mirror of
https://github.com/f4exb/sdrangel.git
synced 2024-12-24 19:00:36 -05:00
401 lines
13 KiB
C++
401 lines
13 KiB
C++
///////////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2017 F4EXB //
|
|
// written by Edouard Griffiths //
|
|
// //
|
|
// This program is free software; you can redistribute it and/or modify //
|
|
// it under the terms of the GNU General Public License as published by //
|
|
// the Free Software Foundation as version 3 of the License, or //
|
|
// (at your option) any later version. //
|
|
// //
|
|
// This program is distributed in the hope that it will be useful, //
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
|
// GNU General Public License V3 for more details. //
|
|
// //
|
|
// You should have received a copy of the GNU General Public License //
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include <cmath>
|
|
#include "projector.h"
|
|
|
|
Projector::Projector(ProjectionType projectionType) :
|
|
m_projectionType(projectionType),
|
|
m_prevArg(0.0f),
|
|
m_cache(nullptr),
|
|
m_cacheMaster(true)
|
|
{
|
|
}
|
|
|
|
Projector::~Projector()
|
|
{
|
|
}
|
|
|
|
Real Projector::run(const Sample& s)
|
|
{
|
|
Real v;
|
|
|
|
if ((m_cache) && !m_cacheMaster) {
|
|
return m_cache[(int) m_projectionType];
|
|
}
|
|
else
|
|
{
|
|
switch (m_projectionType)
|
|
{
|
|
case ProjectionImag:
|
|
v = s.m_imag / SDR_RX_SCALEF;
|
|
break;
|
|
case ProjectionMagLin:
|
|
{
|
|
Real re = s.m_real / SDR_RX_SCALEF;
|
|
Real im = s.m_imag / SDR_RX_SCALEF;
|
|
Real magsq = re*re + im*im;
|
|
v = std::sqrt(magsq);
|
|
}
|
|
break;
|
|
case ProjectionMagSq:
|
|
{
|
|
Real re = s.m_real / SDR_RX_SCALEF;
|
|
Real im = s.m_imag / SDR_RX_SCALEF;
|
|
v = re*re + im*im;
|
|
}
|
|
break;
|
|
case ProjectionMagDB:
|
|
{
|
|
Real re = s.m_real / SDR_RX_SCALEF;
|
|
Real im = s.m_imag / SDR_RX_SCALEF;
|
|
Real magsq = re*re + im*im;
|
|
v = log10f(magsq) * 10.0f;
|
|
}
|
|
break;
|
|
case ProjectionPhase:
|
|
v = std::atan2((float) s.m_imag, (float) s.m_real) / M_PI; // normalize
|
|
break;
|
|
case ProjectionDOAP:
|
|
{
|
|
// calculate phase. Assume phase difference between two sources at half wavelength distance with sources axis as reference (positive side)
|
|
// cos(theta) = phi / 2*pi*k
|
|
Real p = std::atan2((float) s.m_imag, (float) s.m_real); // do not mormalize phi (phi in -pi..+pi)
|
|
v = acos(p/M_PI) / M_PI; // normalize theta
|
|
}
|
|
break;
|
|
case ProjectionDOAN:
|
|
{
|
|
// calculate phase. Assume phase difference between two sources at half wavelength distance with sources axis as reference (negative source)
