1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-12-23 10:05:46 -05:00
sdrangel/sdrbase/dsp/fftfilt.cpp

691 lines
18 KiB
C++

///////////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany //
// written by Christian Daniel //
// Copyright (C) 2014-2015 John Greb <hexameron@spam.no> //
// Copyright (C) 2015, 2017-2018, 2020, 2022-2023 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// Copyright (C) 2020 Kacper Michajłow <kasper93@gmail.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////////
// ----------------------------------------------------------------------------
// fftfilt.cxx -- Fast convolution Overlap-Add filter
//
// Filter implemented using overlap-add FFT convolution method
// h(t) characterized by Windowed-Sinc impulse response
//
// Reference:
// "The Scientist and Engineer's Guide to Digital Signal Processing"
// by Dr. Steven W. Smith, http://www.dspguide.com
// Chapters 16, 18 and 21
//
// Copyright (C) 2006-2008 Dave Freese, W1HKJ
//
// This file is part of fldigi.
//
// Fldigi is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Fldigi is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with fldigi. If not, see <http://www.gnu.org/licenses/>.
//
// Augmented with more filter types
// Copyright (C) 2015-2022 Edouard Griffiths, F4EXB
// ----------------------------------------------------------------------------
#include <memory.h>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <cstdlib>
#include <cmath>
#include <typeinfo>
#include <array>
#include <stdio.h>
#include <sys/types.h>
#include <dsp/misc.h>
#include <dsp/fftfilt.h>
//------------------------------------------------------------------------------
// initialize the filter
// create forward and reverse FFTs
//------------------------------------------------------------------------------
// Only need a single instance of g_fft, used for both forward and reverse
void fftfilt::init_filter()
{
flen2 = flen >> 1;
fft = new g_fft<float>(flen);
filter = new cmplx[flen];
filterOpp = new cmplx[flen];
data = new cmplx[flen];
output = new cmplx[flen2];
ovlbuf = new cmplx[flen2];
std::fill(filter, filter + flen, cmplx{0, 0});
std::fill(filterOpp, filterOpp + flen, cmplx{0, 0});
std::fill(data, data + flen , cmplx{0, 0});
std::fill(output, output + flen2, cmplx{0, 0});
std::fill(ovlbuf, ovlbuf + flen2, cmplx{0, 0});
inptr = 0;
}
//------------------------------------------------------------------------------
// fft filter
// f1 < f2 ==> band pass filter
// f1 > f2 ==> band reject filter
// f1 == 0 ==> low pass filter
// f2 == 0 ==> high pass filter
//------------------------------------------------------------------------------
fftfilt::fftfilt(int len) :
m_noiseReduction(len)
{
flen = len;
pass = 0;
window = 0;
m_dnr = false;
init_filter();
}
fftfilt::fftfilt(float f1, float f2, int len) :
m_noiseReduction(len)
{
flen = len;
pass = 0;
window = 0;
m_dnr = false;
init_filter();
create_filter(f1, f2);
}
fftfilt::fftfilt(float f2, int len) :
m_noiseReduction(len)
{
flen = len;
pass = 0;
window = 0;
m_dnr = false;
init_filter();
create_dsb_filter(f2);
}
fftfilt::~fftfilt()
{
if (fft) delete fft;
if (filter) delete [] filter;
if (filterOpp) delete [] filterOpp;
if (data) delete [] data;
if (output) delete [] output;
if (ovlbuf) delete [] ovlbuf;
}
void fftfilt::create_filter(float f1, float f2, FFTWindow::Function wf)
{
// initialize the filter to zero
std::fill(filter, filter + flen, cmplx{0, 0});
// create the filter shape coefficients by fft
bool b_lowpass, b_highpass;
b_lowpass = (f2 != 0);
b_highpass = (f1 != 0);
for (int i = 0; i < flen2; i++) {
filter[i] = 0;
// lowpass @ f2
if (b_lowpass)
filter[i] += fsinc(f2, i, flen2);
// highighpass @ f1
if (b_highpass)
filter[i] -= fsinc(f1, i, flen2);
}
// highpass is delta[flen2/2] - h(t)
if (b_highpass && f2 < f1)
filter[flen2 / 2] += 1;
FFTWindow fwin;
fwin.create(wf, flen2);
fwin.apply(filter);
// for (int i = 0; i < flen2; i++)
// filter[i] *= _blackman(i, flen2);
fft->ComplexFFT(filter); // filter was expressed in the time domain (impulse response)
// normalize the output filter for unity gain
