mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-25 10:00:21 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			410 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			410 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////////
 | |
| // Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany     //
 | |
| // written by Christian Daniel                                                       //
 | |
| // Copyright (C) 2016 Edouard Griffiths, F4EXB <f4exb06@gmail.com>                   //
 | |
| //                                                                                   //
 | |
| // This program is free software; you can redistribute it and/or modify              //
 | |
| // it under the terms of the GNU General Public License as published by              //
 | |
| // the Free Software Foundation as version 3 of the License, or                      //
 | |
| // (at your option) any later version.                                               //
 | |
| //                                                                                   //
 | |
| // This program is distributed in the hope that it will be useful,                   //
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of                    //
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                      //
 | |
| // GNU General Public License V3 for more details.                                   //
 | |
| //                                                                                   //
 | |
| // You should have received a copy of the GNU General Public License                 //
 | |
| // along with this program. If not, see <http://www.gnu.org/licenses/>.              //
 | |
| ///////////////////////////////////////////////////////////////////////////////////////
 | |
| #ifndef INCLUDE_KISSFFT_H
 | |
| #define INCLUDE_KISSFFT_H
 | |
| 
 | |
| #include <complex>
 | |
| #include <vector>
 | |
| 
 | |
| /*
 | |
| Copyright (c) 2003-2010 Mark Borgerding
 | |
| 
 | |
| All rights reserved.
 | |
| 
 | |
| Redistribution and use in source and binary forms, with or without
 | |
| modification, are permitted provided that the following conditions
 | |
| are met:
 | |
| 
 | |
| 	* Redistributions of source code must retain the above copyright
 | |
| 	notice, this list of conditions and the following disclaimer.
 | |
| 	* Redistributions in binary form must reproduce the above copyright
 | |
| 	notice, this list of conditions and the following disclaimer in the
 | |
| 	documentation and/or other materials provided with the distribution.
 | |
| 	* Neither the author nor the names of any contributors may be used to
 | |
| 	endorse or promote products derived from this software without
 | |
| 	specific prior written permission.
 | |
| 
 | |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
| AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
| IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
| ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 | |
| LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
| CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
| SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
| INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | |
| CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
| ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 | |
| THE POSSIBILITY OF SUCH DAMAGE.
 | |
| */
 | |
| 
 | |
| namespace kissfft_utils {
 | |
| 
 | |
| 	template<typename T_scalar, typename T_complex>
 | |
| 	struct traits {
 | |
| 		typedef T_scalar scalar_type;
 | |
| 		typedef T_complex cpx_type;
 | |
| 		void fill_twiddles(std::complex<T_scalar>* dst, int nfft, bool inverse)
 | |
| 		{
 | |
| 			T_scalar phinc = (inverse ? 2 : -2) * acos((T_scalar)-1) / nfft;
 | |
| 			for(int i = 0; i < nfft; ++i)
 | |
| 				dst[i] = exp(std::complex<T_scalar>(0, i * phinc));
 | |
| 		}
 | |
| 
 | |
| 		void prepare(std::vector<std::complex<T_scalar> >& dst, int nfft, bool inverse, std::vector<int>& stageRadix, std::vector<int>& stageRemainder)
 | |
| 		{
 | |
| 			_twiddles.resize(nfft);
 | |
| 			fill_twiddles(&_twiddles[0], nfft, inverse);
 | |
| 			dst = _twiddles;
 | |
| 
 | |
| 			//factorize
 | |
| 			//start factoring out 4's, then 2's, then 3,5,7,9,...
