple Input (MI) with two channels streaming using interleaved samples. It MUST be in this configuration if both channels are
// streaming.
//
// It manages the transition form SI where only one channel is running to the Multiple Input (MI) if the both channels are requested.
// To perform the transition it stops the thread, deletes it and creates a new one.
// It marks the thread as needing start.
//
// If there is no thread allocated it means we are in SI mode and it creates a new one with the requested channel.
// It marks the thread as needing start.
//
// Eventually it registers the FIFO in the thread. If the thread has to be started it enables the channels up to the number of channels
// allocated in the thread and starts the thread.
if (!m_deviceShared.m_dev || !m_deviceShared.m_dev->getDevice())
{
qDebug("XTRXInput::start: no device object");
return false;
}
int requestedChannel = m_deviceAPI->getDeviceItemIndex();
XTRXInputThread *xtrxInputThread = findThread();
bool needsStart = false;
if (xtrxInputThread) // if thread is already allocated
{
qDebug("XTRXInput::start: thread is already allocated");
unsigned int nbOriginalChannels = xtrxInputThread->getNbChannels();
// if one channel is already allocated it must be the other one so we'll end up with both channels
// thus we expand by deleting and re-creating the thread
if (nbOriginalChannels != 0)
{
qDebug("XTRXInput::start: expand channels. Re-allocate thread and take ownership");
SampleSinkFifo **fifos = new SampleSinkFifo*[2];
unsigned int *log2Decims = new unsigned int[2];
for (int i = 0; i < 2; i++) // save original FIFO references and data
{
fifos[i] = xtrxInputThread->getFifo(i);
log2Decims[i] = xtrxInputThread->getLog2Decimation(i);
}
xtrxInputThread->stopWork();
delete xtrxInputThread;
xtrxInputThread = new XTRXInputThread(m_deviceShared.m_dev->getDevice(), 2); // MI mode (2 channels)
xtrxInputThread->setIQOrder(m_settings.m_iqOrder);
m_deviceShared.m_thread = xtrxInputThread;
m_XTRXInputThread = xtrxInputThread; // take ownership
for (int i = 0; i < 2; i++) // restore original FIFO references
{
xtrxInputThread->setFifo(i, fifos[i]);
xtrxInputThread->setLog2Decimation(i, log2Decims[i]);
}
// remove old thread address from buddies (reset in all buddies). The address being held only in the owning source.
const std::vector<DeviceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceAPI*>::const_iterator it = sourceBuddies.begin();
for (; it != sourceBuddies.end(); ++it)
{
((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_source->setThread(0);
((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_thread = 0;
}
// was used as temporary storage:
delete[] fifos;
delete[] log2Decims;
needsStart = true;
}
else
{
qDebug("XTRXInput::start: keep buddy thread");
}
}
else // first allocation
{
qDebug("XTRXInput::start: allocate thread and take ownership");
xtrxInputThread = new XTRXInputThread(m_deviceShared.m_dev->getDevice(), 1, requestedChannel);
m_XTRXInputThread = xtrxInputThread; // take ownership
m_deviceShared.m_thread = xtrxInputThread;
needsStart = true;
}
xtrxInputThread->setFifo(requestedChannel, &m_sampleFifo);
xtrxInputThread->setLog2Decimation(requestedChannel, m_settings.m_log2SoftDecim);
applySettings(m_settings, true);
if (needsStart)
{
qDebug("XTRXInput::start: (re)start thread");
xtrxInputThread->startWork();
}
qDebug("XTRXInput::start: started");
m_running = true;
return true;
}
void XTRXInput::stop()
{
// This stop method is responsible for managing the thread when the streaming of a Rx channel is stopped
//
// If the thread is currently managing only one channel (SI mode). The thread can be just stopped and deleted.
// Then the channel is closed.
//
// If the thread is currently managing both channels (MI mode) then we are removing one channel. Thus we must
// transition from MI to SI. This transition is handled by stopping the thread, deleting it and creating a new one
// managing a single channel.
if (!m_running) {
return;
}
int removedChannel = m_deviceAPI->getDeviceItemIndex(); // channel to remove
int requestedChannel = removedChannel ^ 1; // channel to keep (opposite channel)
XTRXInputThread *xtrxInputThread = findThread();
if (xtrxInputThread == 0) { // no thread allocated
return;
}
int nbOriginalChannels = xtrxInputThread->getNbChannels();
if (nbOriginalChannels == 1) // SI mode => just stop and delete the thread
{
qDebug("XTRXInput::stop: SI mode. Just stop and delete the thread");
xtrxInputThread->stopWork();
delete xtrxInputThread;
m_XTRXInputThread = nullptr;
m_deviceShared.m_thread = nullptr;
// remove old thread address from buddies (reset in all buddies)
const std::vector<DeviceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceAPI*>::const_iterator it = sourceBuddies.begin();
for (; it != sourceBuddies.end(); ++it) {
((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_source->setThread(nullptr);
}
}
else if (nbOriginalChannels == 2) // Reduce from MI to SI by deleting and re-creating the thread
{
qDebug("XTRXInput::stop: MI mode. Reduce by deleting and re-creating the thread");
xtrxInputThread->stopWork();
delete xtrxInputThread;
xtrxInputThread = new XTRXInputThread(m_deviceShared.m_dev->getDevice(), 1, requestedChannel);
m_XTRXInputThread = xtrxInputThread; // take ownership
m_deviceShared.m_thread = xtrxInputThread;
xtrxInputThread->setIQOrder(m_settings.m_iqOrder);
xtrxInputThread->setFifo(requestedChannel, &m_sampleFifo);
xtrxInputThread->setLog2Decimation(requestedChannel, m_settings.m_log2SoftDecim);
// remove old thread address from buddies (reset in all buddies). The address being held only in the owning source.
