1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-10 10:33:29 -05:00
sdrangel/plugins/channelrx/demoddsd/dsddemod.cpp

548 lines
19 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016 F4EXB //
// written by Edouard Griffiths //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QTime>
#include <QDebug>
#include <stdio.h>
#include <complex.h>
#include "audio/audiooutput.h"
#include "dsp/dspengine.h"
#include "dsp/threadedbasebandsamplesink.h"
#include "dsp/downchannelizer.h"
#include "dsp/dspcommands.h"
#include "device/devicesourceapi.h"
#include "dsddemod.h"
MESSAGE_CLASS_DEFINITION(DSDDemod::MsgConfigureChannelizer, Message)
MESSAGE_CLASS_DEFINITION(DSDDemod::MsgConfigureDSDDemod, Message)
MESSAGE_CLASS_DEFINITION(DSDDemod::MsgConfigureMyPosition, Message)
const QString DSDDemod::m_channelIdURI = "sdrangel.channel.dsddemod";
const QString DSDDemod::m_channelId = "DSDDemod";
const int DSDDemod::m_udpBlockSize = 512;
DSDDemod::DSDDemod(DeviceSourceAPI *deviceAPI) :
ChannelSinkAPI(m_channelIdURI),
m_deviceAPI(deviceAPI),
m_inputSampleRate(48000),
m_inputFrequencyOffset(0),
m_interpolatorDistance(0.0f),
m_interpolatorDistanceRemain(0.0f),
m_sampleCount(0),
m_squelchCount(0),
m_squelchGate(0),
m_squelchLevel(1e-4),
m_squelchOpen(false),
m_audioFifo1(48000),
m_audioFifo2(48000),
m_scopeXY(0),
m_scopeEnabled(true),
m_dsdDecoder(),
m_settingsMutex(QMutex::Recursive)
{
setObjectName(m_channelId);
m_audioBuffer.resize(1<<14);
m_audioBufferFill = 0;
m_sampleBuffer = new FixReal[1<<17]; // 128 kS
m_sampleBufferIndex = 0;
m_scaleFromShort = SDR_RX_SAMP_SZ < sizeof(short)*8 ? 1 : 1<<(SDR_RX_SAMP_SZ - sizeof(short)*8);
m_magsq = 0.0f;
m_magsqSum = 0.0f;
m_magsqPeak = 0.0f;
m_magsqCount = 0;
DSPEngine::instance()->getAudioDeviceManager()->addAudioSink(&m_audioFifo1, getInputMessageQueue());
DSPEngine::instance()->getAudioDeviceManager()->addAudioSink(&m_audioFifo2, getInputMessageQueue());
m_audioSampleRate = DSPEngine::instance()->getAudioDeviceManager()->getOutputSampleRate();
applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true);
applySettings(m_settings, true);
m_channelizer = new DownChannelizer(this);
m_threadedChannelizer = new ThreadedBasebandSampleSink(m_channelizer, this);
m_deviceAPI->addThreadedSink(m_threadedChannelizer);
m_deviceAPI->addChannelAPI(this);
}
DSDDemod::~DSDDemod()
{
delete[] m_sampleBuffer;
DSPEngine::instance()->getAudioDeviceManager()->removeAudioSink(&m_audioFifo1);
DSPEngine::instance()->getAudioDeviceManager()->removeAudioSink(&m_audioFifo2);
m_deviceAPI->removeChannelAPI(this);
m_deviceAPI->removeThreadedSink(m_threadedChannelizer);
delete m_threadedChannelizer;
delete m_channelizer;
}
void DSDDemod::configureMyPosition(MessageQueue* messageQueue, float myLatitude, float myLongitude)
{
Message* cmd = MsgConfigureMyPosition::create(myLatitude, myLongitude);
messageQueue->push(cmd);
}
void DSDDemod::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool firstOfBurst __attribute__((unused)))
{
Complex ci;
int samplesPerSymbol = m_dsdDecoder.getSamplesPerSymbol();
m_settingsMutex.lock();
m_scopeSampleBuffer.clear();
m_dsdDecoder.enableMbelib(!DSPEngine::instance()->hasDVSerialSupport()); // disable mbelib if DV serial support is present and activated else enable it
for (SampleVector::const_iterator it = begin; it != end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
FixReal sample, delayedSample;
qint16 sampleDSD;
Real re = ci.real() / SDR_RX_SCALED;
Real im = ci.imag() / SDR_RX_SCALED;
Real magsq = re*re + im*im;
m_movingAverage(magsq);
m_magsqSum += magsq;