float scale = 0, mag;
for (int i = 0; i < flen2; i++) {
mag = abs(filter[i]);
if (mag > scale) scale = mag;
}
if (scale != 0) {
for (int i = 0; i < flen; i++)
filter[i] /= scale;
}
}
void fftfilt::create_filter(const std::vector<std::pair<float, float>>& limits, bool pass, FFTWindow::Function wf)
{
std::vector<int> canvasNeg(flen2, pass ? 0 : 1); // initialize the negative frequencies filter canvas
std::vector<int> canvasPos(flen2, pass ? 0 : 1); // initialize the positive frequencies filter canvas
std::fill(filter, filter + flen, cmplx{0, 0}); // initialize the positive filter to zero
std::fill(filterOpp, filterOpp + flen, cmplx{0, 0}); // initialize the negative filter to zero
for (const auto& fs : limits)
{
const float& f1 = fs.first + 0.5;
const float& w = fs.second > 0.0 ? fs.second : 0.0;
const float& f2 = f1 + w;
for (int i = 0; i < flen; i++)
{
if (pass) // pass
{
if ((i >= f1*flen) && (i <= f2*flen))
{
if (i < flen2) {
canvasNeg[flen2-1-i] = 1;
} else {
canvasPos[i-flen2] = 1;
}
}
}
else // reject
{
if ((i >= f1*flen) && (i <= f2*flen))
{
if (i < flen2) {
canvasNeg[flen2-1-i] = 0;
} else {
canvasPos[i-flen2] = 0;
}
}
}
}
}
std::vector<std::pair<int,int>> indexesNegList;
std::vector<std::pair<int,int>> indexesPosList;
int cn = 0;
int cp = 0;
int defaultSecond = pass ? 0 : flen2 - 1;
for (int i = 0; i < flen2; i++)
{
if ((canvasNeg[i] == 1) && (cn == 0)) {
indexesNegList.push_back(std::pair<int,int>{i, defaultSecond});
}
if ((canvasNeg[i] == 0) && (cn == 1)) {
indexesNegList.back().second = i;
}
if ((canvasPos[i] == 1) && (cp == 0)) {
indexesPosList.push_back(std::pair<int,int>{i, defaultSecond});
}
if ((canvasPos[i] == 0) && (cp == 1)) {
indexesPosList.back().second = i;
}
cn = canvasNeg[i];
cp = canvasPos[i];
}
for (const auto& indexes : indexesPosList)
{
const float f1 = indexes.first / (float) flen;
const float f2 = indexes.second / (float) flen;
for (int i = 0; i < flen2; i++)
{
if (f2 != 0) {
filter[i] += fsinc(f2, i, flen2);
}
if (f1 != 0) {
filter[i] -= fsinc(f1, i, flen2);
}
}
if (f2 == 0 && f1 != 0) {
filter[flen2 / 2] += 1;
}
}
for (const auto& indexes : indexesNegList)
{
const float f1 = indexes.first / (float) flen;
const float f2 = indexes.second / (float) flen;
for (int i = 0; i < flen2; i++)
{
if (f2 != 0) {
filterOpp[i] += fsinc(f2, i, flen2);
}
if (f1 != 0) {
filterOpp[i] -= fsinc(f1, i, flen2);
}
}
if (f2 == 0 && f1 != 0) {
filterOpp[flen2 / 2] += 1;
}
}
FFTWindow fwin;
fwin.create(wf, flen2);
fwin.apply(filter);
fwin.apply(filterOpp);
fft->ComplexFFT(filter); // filter was expressed in the time domain (impulse response)
fft->ComplexFFT(filterOpp); // filter was expressed in the time domain (impulse response)
float scalen = 0, scalep = 0, magn, magp; // normalize the output filter for unity gain
for (int i = 0; i < flen2; i++)
{
magp = abs(filter[i]);
if (magp > scalep) {
scalep = magp;
}
magn = abs(filterOpp[i]);
if (magn > scalen) {
scalen = magn;
}
}
if (scalep != 0)
{
std::for_each(
filter,
filter + flen,
[scalep](fftfilt::cmplx& s) { s /= scalep; }
);
}
if (scalen != 0)
{
std::for_each(
filterOpp,
filterOpp + flen,
[scalen](fftfilt::cmplx& s) { s /= scalen; }
);
}
}
// Double the size of FFT used for equivalent SSB filter or assume FFT is half the size of the one used for SSB
void fftfilt::create_dsb_filter(float f2, FFTWindow::Function wf)
{
// initialize the filter to zero
std::fill(filter, filter + flen, cmplx{0, 0});
for (int i = 0; i < flen2; i++) {
filter[i] = fsinc(f2, i, flen2);
// filter[i] *= _blackman(i, flen2);
}
FFTWindow fwin;
fwin.create(wf, flen2);
fwin.apply(filter);
fft->ComplexFFT(filter); // filter was expressed in the time domain (impulse response)
// normalize the output filter for unity gain
float scale = 0, mag;
for (int i = 0; i < flen2; i++) {
mag = abs(filter[i]);
if (mag > scale) scale = mag;
}
if (scale != 0) {
for (int i = 0; i < flen; i++)
filter[i] /= scale;
}
}
// Double the size of FFT used for equivalent SSB filter or assume FFT is half the size of the one used for SSB
// used with runAsym for in band / opposite band asymmetrical filtering. Can be used for vestigial sideband modulation.