|
|
Real p = std::atan2((float) s.m_imag, (float) s.m_real); // do not mormalize phi (phi in -pi..+pi)
|
|
v = -acos(p/M_PI) / M_PI; // normalize theta
|
|
}
|
|
break;
|
|
case ProjectionDPhase:
|
|
{
|
|
Real curArg = std::atan2((float) s.m_imag, (float) s.m_real);
|
|
Real dPhi = (curArg - m_prevArg) / M_PI;
|
|
m_prevArg = curArg;
|
|
|
|
if (dPhi < -1.0f) {
|
|
dPhi += 2.0f;
|
|
} else if (dPhi > 1.0f) {
|
|
dPhi -= 2.0f;
|
|
}
|
|
|
|
v = dPhi;
|
|
}
|
|
break;
|
|
case ProjectionBPSK:
|
|
{
|
|
Real arg = std::atan2((float) s.m_imag, (float) s.m_real);
|
|
v = normalizeAngle(2*arg) / (2.0*M_PI); // generic estimation around 0
|
|
// mapping on 2 symbols
|
|
if (arg < -M_PI/2) {
|
|
v -= 1.0/2;
|
|
} else if (arg < M_PI/2) {
|
|
v += 1.0/2;
|
|
} else if (arg < M_PI) {
|
|
v -= 1.0/2;
|
|
}
|
|
}
|
|
break;
|
|
case ProjectionQPSK:
|
|
{
|
|
Real arg = std::atan2((float) s.m_imag, (float) s.m_real);
|
|
v = normalizeAngle(4*arg) / (4.0*M_PI); // generic estimation around 0
|
|
// mapping on 4 symbols
|
|
if (arg < -3*M_PI/4) {
|
|
v -= 3.0/4;
|
|
} else if (arg < -M_PI/4) {
|
|
v -= 1.0/4;
|
|
} else if (arg < M_PI/4) {
|
|
v += 1.0/4;
|
|
} else if (arg < 3*M_PI/4) {
|
|
v += 3.0/4;
|
|
} else if (arg < M_PI) {
|
|
v -= 3.0/4;
|
|
}
|
|
}
|
|
break;
|
|
case Projection8PSK:
|
|
{
|
|
Real arg = std::atan2((float) s.m_imag, (float) s.m_real);
|
|
v = normalizeAngle(8*arg) / (8.0*M_PI); // generic estimation around 0
|
|
// mapping on 8 symbols
|
|
if (arg < -7*M_PI/8) {
|
|
v -= 7.0/8;
|
|
} else if (arg < -5*M_PI/8) {
|
|
v -= 5.0/8;
|
|
} else if (arg < -3*M_PI/8) {
|
|
v -= 3.0/8;
|
|
} else if (arg < -M_PI/8) {
|
|
v -= 1.0/8;
|
|
} else if (arg < M_PI/8) {
|
|
v += 1.0/8;
|
|
} else if (arg < 3*M_PI/8) {
|
|
v += 3.0/8;
|
|
} else if (arg < 5*M_PI/8) {
|
|
v += 5.0/8;
|
|
} else if (arg < 7*M_PI/8) {
|
|
v += 7.0/8;
|
|
} else if (arg < M_PI) {
|
|
v -= 7.0/8;
|
|
}
|
|
}
|
|
break;
|
|
case Projection16PSK:
|
|
{
|
|
Real arg = std::atan2((float) s.m_imag, (float) s.m_real);
|
|
v = normalizeAngle(16*arg) / (16.0*M_PI); // generic estimation around 0
|
|
// mapping on 16 symbols
|
|
if (arg < -15*M_PI/16) {
|
|
v -= 15.0/16;
|
|
} else if (arg < -13*M_PI/16) {
|
|
v -= 13.0/6;
|
|
} else if (arg < -11*M_PI/16) {
|
|
v -= 11.0/16;
|
|
} else if (arg < -9*M_PI/16) {
|
|
v -= 9.0/16;
|
|
} else if (arg < -7*M_PI/16) {
|
|
v -= 7.0/16;
|
|
} else if (arg < -5*M_PI/16) {
|
|
v -= 5.0/16;
|
|
} else if (arg < -3*M_PI/16) {