if (magsq > m_magsqPeak)
{
m_magsqPeak = magsq;
}
m_magsqCount++;
Real demod = m_phaseDiscri.phaseDiscriminator(ci) * m_settings.m_demodGain; // [-1.0:1.0]
m_sampleCount++;
// AF processing
if (m_movingAverage.asDouble() > m_squelchLevel)
{
if (m_squelchGate > 0)
{
if (m_squelchCount < m_squelchGate) {
m_squelchCount++;
}
m_squelchOpen = m_squelchCount == m_squelchGate;
}
else
{
m_squelchOpen = true;
}
}
else
{
m_squelchCount = 0;
m_squelchOpen = false;
}
if (m_squelchOpen)
{
sampleDSD = demod * 32768.0f; // DSD decoder takes int16 samples
sample = demod * SDR_RX_SCALEF; // scale to sample size
}
else
{
sampleDSD = 0;
sample = 0;
}
m_dsdDecoder.pushSample(sampleDSD);
if (m_settings.m_enableCosineFiltering) { // show actual input to FSK demod
sample = m_dsdDecoder.getFilteredSample() * m_scaleFromShort;
}
if (m_sampleBufferIndex < (1<<17)-1) {
m_sampleBufferIndex++;
} else {
m_sampleBufferIndex = 0;
}
m_sampleBuffer[m_sampleBufferIndex] = sample;
if (m_sampleBufferIndex < samplesPerSymbol) {
delayedSample = m_sampleBuffer[(1<<17) - samplesPerSymbol + m_sampleBufferIndex]; // wrap
} else {
delayedSample = m_sampleBuffer[m_sampleBufferIndex - samplesPerSymbol];
}
if (m_settings.m_syncOrConstellation)
{
Sample s(sample, m_dsdDecoder.getSymbolSyncSample() * m_scaleFromShort * 0.84);
m_scopeSampleBuffer.push_back(s);
}
else
{
Sample s(sample, delayedSample); // I=signal, Q=signal delayed by 20 samples (2400 baud: lowest rate)
m_scopeSampleBuffer.push_back(s);
}
if (DSPEngine::instance()->hasDVSerialSupport())
{
if ((m_settings.m_slot1On) && m_dsdDecoder.mbeDVReady1())
{
if (!m_settings.m_audioMute)
{
DSPEngine::instance()->pushMbeFrame(
m_dsdDecoder.getMbeDVFrame1(),
m_dsdDecoder.getMbeRateIndex(),
m_settings.m_volume * 10.0,
m_settings.m_tdmaStereo ? 1 : 3, // left or both channels
m_settings.m_highPassFilter,
m_audioSampleRate != 8000, // upsample to 48k unless native 8k
&m_audioFifo1);
}
m_dsdDecoder.resetMbeDV1();
}
if ((m_settings.m_slot2On) && m_dsdDecoder.mbeDVReady2())
{
if (!m_settings.m_audioMute)
{
DSPEngine::instance()->pushMbeFrame(
m_dsdDecoder.getMbeDVFrame2(),
m_dsdDecoder.getMbeRateIndex(),
m_settings.m_volume * 10.0,
m_settings.m_tdmaStereo ? 2 : 3, // right or both channels
m_settings.m_highPassFilter,
m_audioSampleRate != 8000, // upsample to 48k unless native 8k
&m_audioFifo2);
}
m_dsdDecoder.resetMbeDV2();
}
}
// if (DSPEngine::instance()->hasDVSerialSupport() && m_dsdDecoder.mbeDVReady1())
// {
// if (!m_settings.m_audioMute)
// {
// DSPEngine::instance()->pushMbeFrame(m_dsdDecoder.getMbeDVFrame1(), m_dsdDecoder.getMbeRateIndex(), m_settings.m_volume, &m_audioFifo1);
// }
//
// m_dsdDecoder.resetMbeDV1();
// }
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
if (!DSPEngine::instance()->hasDVSerialSupport())
{
if (m_settings.m_slot1On)
{
int nbAudioSamples;
short *dsdAudio = m_dsdDecoder.getAudio1(nbAudioSamples);
if (nbAudioSamples > 0)
{
if (!m_settings.m_audioMute) {
m_audioFifo1.write((const quint8*) dsdAudio, nbAudioSamples, 10);
}
m_dsdDecoder.resetAudio1();
}
}
if (m_settings.m_slot2On)
{
int nbAudioSamples;
short *dsdAudio = m_dsdDecoder.getAudio2(nbAudioSamples);
if (nbAudioSamples > 0)
{
if (!m_settings.m_audioMute) {
m_audioFifo2.write((const quint8*) dsdAudio, nbAudioSamples, 10);
}
m_dsdDecoder.resetAudio2();
}
}
// int nbAudioSamples;
// short *dsdAudio = m_dsdDecoder.getAudio1(nbAudioSamples);
//
// if (nbAudioSamples > 0)
// {
// if (!m_settings.m_audioMute) {
// uint res = m_audioFifo1.write((const quint8*) dsdAudio, nbAudioSamples, 10);
// }
//
// m_dsdDecoder.resetAudio1();
// }
}