const std::vector<DeviceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceAPI*>::const_iterator it = sourceBuddies.begin();
for (; it != sourceBuddies.end(); ++it) {
((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_source->setThread(nullptr);
}
applySettings(m_settings, true);
xtrxInputThread->startWork();
}
m_running = false;
}
void XTRXInput::suspendTxThread()
{
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator itSink = sinkBuddies.begin();
qDebug("XTRXInput::suspendTxThread (%lu)", sinkBuddies.size());
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceXTRXShared *buddySharedPtr = (DeviceXTRXShared *) (*itSink)->getBuddySharedPtr();
if ((buddySharedPtr->m_thread) && buddySharedPtr->m_thread->isRunning())
{
buddySharedPtr->m_thread->stopWork();
buddySharedPtr->m_threadWasRunning = true;
}
else
{
buddySharedPtr->m_threadWasRunning = false;
}
}
}
void XTRXInput::resumeTxThread()
{
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator itSink = sinkBuddies.begin();
qDebug("XTRXInput::resumeTxThread (%lu)", sinkBuddies.size());
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceXTRXShared *buddySharedPtr = (DeviceXTRXShared *) (*itSink)->getBuddySharedPtr();
if (buddySharedPtr->m_threadWasRunning) {
buddySharedPtr->m_thread->startWork();
}
}
}
QByteArray XTRXInput::serialize() const
{
return m_settings.serialize();
}
bool XTRXInput::deserialize(const QByteArray& data)
{
bool success = true;
if (!m_settings.deserialize(data))
{
m_settings.resetToDefaults();
success = false;
}
MsgConfigureXTRX* message = MsgConfigureXTRX::create(m_settings, true);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue)
{
MsgConfigureXTRX* messageToGUI = MsgConfigureXTRX::create(m_settings, true);
m_guiMessageQueue->push(messageToGUI);
}
return success;
}
const QString& XTRXInput::getDeviceDescription() const
{
return m_deviceDescription;
}
int XTRXInput::getSampleRate() const
{
double rate = m_settings.m_devSampleRate;
if (m_deviceShared.m_dev) {
rate = m_deviceShared.m_dev->getActualInputRate();
}
return (int)((rate / (1<<m_settings.m_log2SoftDecim)));
}
uint32_t XTRXInput::getDevSampleRate() const
{
if (m_deviceShared.m_dev) {
return m_deviceShared.m_dev->getActualInputRate();
} else {
return m_settings.m_devSampleRate;
}
}
uint32_t XTRXInput::getLog2HardDecim() const
{
if (m_deviceShared.m_dev && (m_deviceShared.m_dev->getActualInputRate() != 0.0)) {
return log2(m_deviceShared.m_dev->getClockGen() / m_deviceShared.m_dev->getActualInputRate() / 4);
} else {
return m_settings.m_log2HardDecim;
}
}
double XTRXInput::getClockGen() const
{
if (m_deviceShared.m_dev) {
return m_deviceShared.m_dev->getClockGen();
} else {
return 0.0;
}
}
quint64 XTRXInput::getCenterFrequency() const
{
return m_settings.m_centerFrequency + (m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0);
}
void XTRXInput::setCenterFrequency(qint64 centerFrequency)
{
XTRXInputSettings settings = m_settings;
settings.m_centerFrequency = centerFrequency - (m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0);
MsgConfigureXTRX* message = MsgConfigureXTRX::create(settings, false);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue)
{
MsgConfigureXTRX* messageToGUI = MsgConfigureXTRX::create(settings, false);
m_guiMessageQueue->push(messageToGUI);
}
}
std::size_t XTRXInput::getChannelIndex()
{
return m_deviceShared.m_channel;
}
void XTRXInput::getLORange(float& minF, float& maxF, float& stepF) const
{
minF = 29e6;
maxF = 3840e6;
stepF = 10;
qDebug("XTRXInput::getLORange: min: %f max: %f step: %f",
minF, maxF, stepF);
}
void XTRXInput::getSRRange(float& minF, float& maxF, float& stepF) const
{
minF = 100e3;
maxF = 120e6;
stepF = 10;
qDebug("XTRXInput::getSRRange: min: %f max: %f step: %f",
minF, maxF, stepF);
}
void XTRXInput::getLPRange(float& minF, float& maxF, float& stepF) const
{
minF = 500e3;
maxF = 130e6;
stepF = 10;
qDebug("XTRXInput::getLPRange: min: %f max: %f step: %f",
minF, maxF, stepF);
}
bool XTRXInput::handleMessage(const Message& message)
{
if (MsgConfigureXTRX::match(message))
{
MsgConfigureXTRX& conf = (MsgConfigureXTRX&) message;
qDebug() << "XTRXInput::handleMessage: MsgConfigureXTRX";
if (!applySettings(conf.getSettings(), conf.getForce()))
{
qDebug("XTRXInput::handleMessage config error");
}
return true;
}
else if (DeviceXTRXShared::MsgReportBuddyChange::match(message))
{
DeviceXTRXShared::MsgReportBuddyChange& report = (DeviceXTRXShared::MsgReportBuddyChange&) message;
if (report.getRxElseTx())
{
m_settings.m_devSampleRate = report.getDevSampleRate();
m_settings.m_log2HardDecim = report.getLog2HardDecimInterp();
m_settings.m_centerFrequency = report.getCenterFrequency();
}
else
{
m_settings.m_devSampleRate = m_deviceShared.m_dev->getActualInputRate();
m_settings.m_log2HardDecim = getLog2HardDecim();
}
qDebug() << "XTRXInput::handleMessage: MsgReportBuddyChange:"
<< " host_Hz: " << m_deviceShared.m_dev->getActualInputRate()
<< " adc_Hz: " << m_deviceShared.m_dev->getClockGen() / 4
<< " m_log2HardDecim: " << m_settings.m_log2HardDecim;
if (m_settings.m_ncoEnable) { // need to reset NCO after sample rate change
applySettings(m_settings, false, true);
}
int ncoShift = m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0;
