1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-18 22:31:48 -05:00
sdrangel/plugins/channelrx/demodatv/atvdemodsink.cpp

595 lines
22 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QTime>
#include <QDebug>
#include <stdio.h>
#include <complex.h>
#include "audio/audiooutput.h"
#include "atvdemodsink.h"
const int ATVDemodSink::m_ssbFftLen = 1024;
ATVDemodSink::ATVDemodSink() :
m_channelSampleRate(1000000),
m_channelFrequencyOffset(0),
m_tvSampleRate(1000000),
m_samplesPerLine(100),
m_videoTabIndex(0),
m_scopeSink(nullptr),
m_registeredTVScreen(nullptr),
m_numberSamplesPerHTop(0),
m_imageIndex(0),
m_synchroSamples(0),
m_horizontalSynchroDetected(false),
m_verticalSynchroDetected(false),
m_ampLineSum(0.0f),
m_ampLineAvg(0.0f),
m_effMin(2000000.0f),
m_effMax(-2000000.0f),
m_ampMin(0.0f),
m_ampMax(0.3f),
m_ampDelta(0.3f),
m_ampSample(0.0f),
m_colIndex(0),
m_sampleIndex(0),
m_amSampleIndex(0),
m_rowIndex(0),
m_lineIndex(0),
m_objAvgColIndex(3),
m_bfoPLL(200/1000000, 100/1000000, 0.01),
m_bfoFilter(200.0, 1000000.0, 0.9),
m_interpolatorDistance(1.0f),
m_interpolatorDistanceRemain(0.0f),
m_DSBFilter(nullptr),
m_DSBFilterBuffer(nullptr),
m_DSBFilterBufferIndex(0)
{
qDebug("ATVDemodSink::ATVDemodSink");
//*************** ATV PARAMETERS ***************
//m_intNumberSamplePerLine=0;
m_synchroSamples=0;
m_interleaved = true;
m_firstRowIndexEven = 0;
m_firstRowIndexOdd = 0;
m_DSBFilter = new fftfilt(m_settings.m_fftBandwidth / (float) m_tvSampleRate, 2*m_ssbFftLen); // arbitrary cutoff
m_DSBFilterBuffer = new Complex[m_ssbFftLen];
std::fill(m_DSBFilterBuffer, m_DSBFilterBuffer + m_ssbFftLen, Complex{0.0, 0.0});
std::fill(m_fltBufferI, m_fltBufferI+6, 0.0f);
std::fill(m_fltBufferQ, m_fltBufferQ+6, 0.0f);
m_objPhaseDiscri.setFMScaling(1.0f);
applySettings(m_settings, true);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
}
ATVDemodSink::~ATVDemodSink()
{
delete m_DSBFilter;
delete[] m_DSBFilterBuffer;
}
void ATVDemodSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
{
float fltI;
float fltQ;
Complex ci;
//********** Let's rock and roll buddy ! **********
//********** Accessing ATV Screen context **********
for (SampleVector::const_iterator it = begin; it != end; ++it /* ++it **/)
{
fltI = it->real();
fltQ = it->imag();
Complex c(fltI, fltQ);
if (m_settings.m_inputFrequencyOffset != 0) {
c *= m_nco.nextIQ();
}
if ((m_tvSampleRate == m_channelSampleRate) && (!m_settings.m_forceDecimator)) // no decimation
{
demod(c);
}
else
{
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
demod(ci);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
}
if ((m_videoTabIndex == 1) && (m_scopeSink)) // do only if scope tab is selected and scope is available
{
m_scopeSink->feed(m_scopeSampleBuffer.begin(), m_scopeSampleBuffer.end(), false); // m_ssb = positive only
m_scopeSampleBuffer.clear();
}
}
void ATVDemodSink::demod(Complex& c)
{
float divSynchroBlack = 1.0f - m_settings.m_levelBlack;
float sampleNormI;
float sampleNormQ;
float sampleNorm;
float sample;
int sampleVideo;
//********** FFT filtering **********
if (m_settings.m_fftFiltering)
{
int n_out;
Complex *filtered;
n_out = m_DSBFilter->runAsym(c, &filtered, m_settings.m_atvModulation != ATVDemodSettings::ATV_LSB); // all usb except explicitely lsb
if (n_out > 0)
{
std::copy(filtered, filtered + n_out, m_DSBFilterBuffer);
m_DSBFilterBufferIndex = 0;
}