 | |
| 			int n = nfft;
 | |
| 			int p = 4;
 | |
| 			do {
 | |
| 				while(n % p) {
 | |
| 					switch(p) {
 | |
| 						case 4:
 | |
| 							p = 2;
 | |
| 							break;
 | |
| 						case 2:
 | |
| 							p = 3;
 | |
| 							break;
 | |
| 						default:
 | |
| 							p += 2;
 | |
| 							break;
 | |
| 					}
 | |
| 					if(p * p > n)
 | |
| 						p = n;// no more factors
 | |
| 				}
 | |
| 				n /= p;
 | |
| 				stageRadix.push_back(p);
 | |
| 				stageRemainder.push_back(n);
 | |
| 			} while(n > 1);
 | |
| 		}
 | |
| 		std::vector<cpx_type> _twiddles;
 | |
| 
 | |
| 		const cpx_type twiddle(int i)
 | |
| 		{
 | |
| 			return _twiddles[i];
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| template<typename T_Scalar, typename T_Complex, typename T_traits = kissfft_utils::traits<T_Scalar, T_Complex> >
 | |
| class kissfft {
 | |
| public:
 | |
| 	typedef T_traits traits_type;
 | |
| 	typedef typename traits_type::scalar_type scalar_type;
 | |
| 	typedef typename traits_type::cpx_type cpx_type;
 | |
| 
 | |
| 	kissfft()
 | |
| 	{
 | |
| 	}
 | |
| 
 | |
| 	kissfft(int nfft, bool inverse, const traits_type & traits = traits_type()) :
 | |
| 		_nfft(nfft), _inverse(inverse), _traits(traits)
 | |
| 	{
 | |
| 		_traits.prepare(_twiddles, _nfft, _inverse, _stageRadix, _stageRemainder);
 | |
| 	}
 | |
| 
 | |
| 	void configure(int nfft, bool inverse, const traits_type & traits = traits_type())
 | |
| 	{
 | |
| 		_twiddles.clear();
 | |
| 		_stageRadix.clear();
 | |
| 		_stageRemainder.clear();
 | |
| 
 | |
| 		_nfft = nfft;
 | |
| 		_inverse = inverse;
 | |
| 		_traits = traits;
 | |
| 		_traits.prepare(_twiddles, _nfft, _inverse, _stageRadix, _stageRemainder);
 | |
| 	}
 | |
| 
 | |
| 	void transform(const cpx_type* src, cpx_type* dst)
 | |
| 	{
 | |
| 		kf_work(0, dst, src, 1, 1);
 | |
| 	}
 | |
| 
 | |
| private:
 | |
| 	void kf_work(int stage, cpx_type* Fout, const cpx_type* f, size_t fstride, size_t in_stride)
 | |
| 	{
 | |
| 		int p = _stageRadix[stage];
 | |
| 		int m = _stageRemainder[stage];
 | |
| 		cpx_type * Fout_beg = Fout;
 | |
| 		cpx_type * Fout_end = Fout + p * m;
 | |
| 
 | |
| 		if(m == 1) {
 | |
| 			do {
 | |
| 				*Fout = *f;
 | |
| 				f += fstride * in_stride;
 | |
| 			} while(++Fout != Fout_end);
 | |
| 		} else {
 | |
| 			do {
 | |
| 				// recursive call:
 | |
| 				// DFT of size m*p performed by doing
 | |
| 				// p instances of smaller DFTs of size m,
 | |
| 				// each one takes a decimated version of the input
 | |
| 				kf_work(stage + 1, Fout, f, fstride * p, in_stride);
 | |
| 				f += fstride * in_stride;
 | |
| 			} while((Fout += m) != Fout_end);
 | |
| 		}
 | |
