1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-05 16:31:15 -05:00
sdrangel/sdrbase/dsp/fftfilt.h

154 lines
5.6 KiB
C++

///////////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany //
// written by Christian Daniel //
// Copyright (C) 2014-2015 John Greb <hexameron@spam.no> //
// Copyright (C) 2015-2018, 2022-2023 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// Copyright (C) 2020 Kacper Michajłow <kasper93@gmail.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////////
/*
* Filters from Fldigi.
*/
#ifndef _FFTFILT_H
#define _FFTFILT_H
#include <complex>
#include <cmath>
#include "gfft.h"
#include "fftwindow.h"
#include "fftnr.h"
#include "export.h"
//----------------------------------------------------------------------
class SDRBASE_API fftfilt {
enum {NONE, BLACKMAN, HAMMING, HANNING};
public:
typedef std::complex<float> cmplx;
fftfilt(int len);
fftfilt(float f1, float f2, int len);
fftfilt(float f2, int len);
~fftfilt();
// f1 < f2 ==> bandpass
// f1 > f2 ==> band reject
void create_filter(float f1, float f2, FFTWindow::Function wf = FFTWindow::Blackman);
void create_filter(const std::vector<std::pair<float, float>>& limits, bool pass = true, FFTWindow::Function wf = FFTWindow::Blackman);
void create_filter(const std::vector<std::pair<float, float>>& limits, bool pass = true); //!< Windowless version
void create_dsb_filter(float f2, FFTWindow::Function wf = FFTWindow::Blackman);
void create_asym_filter(float fopp, float fin, FFTWindow::Function wf = FFTWindow::Blackman); //!< two different filters for in band and opposite band
void create_rrc_filter(float fb, float a); //!< root raised cosine. fb is half the band pass
int noFilt(const cmplx& in, cmplx **out);
int runFilt(const cmplx& in, cmplx **out);
int runSSB(const cmplx& in, cmplx **out, bool usb, bool getDC = true);
int runDSB(const cmplx& in, cmplx **out, bool getDC = true);
int runAsym(const cmplx & in, cmplx **out, bool usb); //!< Asymmetrical fitering can be used for vestigial sideband
void setDNR(bool dnr) { m_dnr = dnr; }
void setDNRScheme(FFTNoiseReduction::Scheme scheme) { m_dnrScheme = scheme; }
void setDNRAboveAvgFactor(float aboveAvgFactor) { m_dnrAboveAvgFactor = aboveAvgFactor; }
void setDNRSigmaFactor(float sigmaFactor) { m_dnrSigmaFactor = sigmaFactor; }
void setDNRNbPeaks(int nbPeaks) { m_dnrNbPeaks = nbPeaks; }
void setDNRAlpha(float alpha) { m_noiseReduction.setAlpha(alpha); }
protected:
// helper class for FFT based noise reduction
int flen;
int flen2;
g_fft<float> *fft;
cmplx *filter;
cmplx *filterOpp;
cmplx *data;
cmplx *ovlbuf;
cmplx *output;
int inptr;
int pass;
int window;
bool m_dnr;
FFTNoiseReduction::Scheme m_dnrScheme;
float m_dnrAboveAvgFactor; //!< above average factor
float m_dnrSigmaFactor; //!< sigma multiplicator for average + std deviation
int m_dnrNbPeaks; //!< number of peaks (peaks scheme)
FFTNoiseReduction m_noiseReduction;
inline float fsinc(float fc, int i, int len)
{
int len2 = len/2;
return (i == len2) ? 2.0 * fc:
sin(2 * M_PI * fc * (i - len2)) / (M_PI * (i - len2));
}
inline float _blackman(int i, int len)
{
return (0.42 -
0.50 * cos(2.0 * M_PI * i / len) +
0.08 * cos(4.0 * M_PI * i / len));
}
/** RRC function in the frequency domain. Zero frequency is on the sides with first half in positive frequencies
* and second half in negative frequencies */
inline cmplx frrc(float fb, float a, int i, int len)
{
float x = i/(float)len; // normalize to [0..1]
x = 0.5-fabs(x-0.5); // apply symmetry: now both halves overlap near 0
float tr = fb*a; // half the transition zone
if (x < fb-tr)
{
return 1.0; // in band
}
else if (x < fb+tr) // transition
{
float y = ((x-(fb-tr)) / (2.0*tr))*M_PI;
return (cos(y) + 1.0f)/2.0f;
}
else
{
return 0.0; // out of band
}
}
void init_filter();
void init_dsb_filter();
};
/* Sliding FFT filter from Fldigi */
class SDRBASE_API sfft {
#define K1 0.99999
public:
typedef std::complex<float> cmplx;
sfft(int len);
~sfft();
void run(const cmplx& input);
void fetch(float *result);
private:
int fftlen;
int first;
int last;
int ptr;
struct vrot_bins_pair;
vrot_bins_pair *vrot_bins;
cmplx *delay;
float k2;
};
#endif