else if (m_DSBFilterBufferIndex < m_ssbFftLen - 1) // safe
{
m_DSBFilterBufferIndex++;
}
}
//********** demodulation **********
float fftScale = 1.0f;
const float& fltI = m_settings.m_fftFiltering ? m_DSBFilterBuffer[m_DSBFilterBufferIndex].real() : c.real();
const float& fltQ = m_settings.m_fftFiltering ? m_DSBFilterBuffer[m_DSBFilterBufferIndex].imag() : c.imag();
double magSq;
if ((m_settings.m_atvModulation == ATVDemodSettings::ATV_FM1) || (m_settings.m_atvModulation == ATVDemodSettings::ATV_FM2))
{
//Amplitude FM
magSq = fltI*fltI + fltQ*fltQ;
m_objMagSqAverage(magSq);
sampleNorm = sqrt(magSq);
sampleNormI = fltI/sampleNorm;
sampleNormQ = fltQ/sampleNorm;
//-2 > 2 : 0 -> 1 volt
//0->0.3 synchro 0.3->1 image
if (m_settings.m_atvModulation == ATVDemodSettings::ATV_FM1)
{
//YDiff Cd
sample = m_fltBufferI[0]*(sampleNormQ - m_fltBufferQ[1]);
sample -= m_fltBufferQ[0]*(sampleNormI - m_fltBufferI[1]);
sample += 2.0f;
sample /= 4.0f;
}
else
{
//YDiff Folded
sample = m_fltBufferI[2]*((m_fltBufferQ[5]-sampleNormQ)/16.0f + m_fltBufferQ[1] - m_fltBufferQ[3]);
sample -= m_fltBufferQ[2]*((m_fltBufferI[5]-sampleNormI)/16.0f + m_fltBufferI[1] - m_fltBufferI[3]);
sample += 2.125f;
sample /= 4.25f;
m_fltBufferI[5] = m_fltBufferI[4];
m_fltBufferQ[5] = m_fltBufferQ[4];
m_fltBufferI[4] = m_fltBufferI[3];
m_fltBufferQ[4] = m_fltBufferQ[3];
m_fltBufferI[3] = m_fltBufferI[2];
m_fltBufferQ[3] = m_fltBufferQ[2];
m_fltBufferI[2] = m_fltBufferI[1];
m_fltBufferQ[2] = m_fltBufferQ[1];
}
m_fltBufferI[1] = m_fltBufferI[0];
m_fltBufferQ[1] = m_fltBufferQ[0];
m_fltBufferI[0] = sampleNormI;
m_fltBufferQ[0] = sampleNormQ;
if (m_settings.m_fmDeviation != 1.0f)
{
sample = ((sample - 0.5f) / m_settings.m_fmDeviation) + 0.5f;
}
}
else if (m_settings.m_atvModulation == ATVDemodSettings::ATV_AM)
{
//Amplitude AM
magSq = fltI*fltI + fltQ*fltQ;
m_objMagSqAverage(magSq);
sampleNorm = sqrt(magSq);
sample = sampleNorm / SDR_RX_SCALEF;
}
else if ((m_settings.m_atvModulation == ATVDemodSettings::ATV_USB) || (m_settings.m_atvModulation == ATVDemodSettings::ATV_LSB))
{
magSq = fltI*fltI + fltQ*fltQ;
m_objMagSqAverage(magSq);
sampleNorm = sqrt(magSq);
Real bfoValues[2];
float fltFiltered = m_bfoFilter.run(fltI);
m_bfoPLL.process(fltFiltered, bfoValues);
// do the mix
float mixI = fltI * bfoValues[0] - fltQ * bfoValues[1];
float mixQ = fltI * bfoValues[1] + fltQ * bfoValues[0];
if (m_settings.m_atvModulation == ATVDemodSettings::ATV_USB) {
sample = (mixI + mixQ);
} else {
sample = (mixI - mixQ);
}
}
else if (m_settings.m_atvModulation == ATVDemodSettings::ATV_FM3)
{
float rawDeviation;
sample = m_objPhaseDiscri.phaseDiscriminatorDelta(c, magSq, rawDeviation) + 0.5f;
m_objMagSqAverage(magSq);
sampleNorm = sqrt(magSq);
}
else
{
magSq = fltI*fltI + fltQ*fltQ;
m_objMagSqAverage(magSq);
sampleNorm = sqrt(magSq);
sample = 0.0f;
}
//********** AM sample normalization and coarse scale estimation **********
if ((m_settings.m_atvModulation == ATVDemodSettings::ATV_AM)
|| (m_settings.m_atvModulation == ATVDemodSettings::ATV_USB)
|| (m_settings.m_atvModulation == ATVDemodSettings::ATV_LSB))
{
// Mini and Maxi Amplitude tracking
if (sample < m_effMin) {
m_effMin = sample;
}
if (sample > m_effMax) {
m_effMax = sample;
}
if (m_amSampleIndex < m_samplesPerLine * m_settings.m_nbLines) // do not extend estimation period past a full image
{
m_amSampleIndex++;
}
else
{