| 
 | |
| 		Fout = Fout_beg;
 | |
| 
 | |
| 		// recombine the p smaller DFTs
 | |
| 		switch(p) {
 | |
| 			case 2:
 | |
| 				kf_bfly2(Fout, fstride, m);
 | |
| 				break;
 | |
| 			case 3:
 | |
| 				kf_bfly3(Fout, fstride, m);
 | |
| 				break;
 | |
| 			case 4:
 | |
| 				kf_bfly4(Fout, fstride, m);
 | |
| 				break;
 | |
| 			case 5:
 | |
| 				kf_bfly5(Fout, fstride, m);
 | |
| 				break;
 | |
| 			default:
 | |
| 				kf_bfly_generic(Fout, fstride, m, p);
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// these were #define macros in the original kiss_fft
 | |
| 	void C_ADD(cpx_type& c, const cpx_type& a, const cpx_type& b)
 | |
| 	{
 | |
| 		c = a + b;
 | |
| 	}
 | |
| 	void C_MUL(cpx_type& c, const cpx_type& a, const cpx_type& b)
 | |
| 	{
 | |
| 		//c = a * b;
 | |
| 		c = cpx_type(a.real() * b.real() - a.imag() * b.imag(), a.real() * b.imag() + a.imag() * b.real());
 | |
| 	}
 | |
| 	void C_SUB(cpx_type& c, const cpx_type& a, const cpx_type& b)
 | |
| 	{
 | |
| 		c = a - b;
 | |
| 	}
 | |
| 	void C_ADDTO(cpx_type& c, const cpx_type& a)
 | |
| 	{
 | |
| 		c += a;
 | |
| 	}
 | |
| 	void C_FIXDIV(cpx_type&, int)
 | |
| 	{
 | |
| 	} // NO-OP for float types
 | |
| 	scalar_type S_MUL(const scalar_type& a, const scalar_type& b)
 | |
| 	{
 | |
| 		return a * b;
 | |
| 	}
 | |
| 	scalar_type HALF_OF(const scalar_type& a)
 | |
| 	{
 | |
| 		return a * .5;
 | |
| 	}
 | |
| 	void C_MULBYSCALAR(cpx_type& c, const scalar_type& a)
 | |
| 	{
 | |
| 		c *= a;
 | |
| 	}
 | |
| 
 | |
| 	void kf_bfly2(cpx_type* Fout, const size_t fstride, int m)
 | |
| 	{
 | |
| 		for(int k = 0; k < m; ++k) {
 | |
| 			//cpx_type t = Fout[m + k] * _traits.twiddle(k * fstride);
 | |
| 			cpx_type t;
 | |
| 			C_MUL(t, Fout[m + k], _traits.twiddle(k * fstride));
 | |
| 			Fout[m + k] = Fout[k] - t;
 | |
| 			Fout[k] += t;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void kf_bfly4(cpx_type* Fout, const size_t fstride, const size_t m)
 | |
| 	{
 | |
| 		cpx_type scratch[7];
 | |
| 		int negative_if_inverse = _inverse * -2 + 1;
 | |
| 		for(size_t k = 0; k < m; ++k) {
 | |
| 			//scratch[0] = Fout[k + m] * _traits.twiddle(k * fstride);
 | |
| 			C_MUL(scratch[0], Fout[k + m], _traits.twiddle(k * fstride));
 | |
| 			C_MUL(scratch[1], Fout[k + 2 * m], _traits.twiddle(k * fstride * 2));
 | |
| 			C_MUL(scratch[2], Fout[k + 3 * m], _traits.twiddle(k * fstride * 3));
 | |
| 			scratch[5] = Fout[k] - scratch[1];
 | |
| 
 | |
| 			Fout[k] += scratch[1];
 | |
| 			scratch[3] = scratch[0] + scratch[2];
 | |
| 			scratch[4] = scratch[0] - scratch[2];
 | |
| 			scratch[4] = cpx_type(scratch[4].imag() * negative_if_inverse, -scratch[4].real() * negative_if_inverse);