|
|
v -= 3.0/16;
|
|
} else if (arg < -M_PI/16) {
|
|
v -= 1.0/16;
|
|
} else if (arg < M_PI/16) {
|
|
v += 1.0/16;
|
|
} else if (arg < 3.0*M_PI/16) {
|
|
v += 3.0/16;
|
|
} else if (arg < 5.0*M_PI/16) {
|
|
v += 5.0/16;
|
|
} else if (arg < 7.0*M_PI/16) {
|
|
v += 7.0/16;
|
|
} else if (arg < 9.0*M_PI/16) {
|
|
v += 9.0/16;
|
|
} else if (arg < 11.0*M_PI/16) {
|
|
v += 11.0/16;
|
|
} else if (arg < 13.0*M_PI/16) {
|
|
v += 13.0/16;
|
|
} else if (arg < 15.0*M_PI/16) {
|
|
v += 15.0/16;
|
|
} else if (arg < M_PI) {
|
|
v -= 15.0/16;
|
|
}
|
|
}
|
|
break;
|
|
case ProjectionReal:
|
|
default:
|
|
v = s.m_real / SDR_RX_SCALEF;
|
|
break;
|
|
}
|
|
|
|
if (m_cache) {
|
|
m_cache[(int) m_projectionType] = v;
|
|
}
|
|
|
|
return v;
|
|
}
|
|
}
|
|
|
|
Real Projector::run(const std::complex<float>& s)
|
|
{
|
|
Real v;
|
|
|
|
if ((m_cache) && !m_cacheMaster) {
|
|
return m_cache[(int) m_projectionType];
|
|
}
|
|
else
|
|
{
|
|
switch (m_projectionType)
|
|
{
|
|
case ProjectionImag:
|
|
v = s.imag();
|
|
break;
|
|
case ProjectionMagLin:
|
|
v = std::abs(s);
|
|
break;
|
|
case ProjectionMagSq:
|
|
v = std::norm(s);
|
|
break;
|
|
case ProjectionMagDB:
|
|
{
|
|
Real magsq = std::norm(s);
|
|
v = log10f(magsq) * 10.0f;
|
|
}
|
|
break;
|
|
case ProjectionPhase:
|
|
v = std::arg(s) / M_PI; // normalize
|
|
break;
|
|
case ProjectionDOAP:
|
|
{
|
|
// calculate phase. Assume phase difference between two sources at half wavelength distance with sources axis as reference (positive side)
|
|
// cos(theta) = phi / 2*pi*k
|
|
Real p = std::arg(s); // do not mormalize phi (phi in -pi..+pi)
|
|
v = acos(p/M_PI) / M_PI; // normalize theta
|
|
}
|
|
break;
|
|
case ProjectionDOAN:
|
|
{
|
|
// calculate phase. Assume phase difference between two sources at half wavelength distance with sources axis as reference (negative source)
|
|
Real p = std::arg(s); // do not mormalize phi (phi in -pi..+pi)
|
|
v = -acos(p/M_PI) / M_PI; // normalize theta
|
|
}
|
|
break;
|
|
case ProjectionDPhase:
|
|
{
|
|
Real curArg = std::arg(s);
|
|
Real dPhi = (curArg - m_prevArg) / M_PI;
|
|
m_prevArg = curArg;
|
|
|
|
if (dPhi < -1.0f) {
|
|
dPhi += 2.0f;
|
|
} else if (dPhi > 1.0f) {
|
|
dPhi -= 2.0f;
|
|
}
|
|
|
|
v = dPhi;
|
|
}
|
|
break;
|
|
case ProjectionBPSK:
|
|
{
|
|
Real arg = std::arg(s);
|
|
v = normalizeAngle(2*arg) / (2.0*M_PI); // generic estimation around 0
|
|
// mapping on 2 symbols
|
|
if (arg < -M_PI/2) {
|
|
v -= 1.0/2;
|
|
} else if (arg < M_PI/2) {
|
|
v += 1.0/2;
|
|