void fftfilt::create_asym_filter(float fopp, float fin, FFTWindow::Function wf)
{
// in band
// initialize the filter to zero
std::fill(filter, filter + flen, cmplx{0, 0});
for (int i = 0; i < flen2; i++) {
filter[i] = fsinc(fin, i, flen2);
// filter[i] *= _blackman(i, flen2);
}
FFTWindow fwin;
fwin.create(wf, flen2);
fwin.apply(filter);
fft->ComplexFFT(filter); // filter was expressed in the time domain (impulse response)
// normalize the output filter for unity gain
float scale = 0, mag;
for (int i = 0; i < flen2; i++) {
mag = abs(filter[i]);
if (mag > scale) scale = mag;
}
if (scale != 0) {
for (int i = 0; i < flen; i++)
filter[i] /= scale;
}
// opposite band
// initialize the filter to zero
std::fill(filterOpp, filterOpp + flen, cmplx{0, 0});
for (int i = 0; i < flen2; i++) {
filterOpp[i] = fsinc(fopp, i, flen2);
// filterOpp[i] *= _blackman(i, flen2);
}
fwin.apply(filterOpp);
fft->ComplexFFT(filterOpp); // filter was expressed in the time domain (impulse response)
// normalize the output filter for unity gain
scale = 0;
for (int i = 0; i < flen2; i++) {
mag = abs(filterOpp[i]);
if (mag > scale) scale = mag;
}
if (scale != 0) {
for (int i = 0; i < flen; i++)
filterOpp[i] /= scale;
}
}
// This filter is constructed directly from frequency domain response. Run with runFilt.
void fftfilt::create_rrc_filter(float fb, float a)
{
std::fill(filter, filter+flen, 0);
for (int i = 0; i < flen; i++) {
filter[i] = frrc(fb, a, i, flen);
}
// normalize the output filter for unity gain
float scale = 0, mag;
for (int i = 0; i < flen; i++)
{
mag = abs(filter[i]);
if (mag > scale) {
scale = mag;
}
}
if (scale != 0)
{
for (int i = 0; i < flen; i++) {
filter[i] /= scale;
}
}
}
// test bypass
int fftfilt::noFilt(const cmplx & in, cmplx **out)
{
data[inptr++] = in;
if (inptr < flen2)
return 0;
inptr = 0;
*out = data;
return flen2;
}
// Filter with fast convolution (overlap-add algorithm).
int fftfilt::runFilt(const cmplx & in, cmplx **out)
{
data[inptr++] = in;
if (inptr < flen2)
return 0;
inptr = 0;
fft->ComplexFFT(data);
for (int i = 0; i < flen; i++)
data[i] *= filter[i];
fft->InverseComplexFFT(data);
for (int i = 0; i < flen2; i++) {
output[i] = ovlbuf[i] + data[i];
ovlbuf[i] = data[flen2 + i];
}
std::fill(data, data + flen , cmplx{0, 0});
*out = output;
return flen2;
}
// Second version for single sideband
int fftfilt::runSSB(const cmplx & in, cmplx **out, bool usb, bool getDC)
{
data[inptr++] = in;
if (inptr < flen2)
return 0;
inptr = 0;
fft->ComplexFFT(data);
// get or reject DC component
data[0] = getDC ? data[0]*filter[0] : 0;
m_noiseReduction.setScheme(m_dnrScheme);
m_noiseReduction.init();
// Discard frequencies for ssb
if (usb)
{
for (int i = 1; i < flen2; i++)
{
data[i] *= filter[i];
data[flen2 + i] = 0;
if (m_dnr)
{
m_noiseReduction.push(data[i], i);
m_noiseReduction.push(data[flen2 + i], flen2 + i);
}
}
}
else
{
for (int i = 1; i < flen2; i++)
{
data[i] = 0;
data[flen2 + i] *= filter[flen2 + i];
if (m_dnr)
{
m_noiseReduction.push(data[i], i);
m_noiseReduction.push(data[flen2 + i], flen2 + i);
}
}
}
if (m_dnr)
{
m_noiseReduction.m_aboveAvgFactor = m_dnrAboveAvgFactor;
m_noiseReduction.m_sigmaFactor = m_dnrSigmaFactor;
m_noiseReduction.m_nbPeaks = m_dnrNbPeaks;
m_noiseReduction.calc();
for (int i = 0; i < flen; i++)
{
if (m_noiseReduction.cut(i)) {
data[i] = 0;
}
}
}
// in-place FFT: freqdata overwritten with filtered timedata
fft->InverseComplexFFT(data);
// overlap and add
for (int i = 0; i < flen2; i++) {
output[i] = ovlbuf[i] + data[i];
ovlbuf[i] = data[i+flen2];
}
std::fill(data, data + flen , cmplx{0, 0});
*out = output;
return flen2;
}
// Version for double sideband. You have to double the FFT size used for SSB.