// scale signal based on extrema on the estimation period
m_ampMin = m_effMin;
m_ampMax = m_effMax;
m_ampDelta = (m_ampMax - m_ampMin) * 0.3f;
m_ampSample = 0.3f; // allow passing to fine scale estimation
if (m_ampDelta <= 0.0) {
m_ampDelta = 0.3f;
}
qDebug("ATVDemod::demod: m_ampMin: %f m_ampMax: %f m_ampDelta: %f", m_ampMin, m_ampMax, m_ampDelta);
//Reset extrema
m_effMin = 2000000.0f;
m_effMax = -2000000.0;
m_amSampleIndex = 0;
}
//Normalisation of current sample
sample -= m_ampMin;
sample /= (m_ampDelta * 3.1f);
}
sample = m_settings.m_invertVideo ? 1.0f - sample : sample;
// 0.0 -> 1.0
sample = (sample < 0.0f) ? 0.0f : (sample > 1.0f) ? 1.0f : sample;
if ((m_videoTabIndex == 1) && (m_scopeSink != 0)) { // feed scope buffer only if scope is present and visible
m_scopeSampleBuffer.push_back(Sample(sample*SDR_RX_SCALEF, 0.0f));
}
//********** gray level **********
// -0.3 -> 0.7 / 0.7
sampleVideo = (int) (255.0*(sample - m_settings.m_levelBlack) / (1.0f - m_settings.m_levelBlack));
// 0 -> 255
sampleVideo = (sampleVideo < 0) ? 0 : (sampleVideo > 255) ? 255 : sampleVideo;
//********** process video sample **********
if (m_registeredTVScreen) // can process only if the screen is available (set via the GUI)
{
if (m_settings.m_atvStd == ATVDemodSettings::ATVStdHSkip) {
processHSkip(sample, sampleVideo);
} else {
processClassic(sample, sampleVideo);
}
}
}
void ATVDemodSink::applyStandard(int sampleRate, const ATVDemodSettings& settings, float lineDuration)
{
switch(settings.m_atvStd)
{
case ATVDemodSettings::ATVStdHSkip:
// what is left in a line for the image
m_numberOfSyncLines = 0;
m_numberOfBlackLines = 0;
m_numberOfEqLines = 0; // not applicable
m_numberSamplesHSyncCrop = (int) (0.09f * lineDuration * sampleRate); // 9% of full line empirically
m_interleaved = false; // irrelevant
m_firstRowIndexEven = 0; // irrelevant
m_firstRowIndexOdd = 0; // irrelevant
break;
case ATVDemodSettings::ATVStdShort:
// what is left in a line for the image
m_numberOfSyncLines = 4;
m_numberOfBlackLines = 5;
m_numberOfEqLines = 0;
m_numberSamplesHSyncCrop = (int) (0.085f * lineDuration * sampleRate); // 8.5% of full line empirically
m_interleaved = false;
m_firstRowIndexEven = 0; // irrelevant
m_firstRowIndexOdd = 0; // irrelevant
break;
case ATVDemodSettings::ATVStdShortInterleaved:
// what is left in a line for the image
m_numberOfSyncLines = 4;
m_numberOfBlackLines = 7;
m_numberOfEqLines = 0;
m_numberSamplesHSyncCrop = (int) (0.085f * lineDuration * sampleRate); // 8.5% of full line empirically
m_interleaved = true;
m_firstRowIndexEven = 0;
m_firstRowIndexOdd = 1;
break;
case ATVDemodSettings::ATVStd405: // Follows loosely the 405 lines standard
// what is left in a ine for the image
m_numberOfSyncLines = 24; // (15+7)*2 - 20
m_numberOfBlackLines = 30; // above + 6
m_numberOfEqLines = 3;
m_numberSamplesHSyncCrop = (int) (0.085f * lineDuration * sampleRate); // 8.5% of full line empirically
m_interleaved = true;
m_firstRowIndexEven = 0;
m_firstRowIndexOdd = 3;
break;
case ATVDemodSettings::ATVStdPAL525: // Follows PAL-M standard
// what is left in a 64/1.008 us line for the image
m_numberOfSyncLines = 40; // (15+15)*2 - 20
m_numberOfBlackLines = 46; // above + 6
m_numberOfEqLines = 3;
m_numberSamplesHSyncCrop = (int) (0.085f * lineDuration * sampleRate); // 8.5% of full line empirically
m_interleaved = true;
m_firstRowIndexEven = 0;