} else if (arg < M_PI) {
|
|
v -= 1.0/2;
|
|
}
|
|
}
|
|
break;
|
|
case ProjectionQPSK:
|
|
{
|
|
Real arg = std::arg(s);
|
|
v = normalizeAngle(4*arg) / (4.0*M_PI); // generic estimation around 0
|
|
// mapping on 4 symbols
|
|
if (arg < -3*M_PI/4) {
|
|
v -= 3.0/4;
|
|
} else if (arg < -M_PI/4) {
|
|
v -= 1.0/4;
|
|
} else if (arg < M_PI/4) {
|
|
v += 1.0/4;
|
|
} else if (arg < 3*M_PI/4) {
|
|
v += 3.0/4;
|
|
} else if (arg < M_PI) {
|
|
v -= 3.0/4;
|
|
}
|
|
}
|
|
break;
|
|
case Projection8PSK:
|
|
{
|
|
Real arg = std::arg(s);
|
|
v = normalizeAngle(8*arg) / (8.0*M_PI); // generic estimation around 0
|
|
// mapping on 8 symbols
|
|
if (arg < -7*M_PI/8) {
|
|
v -= 7.0/8;
|
|
} else if (arg < -5*M_PI/8) {
|
|
v -= 5.0/8;
|
|
} else if (arg < -3*M_PI/8) {
|
|
v -= 3.0/8;
|
|
} else if (arg < -M_PI/8) {
|
|
v -= 1.0/8;
|
|
} else if (arg < M_PI/8) {
|
|
v += 1.0/8;
|
|
} else if (arg < 3*M_PI/8) {
|
|
v += 3.0/8;
|
|
} else if (arg < 5*M_PI/8) {
|
|
v += 5.0/8;
|
|
} else if (arg < 7*M_PI/8) {
|
|
v += 7.0/8;
|
|
} else if (arg < M_PI) {
|
|
v -= 7.0/8;
|
|
}
|
|
}
|
|
break;
|
|
case Projection16PSK:
|
|
{
|
|
Real arg = std::arg(s);
|
|
v = normalizeAngle(16*arg) / (16.0*M_PI); // generic estimation around 0
|
|
// mapping on 16 symbols
|
|
if (arg < -15*M_PI/16) {
|
|
v -= 15.0/16;
|
|
} else if (arg < -13*M_PI/16) {
|
|
v -= 13.0/6;
|
|
} else if (arg < -11*M_PI/16) {
|
|
v -= 11.0/16;
|
|
} else if (arg < -9*M_PI/16) {
|
|
v -= 9.0/16;
|
|
} else if (arg < -7*M_PI/16) {
|
|
v -= 7.0/16;
|
|
} else if (arg < -5*M_PI/16) {
|
|
v -= 5.0/16;
|
|
} else if (arg < -3*M_PI/16) {
|
|
v -= 3.0/16;
|
|
} else if (arg < -M_PI/16) {
|
|
v -= 1.0/16;
|
|
} else if (arg < M_PI/16) {
|
|
v += 1.0/16;
|
|
} else if (arg < 3.0*M_PI/16) {
|
|
v += 3.0/16;
|
|
} else if (arg < 5.0*M_PI/16) {
|
|
v += 5.0/16;
|
|
} else if (arg < 7.0*M_PI/16) {
|
|
v += 7.0/16;
|
|
} else if (arg < 9.0*M_PI/16) {
|
|
v += 9.0/16;
|
|
} else if (arg < 11.0*M_PI/16) {
|
|
v += 11.0/16;
|
|
} else if (arg < 13.0*M_PI/16) {
|
|
v += 13.0/16;
|
|
} else if (arg < 15.0*M_PI/16) {
|
|
v += 15.0/16;
|
|
} else if (arg < M_PI) {
|
|
v -= 15.0/16;
|
|
}
|
|
}
|
|
break;
|
|
case ProjectionReal:
|
|
default:
|
|
v = s.real();
|
|
break;
|
|
}
|
|
|
|
if (m_cache) {
|
|
m_cache[(int) m_projectionType] = v;
|
|
}
|
|
|
|
return v;
|
|
}
|
|
}
|
|
|
|
Real Projector::normalizeAngle(Real angle)
|
|
{
|
|
while (angle <= -M_PI) {
|
|
angle += 2.0*M_PI;
|
|
}
|
|
while (angle > M_PI) {
|
|
angle -= 2.0*M_PI;
|
|
}
|
|
return angle;
|
|
}
|