DSPSignalNotification *notif = new DSPSignalNotification(
m_settings.m_devSampleRate/(1<<m_settings.m_log2SoftDecim),
m_settings.m_centerFrequency + ncoShift);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif);
if (getMessageQueueToGUI())
{
DeviceXTRXShared::MsgReportBuddyChange *reportToGUI = DeviceXTRXShared::MsgReportBuddyChange::create(
m_settings.m_devSampleRate, m_settings.m_log2HardDecim, m_settings.m_centerFrequency, true);
getMessageQueueToGUI()->push(reportToGUI);
}
return true;
}
else if (DeviceXTRXShared::MsgReportClockSourceChange::match(message))
{
DeviceXTRXShared::MsgReportClockSourceChange& report = (DeviceXTRXShared::MsgReportClockSourceChange&) message;
m_settings.m_extClock = report.getExtClock();
m_settings.m_extClockFreq = report.getExtClockFeq();
if (getMessageQueueToGUI())
{
DeviceXTRXShared::MsgReportClockSourceChange *reportToGUI = DeviceXTRXShared::MsgReportClockSourceChange::create(
m_settings.m_extClock, m_settings.m_extClockFreq);
getMessageQueueToGUI()->push(reportToGUI);
}
return true;
}
else if (MsgGetStreamInfo::match(message))
{
if (m_deviceAPI->getSamplingDeviceGUIMessageQueue())
{
uint64_t fifolevel = 0;
if (m_deviceShared.m_dev && m_deviceShared.m_dev->getDevice()) {
xtrx_val_get(m_deviceShared.m_dev->getDevice(), XTRX_RX, XTRX_CH_AB, XTRX_PERF_LLFIFO, &fifolevel);
}
MsgReportStreamInfo *report = MsgReportStreamInfo::create(
true,
true,
fifolevel,
65536);
if (m_deviceAPI->getSamplingDeviceGUIMessageQueue()) {
m_deviceAPI->getSamplingDeviceGUIMessageQueue()->push(report);
}
}
return true;
}
else if (MsgGetDeviceInfo::match(message))
{
double board_temp = 0.0;
bool gps_locked = false;
if (!m_deviceShared.m_dev->getDevice() || ((board_temp = m_deviceShared.get_board_temperature() / 256.0) == 0.0)) {
qDebug("XTRXInput::handleMessage: MsgGetDeviceInfo: cannot get board temperature");
}
if (!m_deviceShared.m_dev->getDevice()) {
qDebug("XTRXInput::handleMessage: MsgGetDeviceInfo: cannot get GPS lock status");
} else {
gps_locked = m_deviceShared.get_gps_status();
}
// send to oneself
if (m_deviceAPI->getSamplingDeviceGUIMessageQueue())
{
DeviceXTRXShared::MsgReportDeviceInfo *report = DeviceXTRXShared::MsgReportDeviceInfo::create(board_temp, gps_locked);
m_deviceAPI->getSamplingDeviceGUIMessageQueue()->push(report);
}
// send to source buddies
const std::vector<DeviceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceAPI*>::const_iterator itSource = sourceBuddies.begin();
for (; itSource != sourceBuddies.end(); ++itSource)
{
if ((*itSource)->getSamplingDeviceGUIMessageQueue())
{
DeviceXTRXShared::MsgReportDeviceInfo *report = DeviceXTRXShared::MsgReportDeviceInfo::create(board_temp, gps_locked);
(*itSource)->getSamplingDeviceGUIMessageQueue()->push(report);
}
}
// send to sink buddies
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator itSink = sinkBuddies.begin();
for (; itSink != sinkBuddies.end(); ++itSink)
{
if ((*itSink)->getSamplingDeviceGUIMessageQueue())
{
DeviceXTRXShared::MsgReportDeviceInfo *report = DeviceXTRXShared::MsgReportDeviceInfo::create(board_temp, gps_locked);
(*itSink)->getSamplingDeviceGUIMessageQueue()->push(report);
}
}
return true;
}
else if (MsgStartStop::match(message))
{
MsgStartStop& cmd = (MsgStartStop&) message;
qDebug() << "XTRXInput::handleMessage: MsgStartStop: " << (cmd.getStartStop() ? "start" : "stop");
if (cmd.getStartStop())
{
if (m_deviceAPI->initDeviceEngine())
{
m_deviceAPI->startDeviceEngine();
}
}
else
{
m_deviceAPI->stopDeviceEngine();
}
return true;
}
else
{
return false;
}
}
static double tia_to_db(unsigned idx)
{
switch (idx) {
case 1: return 12;
case 2: return 9;
default: return 0;
}
}
void XTRXInput::apply_gain_auto(uint32_t gain)
{
uint32_t lna, tia, pga;
DeviceXTRX::getAutoGains(gain, lna, tia, pga);
apply_gain_lna(lna);
apply_gain_tia(tia_to_db(tia));
apply_gain_pga(pga);
}
void XTRXInput::apply_gain_lna(double gain)
{
if (xtrx_set_gain(m_deviceShared.m_dev->getDevice(),
m_deviceShared.m_channel == 0 ? XTRX_CH_A : XTRX_CH_B,
XTRX_RX_LNA_GAIN,
gain,
0) < 0) {
qDebug("XTRXInput::apply_gain_lna: xtrx_set_gain(LNA) failed");
} else {
qDebug() << "XTRXInput::apply_gain_lna: Gain (LNA) set to " << gain;
}
}
void XTRXInput::apply_gain_tia(double gain)
{
if (xtrx_set_gain(m_deviceShared.m_dev->getDevice(),
m_deviceShared.m_channel == 0 ? XTRX_CH_A : XTRX_CH_B,
XTRX_RX_TIA_GAIN,
gain,
0) < 0) {
qDebug("XTRXInput::apply_gain_tia: xtrx_set_gain(TIA) failed");
} else {
qDebug() << "XTRXInput::apply_gain_tia: Gain (TIA) set to " << gain;
}
}
void XTRXInput::apply_gain_pga(double gain)
{
if (xtrx_set_gain(m_deviceShared.m_dev->getDevice(),
m_deviceShared.m_channel == 0 ? XTRX_CH_A : XTRX_CH_B,
XTRX_RX_PGA_GAIN,
gain,
0) < 0)
{
qDebug("XTRXInput::apply_gain_pga: xtrx_set_gain(PGA) failed");
}
else
{
qDebug() << "XTRXInput::apply_gain_pga: Gain (PGA) set to " << gain;
}
}
bool XTRXInput::applySettings(const XTRXInputSettings& settings, bool force, bool forceNCOFrequency)
{
int requestedChannel = m_deviceAPI->getDeviceItemIndex();
XTRXInputThread *inputThread = findThread();
QList<QString> reverseAPIKeys;
bool forwardChangeOwnDSP = false;
bool forwardChangeRxDSP = false;
bool forwardChangeAllDSP = false;
bool forwardClockSource = false;
bool doLPCalibration = false;
bool doChangeSampleRate = false;