 | |
| 
 | |
| 			Fout[k + 2 * m] = Fout[k] - scratch[3];
 | |
| 			Fout[k] += scratch[3];
 | |
| 			Fout[k + m] = scratch[5] + scratch[4];
 | |
| 			Fout[k + 3 * m] = scratch[5] - scratch[4];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void kf_bfly3(cpx_type* Fout, const size_t fstride, const size_t m)
 | |
| 	{
 | |
| 		size_t k = m;
 | |
| 		const size_t m2 = 2 * m;
 | |
| 		cpx_type* tw1;
 | |
| 		cpx_type* tw2;
 | |
| 		cpx_type scratch[5];
 | |
| 		cpx_type epi3;
 | |
| 		epi3 = _twiddles[fstride * m];
 | |
| 		tw1 = tw2 = &_twiddles[0];
 | |
| 
 | |
| 		do {
 | |
| 			C_FIXDIV(*Fout, 3);
 | |
| 			C_FIXDIV(Fout[m], 3);
 | |
| 			C_FIXDIV(Fout[m2], 3);
 | |
| 
 | |
| 			C_MUL(scratch[1], Fout[m], *tw1);
 | |
| 			C_MUL(scratch[2], Fout[m2], *tw2);
 | |
| 
 | |
| 			C_ADD(scratch[3], scratch[1], scratch[2]);
 | |
| 			C_SUB(scratch[0], scratch[1], scratch[2]);
 | |
| 			tw1 += fstride;
 | |
| 			tw2 += fstride * 2;
 | |
| 
 | |
| 			Fout[m] = cpx_type(Fout->real() - HALF_OF(scratch[3].real()), Fout->imag() - HALF_OF(scratch[3].imag()));
 | |
| 
 | |
| 			C_MULBYSCALAR(scratch[0], epi3.imag());
 | |
| 
 | |
| 			C_ADDTO(*Fout, scratch[3]);
 | |
| 
 | |
| 			Fout[m2] = cpx_type(Fout[m].real() + scratch[0].imag(), Fout[m].imag() - scratch[0].real());
 | |
| 
 | |
| 			C_ADDTO(Fout[m], cpx_type(-scratch[0].imag(), scratch[0].real()));
 | |
| 			++Fout;
 | |
| 		} while(--k);
 | |
| 	}
 | |
| 
 | |
| 	void kf_bfly5(cpx_type* Fout, const size_t fstride, const size_t m)
 | |
| 	{
 | |
| 		cpx_type* Fout0;
 | |
| 		cpx_type* Fout1;
 | |
| 		cpx_type* Fout2;
 | |
| 		cpx_type* Fout3;
 | |
| 		cpx_type* Fout4;
 | |
| 		size_t u;
 | |
| 		cpx_type scratch[13];
 | |
| 		cpx_type* twiddles = &_twiddles[0];
 | |
| 		cpx_type* tw;
 | |
| 		cpx_type ya, yb;
 | |
| 		ya = twiddles[fstride * m];
 | |
| 		yb = twiddles[fstride * 2 * m];
 | |
| 
 | |
| 		Fout0 = Fout;
 | |
| 		Fout1 = Fout0 + m;
 | |
| 		Fout2 = Fout0 + 2 * m;
 | |
| 		Fout3 = Fout0 + 3 * m;
 | |
| 		Fout4 = Fout0 + 4 * m;
 | |
| 
 | |
| 		tw = twiddles;
 | |
| 		for(u = 0; u < m; ++u) {
 | |
| 			C_FIXDIV(*Fout0, 5);
 | |
| 			C_FIXDIV(*Fout1, 5);
 | |
| 			C_FIXDIV(*Fout2, 5);
 | |
| 			C_FIXDIV(*Fout3, 5);
 | |
| 			C_FIXDIV(*Fout4, 5);
 | |
| 			scratch[0] = *Fout0;
 | |
| 
 | |
| 			C_MUL(scratch[1], *Fout1, tw[u * fstride]);
 | |
| 			C_MUL(scratch[2], *Fout2, tw[2 * u * fstride]);
 | |
| 			C_MUL(scratch[3], *Fout3, tw[3 * u * fstride]);
 | |
| 			C_MUL(scratch[4], *Fout4, tw[4 * u * fstride]);
 | |
| 
 | |
| 			C_ADD(scratch[7], scratch[1], scratch[4]);
 | |
| 			C_SUB(scratch[10], scratch[1], scratch[4]);
 | |
