1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-18 14:21:49 -05:00
sdrangel/plugins/channelrx/channelpower/channelpowersink.cpp
2024-03-13 15:45:14 +00:00

155 lines
5.4 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// Copyright (C) 2023 Jon Beniston, M7RCE //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QDebug>
#include "channelpowersink.h"
ChannelPowerSink::ChannelPowerSink(ChannelPower *channelPower) :
m_channelPower(channelPower),
m_channelSampleRate(10000),
m_channelFrequencyOffset(0),
m_lowpassFFT(nullptr),
m_lowpassBufferIdx(0)
{
resetMagLevels();
applySettings(m_settings, QStringList(), true);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
}
ChannelPowerSink::~ChannelPowerSink()
{
}
void ChannelPowerSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
{
QMutexLocker mutexLocker(&m_mutex);
Complex ci;
for (SampleVector::const_iterator it = begin; it != end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
processOneSample(c);
}
}
void ChannelPowerSink::processOneSample(Complex &ci)
{
// Low pass filter to desired channel bandwidth
fftfilt::cmplx *filtered;
int nOut = m_lowpassFFT->runFilt(ci, &filtered);
if (nOut > 0)
{
memcpy(m_lowpassBuffer, filtered, nOut * sizeof(Complex));
m_lowpassBufferIdx = 0;
}
Complex c = m_lowpassBuffer[m_lowpassBufferIdx++];
// Calculate power
Real re = c.real() / SDR_RX_SCALEF;
Real im = c.imag() / SDR_RX_SCALEF;
Real magsq = re*re + im*im;
// Although computationally more expensive to take the square root here,
// it possibly reduces problems of accumulating numbers
// that may differ significantly in magnitude, for long averages
double mag = sqrt((double)magsq);
m_magSum += mag;
if (mag > m_pulseThresholdLinear)
{
m_magPulseSum += mag;
m_magPulseCount++;
if (m_magPulseCount >= m_averageCnt)
{
m_magPulseAvg = m_magPulseSum / m_magPulseCount;
m_magPulseSum = 0.0;
m_magPulseCount = 0;
}
}
if (mag > m_magMaxPeak) {
m_magMaxPeak = mag;
}
if (mag < m_magMinPeak) {
m_magMinPeak = mag;
}
m_magCount++;
if (m_magCount >= m_averageCnt)
{
m_magAvg = m_magSum / m_magCount;
m_magSum = 0.0;
m_magCount = 0;
}
}
void ChannelPowerSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "ChannelPowerSink::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset;
if ((m_channelFrequencyOffset != channelFrequencyOffset) ||
(m_channelSampleRate != channelSampleRate) || force)
{
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
}
if ((m_channelSampleRate != channelSampleRate) || force)
{
delete m_lowpassFFT;
m_lowpassFFT = new fftfilt(0, m_settings.m_rfBandwidth / 2.0f / m_channelSampleRate, m_lowpassLen);
m_lowpassBufferIdx = 0;
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
m_averageCnt = (int)((m_settings.m_averagePeriodUS * (qint64)m_channelSampleRate / 1e6));
}
void ChannelPowerSink::applySettings(const ChannelPowerSettings& settings, const QStringList& settingsKeys, bool force)
{
qDebug() << "ChannelPowerSink::applySettings:" << " force: " << force << settings.getDebugString(settingsKeys, force);
if ((settingsKeys.contains("rfBandwidth") && (settings.m_rfBandwidth != m_settings.m_rfBandwidth)) || force)
{
delete m_lowpassFFT;
m_lowpassFFT = new fftfilt(0, settings.m_rfBandwidth / 2.0f / m_channelSampleRate, m_lowpassLen);
m_lowpassBufferIdx = 0;
}
if (settingsKeys.contains("averagePeriodUS") || force) {
m_averageCnt = (int)((settings.m_averagePeriodUS * (qint64)m_channelSampleRate / 1e6));
}
if (settingsKeys.contains("pulseThreshold") || force) {
m_pulseThresholdLinear = std::pow(10.0, settings.m_pulseThreshold / 20.0);
}
if (force) {
m_settings = settings;
} else {
m_settings.applySettings(settingsKeys, settings);
}
}