bool doChangeFreq = false;
bool doGainAuto = false;
bool doGainLna = false;
bool doGainTia = false;
bool doGainPga = false;
// apply settings
qDebug() << "XTRXInput::applySettings: center freq: " << settings.m_centerFrequency << " Hz"
<< " device stream sample rate: " << getDevSampleRate() << "S/s"
<< " sample rate with soft decimation: " << getSampleRate() << "S/s"
<< " m_devSampleRate: " << settings.m_devSampleRate
<< " m_dcBlock: " << settings.m_dcBlock
<< " m_iqCorrection: " << settings.m_iqCorrection
<< " m_log2SoftDecim: " << settings.m_log2SoftDecim
<< " m_gain: " << settings.m_gain
<< " m_lpfBW: " << settings.m_lpfBW
<< " m_pwrmode: " << settings.m_pwrmode
<< " m_ncoEnable: " << settings.m_ncoEnable
<< " m_ncoFrequency: " << settings.m_ncoFrequency
<< " m_antennaPath: " << settings.m_antennaPath
<< " m_extClock: " << settings.m_extClock
<< " m_extClockFreq: " << settings.m_extClockFreq
<< " force: " << force
<< " forceNCOFrequency: " << forceNCOFrequency
<< " doLPCalibration: " << doLPCalibration;
if ((m_settings.m_dcBlock != settings.m_dcBlock) || force)
{
reverseAPIKeys.append("dcBlock");
m_deviceAPI->configureCorrections(settings.m_dcBlock, settings.m_iqCorrection);
}
if ((m_settings.m_iqCorrection != settings.m_iqCorrection) || force)
{
reverseAPIKeys.append("iqCorrection");
m_deviceAPI->configureCorrections(settings.m_dcBlock, settings.m_iqCorrection);
}
if ((m_settings.m_pwrmode != settings.m_pwrmode))
{
reverseAPIKeys.append("pwrmode");
if (m_deviceShared.m_dev->getDevice())
{
if (xtrx_val_set(m_deviceShared.m_dev->getDevice(),
XTRX_TRX,
m_deviceShared.m_channel == 0 ? XTRX_CH_A : XTRX_CH_B,
XTRX_LMS7_PWR_MODE,
settings.m_pwrmode) < 0) {
qCritical("XTRXInput::applySettings: could not set power mode %d", settings.m_pwrmode);
}
}
}
if ((m_settings.m_extClock != settings.m_extClock) || force) {
reverseAPIKeys.append("extClock");
}
if ((m_settings.m_extClockFreq != settings.m_extClockFreq) || force) {
reverseAPIKeys.append("extClockFreq");
}
if ((m_settings.m_extClock != settings.m_extClock)
|| (settings.m_extClock && (m_settings.m_extClockFreq != settings.m_extClockFreq)) || force)
{
if (m_deviceShared.m_dev->getDevice())
{
xtrx_set_ref_clk(m_deviceShared.m_dev->getDevice(),
(settings.m_extClock) ? settings.m_extClockFreq : 0,
(settings.m_extClock) ? XTRX_CLKSRC_EXT : XTRX_CLKSRC_INT);
{
forwardClockSource = true;
doChangeSampleRate = true;
doChangeFreq = true;
qDebug("XTRXInput::applySettings: clock set to %s (Ext: %d Hz)",
settings.m_extClock ? "external" : "internal",
settings.m_extClockFreq);
}
}
}
if ((m_settings.m_devSampleRate != settings.m_devSampleRate) || force) {
reverseAPIKeys.append("devSampleRate");
}
if ((m_settings.m_log2HardDecim != settings.m_log2HardDecim) || force) {
reverseAPIKeys.append("log2HardDecim");
}
if ((m_settings.m_devSampleRate != settings.m_devSampleRate)
|| (m_settings.m_log2HardDecim != settings.m_log2HardDecim) || force)
{
forwardChangeAllDSP = true; //m_settings.m_devSampleRate != settings.m_devSampleRate;
if (m_deviceShared.m_dev->getDevice()) {
doChangeSampleRate = true;
}
}
if ((m_settings.m_gainMode != settings.m_gainMode) || force) {
reverseAPIKeys.append("gainMode");
}
if ((m_settings.m_gain != settings.m_gain) || force) {
reverseAPIKeys.append("gain");
}
if ((m_settings.m_lnaGain != settings.m_lnaGain) || force) {
reverseAPIKeys.append("lnaGain");
}
if ((m_settings.m_tiaGain != settings.m_tiaGain) || force) {
reverseAPIKeys.append("tiaGain");
}
if ((m_settings.m_pgaGain != settings.m_pgaGain) || force) {
reverseAPIKeys.append("pgaGain");
}
if (m_deviceShared.m_dev->getDevice())
{
if ((m_settings.m_gainMode != settings.m_gainMode) || force)
{
if (settings.m_gainMode == XTRXInputSettings::GAIN_AUTO)
{
doGainAuto = true;
}
else
{
doGainLna = true;
doGainTia = true;
doGainPga = true;
}
}
else if (m_settings.m_gainMode == XTRXInputSettings::GAIN_AUTO)
{
if (m_settings.m_gain != settings.m_gain) {
doGainAuto = true;
}
}
else if (m_settings.m_gainMode == XTRXInputSettings::GAIN_MANUAL)
{
if (m_settings.m_lnaGain != settings.m_lnaGain) {
doGainLna = true;
}
if (m_settings.m_tiaGain != settings.m_tiaGain) {
doGainTia = true;
}
if (m_settings.m_pgaGain != settings.m_pgaGain) {
doGainPga = true;
}
}
}
if ((m_settings.m_lpfBW != settings.m_lpfBW) || force)
{
reverseAPIKeys.append("lpfBW");
if (m_deviceShared.m_dev->getDevice()) {
doLPCalibration = true;
}
}
#if 0
if ((m_settings.m_lpfFIRBW != settings.m_lpfFIRBW) ||
(m_settings.m_lpfFIREnable != settings.m_lpfFIREnable) || force)
{
if (m_deviceShared.m_deviceParams->getDevice() && m_channelAcquired)
{
if (LMS_SetGFIRLPF(m_deviceShared.m_deviceParams->getDevice(),
LMS_CH_RX,
m_deviceShared.m_channel,
settings.m_lpfFIREnable,
settings.m_lpfFIRBW) < 0)
{
qCritical("XTRXInput::applySettings: could %s and set LPF FIR to %f Hz",
settings.m_lpfFIREnable ? "enable" : "disable",
settings.m_lpfFIRBW);
}
else
{
//doCalibration = true;
qDebug("XTRXInput::applySettings: %sd and set LPF FIR to %f Hz",
settings.m_lpfFIREnable ? "enable" : "disable",
settings.m_lpfFIRBW);
}
}
}
#endif
if ((m_settings.m_log2SoftDecim != settings.m_log2SoftDecim) || force)
{
reverseAPIKeys.append("log2SoftDecim");
forwardChangeOwnDSP = true;
if (inputThread)
{