if ((m_scopeXY != 0) && (m_scopeEnabled))
{
m_scopeXY->feed(m_scopeSampleBuffer.begin(), m_scopeSampleBuffer.end(), true); // true = real samples for what it's worth
}
m_settingsMutex.unlock();
}
void DSDDemod::start()
{
m_audioFifo1.clear();
m_audioFifo2.clear();
m_phaseDiscri.reset();
applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true);
}
void DSDDemod::stop()
{
}
bool DSDDemod::handleMessage(const Message& cmd)
{
qDebug() << "DSDDemod::handleMessage";
if (DownChannelizer::MsgChannelizerNotification::match(cmd))
{
DownChannelizer::MsgChannelizerNotification& notif = (DownChannelizer::MsgChannelizerNotification&) cmd;
qDebug() << "DSDDemod::handleMessage: MsgChannelizerNotification: inputSampleRate: " << notif.getSampleRate()
<< " inputFrequencyOffset: " << notif.getFrequencyOffset();
applyChannelSettings(notif.getSampleRate(), notif.getFrequencyOffset());
return true;
}
else if (MsgConfigureChannelizer::match(cmd))
{
MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd;
qDebug("DSDDemod::handleMessage: MsgConfigureChannelizer");
m_channelizer->configure(m_channelizer->getInputMessageQueue(),
cfg.getSampleRate(),
cfg.getCenterFrequency());
return true;
}
else if (MsgConfigureDSDDemod::match(cmd))
{
MsgConfigureDSDDemod& cfg = (MsgConfigureDSDDemod&) cmd;
qDebug("DSDDemod::handleMessage: MsgConfigureDSDDemod: m_rfBandwidth");
applySettings(cfg.getSettings(), cfg.getForce());
return true;
}
else if (MsgConfigureMyPosition::match(cmd))
{
MsgConfigureMyPosition& cfg = (MsgConfigureMyPosition&) cmd;
m_dsdDecoder.setMyPoint(cfg.getMyLatitude(), cfg.getMyLongitude());
return true;
}
else if (DSPConfigureAudio::match(cmd))
{
DSPConfigureAudio& cfg = (DSPConfigureAudio&) cmd;
uint32_t sampleRate = cfg.getSampleRate();
qDebug() << "DSDDemod::handleMessage: DSPConfigureAudio:"
<< " sampleRate: " << sampleRate;
if (sampleRate != m_audioSampleRate) {
applyAudioSampleRate(sampleRate);
}
return true;
}
else if (BasebandSampleSink::MsgThreadedSink::match(cmd))
{
return true;
}
else if (DSPSignalNotification::match(cmd))
{
return true;
}
else
{
return false;
}
}
void DSDDemod::applyAudioSampleRate(int sampleRate)
{
qDebug("DSDDemod::applyAudioSampleRate: %d", sampleRate);
if ((sampleRate != 48000) && (sampleRate != 8000)) {
qWarning("DSDDemod::applyAudioSampleRate: audio does not work properly with sample rates other than 48 or 8 kS/s");
}
m_dsdDecoder.set48k(sampleRate != 8000);
m_audioSampleRate = sampleRate;
}
void DSDDemod::applyChannelSettings(int inputSampleRate, int inputFrequencyOffset, bool force)
{
qDebug() << "DSDDemod::applyChannelSettings:"
<< " inputSampleRate: " << inputSampleRate
<< " inputFrequencyOffset: " << inputFrequencyOffset;
if ((inputFrequencyOffset != m_inputFrequencyOffset) ||
(inputSampleRate != m_inputSampleRate) || force)
{
m_nco.setFreq(-inputFrequencyOffset, inputSampleRate);
}
if ((inputSampleRate != m_inputSampleRate) || force)
{
m_settingsMutex.lock();
m_interpolator.create(16, inputSampleRate, (m_settings.m_rfBandwidth) / 2.2);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) inputSampleRate / (Real) 48000;
m_settingsMutex.unlock();
}
m_inputSampleRate = inputSampleRate;
m_inputFrequencyOffset = inputFrequencyOffset;
}
void DSDDemod::applySettings(const DSDDemodSettings& settings, bool force)
{
qDebug() << "DSDDemod::applySettings: "
<< " m_inputFrequencyOffset: " << m_settings.m_inputFrequencyOffset
<< " m_rfBandwidth: " << m_settings.m_rfBandwidth
<< " m_fmDeviation: " << m_settings.m_fmDeviation
<< " m_demodGain: " << m_settings.m_demodGain
<< " m_volume: " << m_settings.m_volume