| 			C_ADD(scratch[8], scratch[2], scratch[3]);
 | |
| 			C_SUB(scratch[9], scratch[2], scratch[3]);
 | |
| 
 | |
| 			C_ADDTO(*Fout0, scratch[7]);
 | |
| 			C_ADDTO(*Fout0, scratch[8]);
 | |
| 
 | |
| 			scratch[5] = scratch[0] + cpx_type(S_MUL(scratch[7].real(), ya.real()) + S_MUL(scratch[8].real(), yb.real()), S_MUL(scratch[7].imag(), ya.real())
 | |
| 				+ S_MUL(scratch[8].imag(), yb.real()));
 | |
| 
 | |
| 			scratch[6] = cpx_type(S_MUL(scratch[10].imag(), ya.imag()) + S_MUL(scratch[9].imag(), yb.imag()), -S_MUL(scratch[10].real(), ya.imag()) - S_MUL(
 | |
| 				scratch[9].real(), yb.imag()));
 | |
| 
 | |
| 			C_SUB(*Fout1, scratch[5], scratch[6]);
 | |
| 			C_ADD(*Fout4, scratch[5], scratch[6]);
 | |
| 
 | |
| 			scratch[11] = scratch[0] + cpx_type(S_MUL(scratch[7].real(), yb.real()) + S_MUL(scratch[8].real(), ya.real()), S_MUL(scratch[7].imag(), yb.real())
 | |
| 				+ S_MUL(scratch[8].imag(), ya.real()));
 | |
| 
 | |
| 			scratch[12] = cpx_type(-S_MUL(scratch[10].imag(), yb.imag()) + S_MUL(scratch[9].imag(), ya.imag()), S_MUL(scratch[10].real(), yb.imag()) - S_MUL(
 | |
| 				scratch[9].real(), ya.imag()));
 | |
| 
 | |
| 			C_ADD(*Fout2, scratch[11], scratch[12]);
 | |
| 			C_SUB(*Fout3, scratch[11], scratch[12]);
 | |
| 
 | |
| 			++Fout0;
 | |
| 			++Fout1;
 | |
| 			++Fout2;
 | |
| 			++Fout3;
 | |
| 			++Fout4;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* perform the butterfly for one stage of a mixed radix FFT */
 | |
| 	void kf_bfly_generic(cpx_type* Fout, const size_t fstride, int m, int p)
 | |
| 	{
 | |
| 		int u;
 | |
| 		int k;
 | |
| 		int q1;
 | |
| 		int q;
 | |
| 		cpx_type* twiddles = &_twiddles[0];
 | |
| 		cpx_type t;
 | |
| 		int Norig = _nfft;
 | |
| 		cpx_type* scratchbuf = new cpx_type[p];
 | |
| 
 | |
| 		for(u = 0; u < m; ++u) {
 | |
| 			k = u;
 | |
| 			for(q1 = 0; q1 < p; ++q1) {
 | |
| 				scratchbuf[q1] = Fout[k];
 | |
| 				C_FIXDIV(scratchbuf[q1], p);
 | |
| 				k += m;
 | |
| 			}
 | |
| 
 | |
| 			k = u;
 | |
| 			for(q1 = 0; q1 < p; ++q1) {
 | |
| 				int twidx = 0;
 | |
| 				Fout[k] = scratchbuf[0];
 | |
| 				for(q = 1; q < p; ++q) {
 | |
| 					twidx += fstride * k;
 | |
| 					if(twidx >= Norig)
 | |
| 						twidx -= Norig;
 | |
| 					C_MUL(t, scratchbuf[q], twiddles[twidx]);
 | |
| 					C_ADDTO(Fout[k], t);
 | |
| 				}
 | |
| 				k += m;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		delete[] scratchbuf;
 | |
| 	}
 | |
| 
 | |
| 	int _nfft;
 | |
| 	bool _inverse;
 | |
| 	std::vector<cpx_type> _twiddles;
 | |
| 	std::vector<int> _stageRadix;
 | |
| 	std::vector<int> _stageRemainder;
 | |
| 	traits_type _traits;
 | |
| };
 | |
| #endif
 |