1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-13 20:01:46 -05:00
sdrangel/plugins/channelrx/chanalyzer/chanalyzersink.cpp

270 lines
9.4 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include "chanalyzersink.h"
#include <QTime>
#include <QDebug>
#include <stdio.h>
#include "dsp/basebandsamplesink.h"
const unsigned int ChannelAnalyzerSink::m_ssbFftLen = 1024;
const unsigned int ChannelAnalyzerSink::m_corrFFTLen = 4*m_ssbFftLen;
ChannelAnalyzerSink::ChannelAnalyzerSink() :
m_channelSampleRate(48000),
m_channelFrequencyOffset(0),
m_sampleSink(nullptr)
{
m_usb = true;
m_magsq = 0;
m_interpolatorDistance = 1.0f;
m_interpolatorDistanceRemain = 0.0f;
SSBFilter = new fftfilt(m_settings.m_lowCutoff / m_channelSampleRate, m_settings.m_bandwidth / m_channelSampleRate, m_ssbFftLen);
DSBFilter = new fftfilt(m_settings.m_bandwidth / m_channelSampleRate, 2*m_ssbFftLen);
RRCFilter = new fftfilt(m_settings.m_bandwidth / m_channelSampleRate, 2*m_ssbFftLen);
m_corr = new fftcorr(2*m_corrFFTLen); // 8k for 4k effective samples
m_pll.computeCoefficients(0.002f, 0.5f, 10.0f); // bandwidth, damping factor, loop gain
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
applySettings(m_settings, true);
}
ChannelAnalyzerSink::~ChannelAnalyzerSink()
{
delete SSBFilter;
delete DSBFilter;
delete RRCFilter;
delete m_corr;
}
void ChannelAnalyzerSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
{
fftfilt::cmplx *sideband = 0;
Complex ci;
for (SampleVector::const_iterator it = begin; it < end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if (m_settings.m_rationalDownSample)
{
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci, sideband);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
else
{
processOneSample(c, sideband);
}
}
if (m_sampleSink) {
m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), m_settings.m_ssb); // m_ssb = positive only
}
m_sampleBuffer.clear();
}
void ChannelAnalyzerSink::processOneSample(Complex& c, fftfilt::cmplx *sideband)
{
int n_out;
if (m_settings.m_ssb)
{
n_out = SSBFilter->runSSB(c, &sideband, m_usb);
}
else
{
if (m_settings.m_rrc) {
n_out = RRCFilter->runFilt(c, &sideband);
} else {
n_out = DSBFilter->runDSB(c, &sideband);
}
}
for (int i = 0; i < n_out; i++)
{
fftfilt::cmplx si = sideband[i];
Real re = si.real() / SDR_RX_SCALEF;
Real im = si.imag() / SDR_RX_SCALEF;
m_magsq = re*re + im*im;
m_channelPowerAvg(m_magsq);
std::complex<float> mix;
if (m_settings.m_pll)
{
if (m_settings.m_fll)
{
m_fll.feed(re, im);
// Use -fPLL to mix (exchange PLL real and image in the complex multiplication)
mix = si * std::conj(m_fll.getComplex());
}
else
{
m_pll.feed(re, im);
// Use -fPLL to mix (exchange PLL real and image in the complex multiplication)
mix = si * std::conj(m_pll.getComplex());
}
}
feedOneSample(m_settings.m_pll ? mix : si, m_settings.m_fll ? m_fll.getComplex() : m_pll.getComplex());
}
}
void ChannelAnalyzerSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "ChannelAnalyzerSink::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset;
if ((m_channelFrequencyOffset != channelFrequencyOffset) ||
(m_channelSampleRate != channelSampleRate) || force)
{
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
}
if ((m_channelSampleRate != channelSampleRate) || force)
{
m_interpolator.create(16, channelSampleRate, channelSampleRate / 2.2f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) channelSampleRate / (Real) m_settings.m_rationalDownSamplerRate;