<< " m_baudRate: " << m_settings.m_baudRate
<< " m_squelchGate" << m_settings.m_squelchGate
<< " m_squelch: " << m_settings.m_squelch
<< " m_audioMute: " << m_settings.m_audioMute
<< " m_enableCosineFiltering: " << m_settings.m_enableCosineFiltering
<< " m_syncOrConstellation: " << m_settings.m_syncOrConstellation
<< " m_slot1On: " << m_settings.m_slot1On
<< " m_slot2On: " << m_settings.m_slot2On
<< " m_tdmaStereo: " << m_settings.m_tdmaStereo
<< " m_pllLock: " << m_settings.m_pllLock
<< " m_udpAddress: " << m_settings.m_udpAddress
<< " m_udpPort: " << m_settings.m_udpPort
<< " m_highPassFilter: "<< m_settings.m_highPassFilter
<< " m_audioDeviceName: " << settings.m_audioDeviceName
<< " force: " << force;
if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force)
{
m_settingsMutex.lock();
m_interpolator.create(16, m_inputSampleRate, (settings.m_rfBandwidth) / 2.2);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_inputSampleRate / (Real) 48000;
//m_phaseDiscri.setFMScaling((float) settings.m_rfBandwidth / (float) settings.m_fmDeviation);
m_settingsMutex.unlock();
}
if ((settings.m_fmDeviation != m_settings.m_fmDeviation) || force)
{
m_phaseDiscri.setFMScaling(48000.0f / (2.0f*settings.m_fmDeviation));
}
if ((settings.m_squelchGate != m_settings.m_squelchGate) || force)
{
m_squelchGate = 480 * settings.m_squelchGate; // gate is given in 10s of ms at 48000 Hz audio sample rate
m_squelchCount = 0; // reset squelch open counter
}
if ((settings.m_squelch != m_settings.m_squelch) || force)
{
// input is a value in dB
m_squelchLevel = std::pow(10.0, settings.m_squelch / 10.0);
}
if ((settings.m_volume != m_settings.m_volume) || force)
{
m_dsdDecoder.setAudioGain(settings.m_volume);
}
if ((settings.m_baudRate != m_settings.m_baudRate) || force)
{
m_dsdDecoder.setBaudRate(settings.m_baudRate);
}
if ((settings.m_enableCosineFiltering != m_settings.m_enableCosineFiltering) || force)
{
m_dsdDecoder.enableCosineFiltering(settings.m_enableCosineFiltering);
}
if ((settings.m_tdmaStereo != m_settings.m_tdmaStereo) || force)
{
m_dsdDecoder.setTDMAStereo(settings.m_tdmaStereo);
}
if ((settings.m_pllLock != m_settings.m_pllLock) || force)
{
m_dsdDecoder.setSymbolPLLLock(settings.m_pllLock);
}
if ((settings.m_highPassFilter != m_settings.m_highPassFilter) || force)
{
m_dsdDecoder.useHPMbelib(settings.m_highPassFilter);
}
if ((settings.m_audioDeviceName != m_settings.m_audioDeviceName) || force)
{
AudioDeviceManager *audioDeviceManager = DSPEngine::instance()->getAudioDeviceManager();
int audioDeviceIndex = audioDeviceManager->getOutputDeviceIndex(settings.m_audioDeviceName);
//qDebug("AMDemod::applySettings: audioDeviceName: %s audioDeviceIndex: %d", qPrintable(settings.m_audioDeviceName), audioDeviceIndex);
audioDeviceManager->addAudioSink(&m_audioFifo1, getInputMessageQueue(), audioDeviceIndex);
audioDeviceManager->addAudioSink(&m_audioFifo2, getInputMessageQueue(), audioDeviceIndex);
uint32_t audioSampleRate = audioDeviceManager->getOutputSampleRate(audioDeviceIndex);
if (m_audioSampleRate != audioSampleRate) {
applyAudioSampleRate(audioSampleRate);
}
}
m_settings = settings;
}
QByteArray DSDDemod::serialize() const
{
return m_settings.serialize();
}
bool DSDDemod::deserialize(const QByteArray& data)
{
if (m_settings.deserialize(data))
{
MsgConfigureDSDDemod *msg = MsgConfigureDSDDemod::create(m_settings, true);
m_inputMessageQueue.push(msg);
return true;
}
else
{
m_settings.resetToDefaults();
MsgConfigureDSDDemod *msg = MsgConfigureDSDDemod::create(m_settings, true);
m_inputMessageQueue.push(msg);
return false;
}
}