m_firstRowIndexOdd = 3;
break;
case ATVDemodSettings::ATVStdPAL625: // Follows PAL-B/G/H standard
default:
// what is left in a 64 us line for the image
m_numberOfSyncLines = 44; // (15+17)*2 - 20
m_numberOfBlackLines = 50; // above + 6
m_numberOfEqLines = 3;
m_numberSamplesHSyncCrop = (int) (0.085f * lineDuration * sampleRate); // 8.5% of full line empirically
m_interleaved = true;
m_firstRowIndexEven = 0;
m_firstRowIndexOdd = 3;
}
// for now all standards apply this
m_numberSamplesPerLineSignals = (int) ((12.0f/64.0f) * lineDuration * sampleRate); // 12.0 = 2.6 + 4.7 + 4.7 : front porch + horizontal sync pulse + back porch
m_numberSamplesPerHSync = (int) ((9.6f/64.0f) * lineDuration * sampleRate); // 9.4 = 4.7 + 4.7 : horizontal sync pulse + back porch
m_numberSamplesPerHTopNom = (int) ((4.7f/64.0f) * lineDuration * sampleRate); // 4.7 : horizontal sync pulse (ultra black) nominal value
m_numberSamplesPerHTop = m_numberSamplesPerHTopNom + settings.m_topTimeFactor; // adjust the value used in the system
}
bool ATVDemodSink::getBFOLocked()
{
if ((m_settings.m_atvModulation == ATVDemodSettings::ATV_USB) || (m_settings.m_atvModulation == ATVDemodSettings::ATV_LSB)) {
return m_bfoPLL.locked();
} else {
return false;
}
}
void ATVDemodSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "ATVDemodSink::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset;
if (channelSampleRate == 0)
{
qDebug("ATVDemodSink::applyChannelSettings: aborting");
return;
}
if ((channelFrequencyOffset != m_channelFrequencyOffset) ||
(channelSampleRate != m_channelSampleRate) || force)
{
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
}
if ((channelSampleRate != m_channelSampleRate) || force)
{
ATVDemodSettings::getBaseValues(channelSampleRate, m_settings.m_nbLines * m_settings.m_fps, m_tvSampleRate, m_samplesPerLineNom);
m_samplesPerLine = m_samplesPerLineNom + m_settings.m_lineTimeFactor;
qDebug() << "ATVDemodSink::applyChannelSettings:"
<< " m_tvSampleRate: " << m_tvSampleRate
<< " m_fftBandwidth: " << m_settings.m_fftBandwidth
<< " m_fftOppBandwidth:" << m_settings.m_fftOppBandwidth
<< " m_bfoFrequency: " << m_settings.m_bfoFrequency;
if (m_tvSampleRate > 0)
{
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_tvSampleRate / (Real) channelSampleRate;
m_interpolator.create(24,
m_tvSampleRate,
m_settings.m_fftBandwidth / ATVDemodSettings::getRFBandwidthDivisor(m_settings.m_atvModulation),
3.0
);
}
else
{
m_tvSampleRate = channelSampleRate;
}
m_DSBFilter->create_asym_filter(
m_settings.m_fftOppBandwidth / (float) m_tvSampleRate,
m_settings.m_fftBandwidth / (float) m_tvSampleRate
);
std::fill(m_DSBFilterBuffer, m_DSBFilterBuffer + m_ssbFftLen, Complex{0.0, 0.0});
m_DSBFilterBufferIndex = 0;
m_bfoPLL.configure((float) m_settings.m_bfoFrequency / (float) m_tvSampleRate,
100.0 / m_tvSampleRate,
0.01);
m_bfoFilter.setFrequencies(m_tvSampleRate, m_settings.m_bfoFrequency);
}
applyStandard(m_tvSampleRate, m_settings, ATVDemodSettings::getNominalLineTime(m_settings.m_nbLines, m_settings.m_fps));
if (m_registeredTVScreen)
{
m_registeredTVScreen->resizeTVScreen(
m_samplesPerLine - m_numberSamplesPerLineSignals,
m_settings.m_nbLines - m_numberOfBlackLines
);
}
m_imageIndex = 0;
m_colIndex = 0;
m_rowIndex = 0;
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
}
void ATVDemodSink::applySettings(const ATVDemodSettings& settings, bool force)