inputThread->setLog2Decimation(requestedChannel, settings.m_log2SoftDecim);
qDebug() << "XTRXInput::applySettings: set soft decimation to " << (1<<settings.m_log2SoftDecim);
}
}
if ((m_settings.m_iqOrder != settings.m_iqOrder) || force)
{
reverseAPIKeys.append("iqOrder");
if (inputThread)
{
inputThread->setIQOrder(settings.m_iqOrder);
qDebug() << "XTRXInput::applySettings: set IQ order to " << (settings.m_iqOrder ? "IQ" : "QI");
}
}
if ((m_settings.m_antennaPath != settings.m_antennaPath) || force)
{
reverseAPIKeys.append("antennaPath");
if (m_deviceShared.m_dev->getDevice())
{
if (xtrx_set_antenna(m_deviceShared.m_dev->getDevice(), settings.m_antennaPath) < 0) {
qCritical("XTRXInput::applySettings: could not set antenna path to %d", (int) settings.m_antennaPath);
} else {
qDebug("XTRXInput::applySettings: set antenna path to %d", (int) settings.m_antennaPath);
}
}
}
if ((m_settings.m_centerFrequency != settings.m_centerFrequency) || force)
{
reverseAPIKeys.append("centerFrequency");
doChangeFreq = true;
}
if ((m_settings.m_ncoFrequency != settings.m_ncoFrequency) || force) {
reverseAPIKeys.append("ncoFrequency");
}
if ((m_settings.m_ncoEnable != settings.m_ncoEnable) || force) {
reverseAPIKeys.append("ncoEnable");
}
if ((m_settings.m_ncoFrequency != settings.m_ncoFrequency)
|| (m_settings.m_ncoEnable != settings.m_ncoEnable) || force)
{
forceNCOFrequency = true;
}
if (settings.m_useReverseAPI)
{
bool fullUpdate = ((m_settings.m_useReverseAPI != settings.m_useReverseAPI) && settings.m_useReverseAPI) ||
(m_settings.m_reverseAPIAddress != settings.m_reverseAPIAddress) ||
(m_settings.m_reverseAPIPort != settings.m_reverseAPIPort) ||
(m_settings.m_reverseAPIDeviceIndex != settings.m_reverseAPIDeviceIndex);
webapiReverseSendSettings(reverseAPIKeys, settings, fullUpdate || force);
}
m_settings = settings;
if (doChangeSampleRate && (m_settings.m_devSampleRate != 0))
{
// XTRXInputThread *rxThread = findThread();
// if (rxThread && rxThread->isRunning())
// {
// rxThread->stopWork();
// rxThreadWasRunning = true;
// }
// suspendTxThread();
double master = (m_settings.m_log2HardDecim == 0) ? 0 : (m_settings.m_devSampleRate * 4 * (1 << m_settings.m_log2HardDecim));
int res = m_deviceShared.m_dev->setSamplerate(
m_settings.m_devSampleRate,
master,
false
);
doChangeFreq = true;
forceNCOFrequency = true;
forwardChangeAllDSP = true;
m_settings.m_devSampleRate = m_deviceShared.m_dev->getActualInputRate();
m_settings.m_log2HardDecim = getLog2HardDecim();
qDebug("XTRXInput::applySettings: sample rate set %s to %f with hard decimation of %d",
(res < 0) ? "changed" : "unchanged",
m_settings.m_devSampleRate,
m_settings.m_log2HardDecim);
// resumeTxThread();
// if (rxThreadWasRunning) {
// rxThread->startWork();
// }
}
if (doLPCalibration)
{
if (xtrx_tune_rx_bandwidth(m_deviceShared.m_dev->getDevice(),
m_deviceShared.m_channel == 0 ? XTRX_CH_A : XTRX_CH_B,
m_settings.m_lpfBW,
0) < 0) {
qCritical("XTRXInput::applySettings: could not set LPF to %f Hz", m_settings.m_lpfBW);
} else {
qDebug("XTRXInput::applySettings: LPF set to %f Hz", m_settings.m_lpfBW);
}
}
if (doGainAuto)
{
apply_gain_auto(m_settings.m_gain);
}
if (doGainLna)
{
apply_gain_lna(m_settings.m_lnaGain);
}
if (doGainTia)
{
apply_gain_tia(tia_to_db(m_settings.m_tiaGain));
}
if (doGainPga)
{
apply_gain_pga(m_settings.m_pgaGain);
}
if (doChangeFreq)
{
forwardChangeRxDSP = true;
if (m_deviceShared.m_dev->getDevice())
{
if (xtrx_tune(m_deviceShared.m_dev->getDevice(),
XTRX_TUNE_RX_FDD,
m_settings.m_centerFrequency,
0) < 0) {
qCritical("XTRXInput::applySettings: could not set frequency to %lu", m_settings.m_centerFrequency);
} else {
//doCalibration = true;
qDebug("XTRXInput::applySettings: frequency set to %lu", m_settings.m_centerFrequency);
}
}
}
if (forceNCOFrequency)
{
if (m_deviceShared.m_dev->getDevice())
{
if (xtrx_tune_ex(m_deviceShared.m_dev->getDevice(),
XTRX_TUNE_BB_RX,
m_deviceShared.m_channel == 0 ? XTRX_CH_A : XTRX_CH_B,
(m_settings.m_ncoEnable) ? m_settings.m_ncoFrequency : 0,
NULL) < 0)
{
qCritical("XTRXInput::applySettings: could not %s and set NCO to %d Hz",
m_settings.m_ncoEnable ? "enable" : "disable",
m_settings.m_ncoFrequency);
}
else
{
forwardChangeOwnDSP = true;
qDebug("XTRXInput::applySettings: %sd and set NCO to %d Hz",
m_settings.m_ncoEnable ? "enable" : "disable",
m_settings.m_ncoFrequency);
}
}
}
// forward changes to buddies or oneself
if (forwardChangeAllDSP)
{
qDebug("XTRXInput::applySettings: forward change to all buddies");
int ncoShift = m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0;
// send to self first
DSPSignalNotification *notif = new DSPSignalNotification(getSampleRate(), m_settings.m_centerFrequency + ncoShift);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif);
if (getMessageQueueToGUI())
{
MsgReportClockGenChange *report = MsgReportClockGenChange::create();
getMessageQueueToGUI()->push(report);
}
// send to source buddies
const std::vector<DeviceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceAPI*>::const_iterator itSource = sourceBuddies.begin();
for (; itSource != sourceBuddies.end(); ++itSource)
{
DeviceXTRXShared::MsgReportBuddyChange *report = DeviceXTRXShared::MsgReportBuddyChange::create(
getDevSampleRate(), getLog2HardDecim(), m_settings.m_centerFrequency, true);