int fftfilt::runDSB(const cmplx & in, cmplx **out, bool getDC)
{
data[inptr++] = in;
if (inptr < flen2)
return 0;
inptr = 0;
fft->ComplexFFT(data);
for (int i = 0; i < flen2; i++) {
data[i] *= filter[i];
data[flen2 + i] *= filter[flen2 + i];
}
// get or reject DC component
data[0] = getDC ? data[0] : 0;
// in-place FFT: freqdata overwritten with filtered timedata
fft->InverseComplexFFT(data);
// overlap and add
for (int i = 0; i < flen2; i++) {
output[i] = ovlbuf[i] + data[i];
ovlbuf[i] = data[i+flen2];
}
std::fill(data, data + flen , cmplx{0, 0});
*out = output;
return flen2;
}
// Version for asymmetrical sidebands. You have to double the FFT size used for SSB.
int fftfilt::runAsym(const cmplx & in, cmplx **out, bool usb)
{
data[inptr++] = in;
if (inptr < flen2)
return 0;
inptr = 0;
fft->ComplexFFT(data);
data[0] *= filter[0]; // always keep DC
if (usb)
{
for (int i = 1; i < flen2; i++)
{
data[i] *= filter[i]; // usb
data[flen2 + i] *= filterOpp[flen2 + i]; // lsb is the opposite
}
}
else
{
for (int i = 1; i < flen2; i++)
{
data[i] *= filterOpp[i]; // usb is the opposite
data[flen2 + i] *= filter[flen2 + i]; // lsb
}
}
// in-place FFT: freqdata overwritten with filtered timedata
fft->InverseComplexFFT(data);
// overlap and add
for (int i = 0; i < flen2; i++) {
output[i] = ovlbuf[i] + data[i];
ovlbuf[i] = data[i+flen2];
}
std::fill(data, data + flen , cmplx{0, 0});
*out = output;
return flen2;
}
/* Sliding FFT from Fldigi */
struct sfft::vrot_bins_pair {
cmplx vrot;
cmplx bins;
} ;
sfft::sfft(int len)
{
vrot_bins = new vrot_bins_pair[len];
delay = new cmplx[len];
fftlen = len;
first = 0;
last = len - 1;
ptr = 0;
double phi = 0.0, tau = 2.0 * M_PI/ len;
k2 = 1.0;
for (int i = 0; i < len; i++) {
vrot_bins[i].vrot = cmplx( K1 * cos (phi), K1 * sin (phi) );
phi += tau;
delay[i] = vrot_bins[i].bins = 0.0;
k2 *= K1;
}
}
sfft::~sfft()
{
delete [] vrot_bins;
delete [] delay;
}
// Sliding FFT, cmplx input, cmplx output
// FFT is computed for each value from first to last
// Values are not stable until more than "len" samples have been processed.
void sfft::run(const cmplx& input)
{
cmplx & de = delay[ptr];
const cmplx z( input.real() - k2 * de.real(), input.imag() - k2 * de.imag());
de = input;
if (++ptr >= fftlen)
ptr = 0;
for (vrot_bins_pair *itr = vrot_bins + first, *end = vrot_bins + last; itr != end ; ++itr)
itr->bins = (itr->bins + z) * itr->vrot;
}
// Copies the frequencies to a pointer.
void sfft::fetch(float *result)
{
for (vrot_bins_pair *itr = vrot_bins, *end = vrot_bins + last; itr != end; ++itr, ++result)
*result = itr->bins.real() * itr->bins.real()
+ itr->bins.imag() * itr->bins.imag();
}