{
qDebug() << "ATVDemodSink::applySettings:"
<< "m_inputFrequencyOffset:" << settings.m_inputFrequencyOffset
<< "m_forceDecimator:" << settings.m_forceDecimator
<< "m_bfoFrequency:" << settings.m_bfoFrequency
<< "m_atvModulation:" << settings.m_atvModulation
<< "m_fmDeviation:" << settings.m_fmDeviation
<< "m_fftFiltering:" << settings.m_fftFiltering
<< "m_fftOppBandwidth:" << settings.m_fftOppBandwidth
<< "m_fftBandwidth:" << settings.m_fftBandwidth
<< "m_nbLines:" << settings.m_nbLines
<< "m_fps:" << settings.m_fps
<< "m_atvStd:" << settings.m_atvStd
<< "m_hSync:" << settings.m_hSync
<< "m_vSync:" << settings.m_vSync
<< "m_invertVideo:" << settings.m_invertVideo
<< "m_halfFrames:" << settings.m_halfFrames
<< "m_levelSynchroTop:" << settings.m_levelSynchroTop
<< "m_levelBlack:" << settings.m_levelBlack
<< "m_lineTimeFactor:" << settings.m_lineTimeFactor
<< "m_topTimeFactor:" << settings.m_topTimeFactor
<< "m_rgbColor:" << settings.m_rgbColor
<< "m_title:" << settings.m_title
<< "m_udpAddress:" << settings.m_udpAddress
<< "m_udpPort:" << settings.m_udpPort
<< "force:" << force;
if ((settings.m_nbLines != m_settings.m_nbLines)
|| (settings.m_fps != m_settings.m_fps)
|| (settings.m_atvStd != m_settings.m_atvStd)
|| (settings.m_atvModulation != m_settings.m_atvModulation)
|| (settings.m_fftBandwidth != m_settings.m_fftBandwidth)
|| (settings.m_fftOppBandwidth != m_settings.m_fftOppBandwidth)
|| (settings.m_atvStd != m_settings.m_atvStd)
|| (settings.m_lineTimeFactor != m_settings.m_lineTimeFactor) || force)
{
ATVDemodSettings::getBaseValues(m_channelSampleRate, settings.m_nbLines * settings.m_fps, m_tvSampleRate, m_samplesPerLineNom);
m_samplesPerLine = m_samplesPerLineNom + settings.m_lineTimeFactor;
qDebug() << "ATVDemodSink::applySettings:"
<< " m_tvSampleRate: " << m_tvSampleRate
<< " m_fftBandwidth: " << settings.m_fftBandwidth
<< " m_fftOppBandwidth:" << settings.m_fftOppBandwidth
<< " m_bfoFrequency: " << settings.m_bfoFrequency;
if (m_tvSampleRate > 0)
{
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_tvSampleRate / (Real) m_channelSampleRate;
m_interpolator.create(24,
m_tvSampleRate,
settings.m_fftBandwidth / ATVDemodSettings::getRFBandwidthDivisor(settings.m_atvModulation),
3.0
);
}
else
{
m_tvSampleRate = m_channelSampleRate;
}
m_DSBFilter->create_asym_filter(
settings.m_fftOppBandwidth / (float) m_tvSampleRate,
settings.m_fftBandwidth / (float) m_tvSampleRate
);
std::fill(m_DSBFilterBuffer, m_DSBFilterBuffer + m_ssbFftLen, Complex{0.0, 0.0});
m_DSBFilterBufferIndex = 0;
m_bfoPLL.configure((float) settings.m_bfoFrequency / (float) m_tvSampleRate,
100.0 / m_tvSampleRate,
0.01);
m_bfoFilter.setFrequencies(m_tvSampleRate, settings.m_bfoFrequency);
applyStandard(m_tvSampleRate, settings, ATVDemodSettings::getNominalLineTime(settings.m_nbLines, settings.m_fps));
if (m_registeredTVScreen)
{
m_registeredTVScreen->resizeTVScreen(
m_samplesPerLine - m_numberSamplesPerLineSignals,
m_settings.m_nbLines - m_numberOfBlackLines
);
}
m_imageIndex = 0;
m_colIndex = 0;
m_rowIndex = 0;
}
if ((settings.m_topTimeFactor != m_settings.m_topTimeFactor) || force) {
m_numberSamplesPerHTop = m_numberSamplesPerHTopNom + settings.m_topTimeFactor;
}
if ((settings.m_fmDeviation != m_settings.m_fmDeviation) || force) {
m_objPhaseDiscri.setFMScaling(1.0f / settings.m_fmDeviation);
}
m_settings = settings;
}