(*itSource)->getSamplingDeviceInputMessageQueue()->push(report);
}
// send to sink buddies
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator itSink = sinkBuddies.begin();
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceXTRXShared::MsgReportBuddyChange *report = DeviceXTRXShared::MsgReportBuddyChange::create(
getDevSampleRate(), getLog2HardDecim(), m_settings.m_centerFrequency, true);
(*itSink)->getSamplingDeviceInputMessageQueue()->push(report);
}
}
else if (forwardChangeRxDSP)
{
qDebug("XTRXInput::applySettings: forward change to Rx buddies");
int ncoShift = m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0;
// send to self first
DSPSignalNotification *notif = new DSPSignalNotification(getSampleRate(), m_settings.m_centerFrequency + ncoShift);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif);
if (getMessageQueueToGUI())
{
MsgReportClockGenChange *report = MsgReportClockGenChange::create();
getMessageQueueToGUI()->push(report);
}
// send to source buddies
const std::vector<DeviceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceAPI*>::const_iterator itSource = sourceBuddies.begin();
for (; itSource != sourceBuddies.end(); ++itSource)
{
DeviceXTRXShared::MsgReportBuddyChange *report = DeviceXTRXShared::MsgReportBuddyChange::create(
getDevSampleRate(), getLog2HardDecim(), m_settings.m_centerFrequency, true);
(*itSource)->getSamplingDeviceInputMessageQueue()->push(report);
}
}
else if (forwardChangeOwnDSP)
{
qDebug("XTRXInput::applySettings: forward change to self only");
int ncoShift = m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0;
DSPSignalNotification *notif = new DSPSignalNotification(getSampleRate(), m_settings.m_centerFrequency + ncoShift);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif);
if (getMessageQueueToGUI())
{
MsgReportClockGenChange *report = MsgReportClockGenChange::create();
getMessageQueueToGUI()->push(report);
}
}
if (forwardClockSource)
{
// send to source buddies
const std::vector<DeviceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceAPI*>::const_iterator itSource = sourceBuddies.begin();
for (; itSource != sourceBuddies.end(); ++itSource)
{
DeviceXTRXShared::MsgReportClockSourceChange *report = DeviceXTRXShared::MsgReportClockSourceChange::create(
m_settings.m_extClock, m_settings.m_extClockFreq);
(*itSource)->getSamplingDeviceInputMessageQueue()->push(report);
}
// send to sink buddies
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator itSink = sinkBuddies.begin();
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceXTRXShared::MsgReportClockSourceChange *report = DeviceXTRXShared::MsgReportClockSourceChange::create(
m_settings.m_extClock, m_settings.m_extClockFreq);
(*itSink)->getSamplingDeviceInputMessageQueue()->push(report);
}
}
return true;
}
int XTRXInput::webapiSettingsGet(
SWGSDRangel::SWGDeviceSettings& response,
QString& errorMessage)
{
(void) errorMessage;
response.setXtrxInputSettings(new SWGSDRangel::SWGXtrxInputSettings());
response.getXtrxInputSettings()->init();
webapiFormatDeviceSettings(response, m_settings);
return 200;
}
int XTRXInput::webapiSettingsPutPatch(
bool force,
const QStringList& deviceSettingsKeys,
SWGSDRangel::SWGDeviceSettings& response, // query + response
QString& errorMessage)
{
(void) errorMessage;
XTRXInputSettings settings = m_settings;
webapiUpdateDeviceSettings(settings, deviceSettingsKeys, response);
MsgConfigureXTRX *msg = MsgConfigureXTRX::create(settings, force);
m_inputMessageQueue.push(msg);
if (m_guiMessageQueue) // forward to GUI if any
{
MsgConfigureXTRX *msgToGUI = MsgConfigureXTRX::create(settings, force);
m_guiMessageQueue->push(msgToGUI);
}
webapiFormatDeviceSettings(response, settings);
return 200;
}
void XTRXInput::webapiUpdateDeviceSettings(
XTRXInputSettings& settings,
const QStringList& deviceSettingsKeys,
SWGSDRangel::SWGDeviceSettings& response)
{
if (deviceSettingsKeys.contains("centerFrequency")) {
settings.m_centerFrequency = response.getXtrxInputSettings()->getCenterFrequency();
}
if (deviceSettingsKeys.contains("devSampleRate")) {
settings.m_devSampleRate = response.getXtrxInputSettings()->getDevSampleRate();
}
if (deviceSettingsKeys.contains("log2HardDecim")) {
settings.m_log2HardDecim = response.getXtrxInputSettings()->getLog2HardDecim();
}
if (deviceSettingsKeys.contains("dcBlock")) {
settings.m_dcBlock = response.getXtrxInputSettings()->getDcBlock() != 0;
}
if (deviceSettingsKeys.contains("iqCorrection")) {
settings.m_iqCorrection = response.getXtrxInputSettings()->getIqCorrection() != 0;
}
if (deviceSettingsKeys.contains("log2SoftDecim")) {
settings.m_log2SoftDecim = response.getXtrxInputSettings()->getLog2SoftDecim();
}
if (deviceSettingsKeys.contains("iqOrder")) {
settings.m_iqOrder = response.getXtrxInputSettings()->getIqOrder() != 0;
}
if (deviceSettingsKeys.contains("lpfBW")) {
settings.m_lpfBW = response.getXtrxInputSettings()->getLpfBw();
}
if (deviceSettingsKeys.contains("gain")) {
settings.m_gain = response.getXtrxInputSettings()->getGain();
}
if (deviceSettingsKeys.contains("ncoEnable")) {
settings.m_ncoEnable = response.getXtrxInputSettings()->getNcoEnable() != 0;
}
if (deviceSettingsKeys.contains("ncoFrequency")) {
settings.m_ncoFrequency = response.getXtrxInputSettings()->getNcoFrequency();