int sinkSampleRate = m_settings.m_rationalDownSample ? m_settings.m_rationalDownSamplerRate : channelSampleRate;
setFilters(sinkSampleRate, m_settings.m_bandwidth, m_settings.m_lowCutoff);
m_pll.setSampleRate(sinkSampleRate);
m_fll.setSampleRate(sinkSampleRate);
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
}
void ChannelAnalyzerSink::setFilters(int sampleRate, float bandwidth, float lowCutoff)
{
qDebug("ChannelAnalyzerSink::setFilters: sampleRate: %d bandwidth: %f lowCutoff: %f",
sampleRate, bandwidth, lowCutoff);
if (bandwidth < 0)
{
bandwidth = -bandwidth;
lowCutoff = -lowCutoff;
m_usb = false;
}
else
{
m_usb = true;
}
if (bandwidth < 100.0f)
{
bandwidth = 100.0f;
lowCutoff = 0;
}
SSBFilter->create_filter(lowCutoff / sampleRate, bandwidth / sampleRate);
DSBFilter->create_dsb_filter(bandwidth / sampleRate);
RRCFilter->create_rrc_filter(bandwidth / sampleRate, m_settings.m_rrcRolloff / 100.0);
}
void ChannelAnalyzerSink::applySettings(const ChannelAnalyzerSettings& settings, bool force)
{
qDebug() << "ChannelAnalyzerSink::applySettings:"
<< " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
<< " m_rationalDownSample: " << settings.m_rationalDownSample
<< " m_rationalDownSamplerRate: " << settings.m_rationalDownSamplerRate
<< " m_rcc: " << settings.m_rrc
<< " m_rrcRolloff: " << settings.m_rrcRolloff / 100.0
<< " m_bandwidth: " << settings.m_bandwidth
<< " m_lowCutoff: " << settings.m_lowCutoff
<< " m_log2Decim: " << settings.m_log2Decim
<< " m_ssb: " << settings.m_ssb
<< " m_pll: " << settings.m_pll
<< " m_fll: " << settings.m_fll
<< " m_pllPskOrder: " << settings.m_pllPskOrder
<< " m_inputType: " << (int) settings.m_inputType;
if ((settings.m_rationalDownSamplerRate != m_settings.m_rationalDownSamplerRate) || force)
{
m_interpolator.create(16, m_channelSampleRate, m_channelSampleRate / 2.2);
m_interpolatorDistanceRemain = 0.0f;
m_interpolatorDistance = (Real) m_channelSampleRate / (Real) settings.m_rationalDownSamplerRate;
}
if ((settings.m_rationalDownSample != m_settings.m_rationalDownSample) || force)
{
int sinkSampleRate = settings.m_rationalDownSample ? settings.m_rationalDownSamplerRate : m_channelSampleRate;
setFilters(sinkSampleRate, settings.m_bandwidth, settings.m_lowCutoff);
m_pll.setSampleRate(sinkSampleRate);
m_fll.setSampleRate(sinkSampleRate);
}
if ((settings.m_bandwidth != m_settings.m_bandwidth) ||
(settings.m_lowCutoff != m_settings.m_lowCutoff)|| force)
{
int sinkSampleRate = settings.m_rationalDownSample ? settings.m_rationalDownSamplerRate : m_channelSampleRate;
setFilters(sinkSampleRate, settings.m_bandwidth, settings.m_lowCutoff);
}
if ((settings.m_rrcRolloff != m_settings.m_rrcRolloff) || force)
{
float sinkSampleRate = settings.m_rationalDownSample ? (float) settings.m_rationalDownSamplerRate : (float) m_channelSampleRate;
RRCFilter->create_rrc_filter(settings.m_bandwidth / sinkSampleRate, settings.m_rrcRolloff / 100.0);
}
if (settings.m_pll != m_settings.m_pll || force)
{
if (settings.m_pll)
{
m_pll.reset();
m_fll.reset();
}
}
if (settings.m_fll != m_settings.m_fll || force)
{
if (settings.m_fll) {
m_fll.reset();
}
}
if (settings.m_pllPskOrder != m_settings.m_pllPskOrder || force)
{
if (settings.m_pllPskOrder < 32) {
m_pll.setPskOrder(settings.m_pllPskOrder);
}
}
m_settings = settings;
}
Real ChannelAnalyzerSink::getPllFrequency() const
{
if (m_settings.m_fll) {
return m_fll.getFreq();
} else if (m_settings.m_pll) {
return m_pll.getFreq();
} else {
return 0.0;
}
}