}
if (deviceSettingsKeys.contains("antennaPath")) {
settings.m_antennaPath = (xtrx_antenna_t) response.getXtrxInputSettings()->getAntennaPath();
}
if (deviceSettingsKeys.contains("gainMode")) {
settings.m_gainMode = (XTRXInputSettings::GainMode) response.getXtrxInputSettings()->getGainMode();
}
if (deviceSettingsKeys.contains("lnaGain")) {
settings.m_lnaGain = response.getXtrxInputSettings()->getLnaGain();
}
if (deviceSettingsKeys.contains("tiaGain")) {
settings.m_tiaGain = response.getXtrxInputSettings()->getTiaGain();
}
if (deviceSettingsKeys.contains("pgaGain")) {
settings.m_pgaGain = response.getXtrxInputSettings()->getPgaGain();
}
if (deviceSettingsKeys.contains("extClock")) {
settings.m_extClock = response.getXtrxInputSettings()->getExtClock() != 0;
}
if (deviceSettingsKeys.contains("extClockFreq")) {
settings.m_extClockFreq = response.getXtrxInputSettings()->getExtClockFreq();
}
if (deviceSettingsKeys.contains("pwrmode")) {
settings.m_pwrmode = response.getXtrxInputSettings()->getPwrmode();
}
if (deviceSettingsKeys.contains("useReverseAPI")) {
settings.m_useReverseAPI = response.getXtrxInputSettings()->getUseReverseApi() != 0;
}
if (deviceSettingsKeys.contains("reverseAPIAddress")) {
settings.m_reverseAPIAddress = *response.getXtrxInputSettings()->getReverseApiAddress();
}
if (deviceSettingsKeys.contains("reverseAPIPort")) {
settings.m_reverseAPIPort = response.getXtrxInputSettings()->getReverseApiPort();
}
if (deviceSettingsKeys.contains("reverseAPIDeviceIndex")) {
settings.m_reverseAPIDeviceIndex = response.getXtrxInputSettings()->getReverseApiDeviceIndex();
}
}
void XTRXInput::webapiFormatDeviceSettings(SWGSDRangel::SWGDeviceSettings& response, const XTRXInputSettings& settings)
{
response.getXtrxInputSettings()->setCenterFrequency(settings.m_centerFrequency);
response.getXtrxInputSettings()->setDevSampleRate(settings.m_devSampleRate);
response.getXtrxInputSettings()->setLog2HardDecim(settings.m_log2HardDecim);
response.getXtrxInputSettings()->setDcBlock(settings.m_dcBlock ? 1 : 0);
response.getXtrxInputSettings()->setIqCorrection(settings.m_iqCorrection ? 1 : 0);
response.getXtrxInputSettings()->setLog2SoftDecim(settings.m_log2SoftDecim);
response.getXtrxInputSettings()->setIqOrder(settings.m_iqOrder ? 1 : 0);
response.getXtrxInputSettings()->setLpfBw(settings.m_lpfBW);
response.getXtrxInputSettings()->setGain(settings.m_gain);
response.getXtrxInputSettings()->setNcoEnable(settings.m_ncoEnable ? 1 : 0);
response.getXtrxInputSettings()->setNcoFrequency(settings.m_ncoFrequency);
response.getXtrxInputSettings()->setAntennaPath((int) settings.m_antennaPath);
response.getXtrxInputSettings()->setGainMode((int) settings.m_gainMode);
response.getXtrxInputSettings()->setLnaGain(settings.m_lnaGain);
response.getXtrxInputSettings()->setTiaGain(settings.m_tiaGain);
response.getXtrxInputSettings()->setPgaGain(settings.m_pgaGain);
response.getXtrxInputSettings()->setExtClock(settings.m_extClock ? 1 : 0);
response.getXtrxInputSettings()->setExtClockFreq(settings.m_extClockFreq);
response.getXtrxInputSettings()->setPwrmode(settings.m_pwrmode);
response.getXtrxInputSettings()->setUseReverseApi(settings.m_useReverseAPI ? 1 : 0);
if (response.getXtrxInputSettings()->getReverseApiAddress()) {
*response.getXtrxInputSettings()->getReverseApiAddress() = settings.m_reverseAPIAddress;
} else {
response.getXtrxInputSettings()->setReverseApiAddress(new QString(settings.m_reverseAPIAddress));
}
response.getXtrxInputSettings()->setReverseApiPort(settings.m_reverseAPIPort);
response.getXtrxInputSettings()->setReverseApiDeviceIndex(settings.m_reverseAPIDeviceIndex);
}
int XTRXInput::webapiReportGet(
SWGSDRangel::SWGDeviceReport& response,
QString& errorMessage)
{
(void) errorMessage;
response.setXtrxInputReport(new SWGSDRangel::SWGXtrxInputReport());
response.getXtrxInputReport()->init();
webapiFormatDeviceReport(response);
return 200;
}
int XTRXInput::webapiRunGet(
SWGSDRangel::SWGDeviceState& response,
QString& errorMessage)
{
(void) errorMessage;
m_deviceAPI->getDeviceEngineStateStr(*response.getState());
return 200;
}
int XTRXInput::webapiRun(
bool run,
SWGSDRangel::SWGDeviceState& response,
QString& errorMessage)
{
(void) errorMessage;
m_deviceAPI->getDeviceEngineStateStr(*response.getState());
MsgStartStop *message = MsgStartStop::create(run);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue) // forward to GUI if any
{
MsgStartStop *msgToGUI = MsgStartStop::create(run);
m_guiMessageQueue->push(msgToGUI);
}
return 200;
}
void XTRXInput::webapiFormatDeviceReport(SWGSDRangel::SWGDeviceReport& response)
{
int ret;
bool success = false;
double temp = 0.0;
bool gpsStatus = false;
uint64_t fifolevel = 0;
uint32_t fifosize = 1<<16;
if (m_deviceShared.m_dev && m_deviceShared.m_dev->getDevice())
{
ret = xtrx_val_get(m_deviceShared.m_dev->getDevice(),
XTRX_RX, XTRX_CH_AB, XTRX_PERF_LLFIFO, &fifolevel);
success = (ret >= 0);
temp = m_deviceShared.get_board_temperature() / 256.0;
gpsStatus = m_deviceShared.get_gps_status();
}
response.getXtrxInputReport()->setSuccess(success ? 1 : 0);
response.getXtrxInputReport()->setFifoSize(fifosize);
response.getXtrxInputReport()->setFifoFill(fifolevel);
response.getXtrxInputReport()->setTemperature(temp);
response.getXtrxInputReport()->setGpsLock(gpsStatus ? 1 : 0);
}
void XTRXInput::webapiReverseSendSettings(QList<QString>& deviceSettingsKeys, const XTRXInputSettings& settings, bool force)
{
SWGSDRangel::SWGDeviceSettings *swgDeviceSettings = new SWGSDRangel::SWGDeviceSettings();
swgDeviceSettings->setDirection(0); // single Rx
swgDeviceSettings->setOriginatorIndex(m_deviceAPI->getDeviceSetIndex());
swgDeviceSettings->setDeviceHwType(new QString("XTRX"));
swgDeviceSettings->setXtrxInputSettings(new SWGSDRangel::SWGXtrxInputSettings());
SWGSDRangel::SWGXtrxInputSettings *swgXtrxInputSettings = swgDeviceSettings->getXtrxInputSettings();
// transfer data that has been modified. When force is on transfer all data except reverse API data
if (deviceSettingsKeys.contains("centerFrequency") || force) {
swgXtrxInputSettings->setCenterFrequency(settings.m_centerFrequency);
}
if (deviceSettingsKeys.contains("devSampleRate") || force) {
swgXtrxInputSettings->setDevSampleRate(settings.m_devSampleRate);
}
if (deviceSettingsKeys.contains("log2HardDecim") || force) {
swgXtrxInputSettings->setLog2HardDecim(settings.m_log2HardDecim);
}
if (deviceSettingsKeys.contains("dcBlock") || force) {
swgXtrxInputSettings->setDcBlock(settings.m_dcBlock ? 1 : 0);
}
if (deviceSettingsKeys.contains("iqCorrection") || force) {
swgXtrxInputSettings->setIqCorrection(settings.m_iqCorrection ? 1 : 0);
}
if (deviceSettingsKeys.contains("log2SoftDecim") || force) {
swgXtrxInputSettings->setLog2SoftDecim(settings.m_log2SoftDecim);
}
if (deviceSettingsKeys.contains("iqOrder") || force) {
swgXtrxInputSettings->setIqOrder(settings.m_iqOrder ? 1 : 0);
}
if (deviceSettingsKeys.contains("ncoEnable") || force) {
swgXtrxInputSettings->setNcoEnable(settings.m_ncoEnable ? 1 : 0);
}
if (deviceSettingsKeys.contains("ncoFrequency") || force) {
swgXtrxInputSettings->setNcoFrequency(settings.m_ncoFrequency);
}
if (deviceSettingsKeys.contains("lpfBW") || force) {
swgXtrxInputSettings->setLpfBw(settings.m_lpfBW);
}
if (deviceSettingsKeys.contains("antennaPath") || force) {
swgXtrxInputSettings->setAntennaPath((int) settings.m_antennaPath);
}
if (deviceSettingsKeys.contains("gainMode") || force) {
swgXtrxInputSettings->setGainMode((int) settings.m_gainMode);
}
if (deviceSettingsKeys.contains("gain") || force) {
swgXtrxInputSettings->setGain(settings.m_gain);
}
if (deviceSettingsKeys.contains("lnaGain") || force) {
swgXtrxInputSettings->setLnaGain(settings.m_lnaGain);
}
if (deviceSettingsKeys.contains("tiaGain") || force) {
swgXtrxInputSettings->setTiaGain(settings.m_tiaGain);
}
if (deviceSettingsKeys.contains("pgaGain") || force) {
swgXtrxInputSettings->setPgaGain(settings.m_pgaGain);
}
if (deviceSettingsKeys.contains("extClock") || force) {
swgXtrxInputSettings->setExtClock(settings.m_extClock ? 1 : 0);
}
if (deviceSettingsKeys.contains("extClockFreq") || force) {
swgXtrxInputSettings->setExtClockFreq(settings.m_extClockFreq);
}
if (deviceSettingsKeys.contains("pwrmode") || force) {
swgXtrxInputSettings->setPwrmode(settings.m_pwrmode);
}
QString deviceSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/device/settings")
.arg(settings.m_reverseAPIAddress)
.arg(settings.m_reverseAPIPort)
.arg(settings.m_reverseAPIDeviceIndex);
m_networkRequest.setUrl(QUrl(deviceSettingsURL));
m_networkRequest.setHeader(QNetworkRequest::ContentTypeHeader, "application/json");
QBuffer *buffer = new QBuffer();
buffer->open((QBuffer::ReadWrite));
buffer->write(swgDeviceSettings->asJson().toUtf8());
buffer->seek(0);
// Always use PATCH to avoid passing reverse API settings
QNetworkReply *reply = m_networkManager->sendCustomRequest(m_networkRequest, "PATCH", buffer);
buffer->setParent(reply);
delete swgDeviceSettings;
}
void XTRXInput::webapiReverseSendStartStop(bool start)
{
SWGSDRangel::SWGDeviceSettings *swgDeviceSettings = new SWGSDRangel::SWGDeviceSettings();
swgDeviceSettings->setDirection(0); // single Rx
swgDeviceSettings->setOriginatorIndex(m_deviceAPI->getDeviceSetIndex());
swgDeviceSettings->setDeviceHwType(new QString("XTRX"));
QString deviceSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/device/run")
.arg(m_settings.m_reverseAPIAddress)
.arg(m_settings.m_reverseAPIPort)
.arg(m_settings.m_reverseAPIDeviceIndex);
m_networkRequest.setUrl(QUrl(deviceSettingsURL));
m_networkRequest.setHeader(QNetworkRequest::ContentTypeHeader, "application/json");
QBuffer *buffer = new QBuffer();
buffer->open((QBuffer::ReadWrite));
buffer->write(swgDeviceSettings->asJson().toUtf8());
buffer->seek(0);
QNetworkReply *reply;
if (start) {
reply = m_networkManager->sendCustomRequest(m_networkRequest, "POST", buffer);
} else {
reply = m_networkManager->sendCustomRequest(m_networkRequest, "DELETE", buffer);
}
buffer->setParent(reply);
delete swgDeviceSettings;
}
void XTRXInput::networkManagerFinished(QNetworkReply *reply)
{
QNetworkReply::NetworkError replyError = reply->error();
if (replyError)
{
qWarning() << "XTRXInput::networkManagerFinished:"
<< " error(" << (int) replyError
<< "): " << replyError
<< ": " << reply->errorString();
}
else
{
QString answer = reply->readAll();
answer.chop(1); // remove last \n
qDebug("XTRXInput::networkManagerFinished: reply:\n%s", answer.toStdString().c_str());
}
reply->deleteLater();
}