1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2026-02-03 00:52:20 -05:00
sdrangel/sdrbase/dsp/nco.cpp

149 lines
4.7 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany //
// written by Christian Daniel //
// Copyright (C) 2016-2019 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// Copyright (C) 2020 Kacper Michajłow <kasper93@gmail.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QtGlobal>
#include <cmath>
#include "dsp/nco.h"
Real NCO::m_table[NCO::TableSize];
bool NCO::m_tableInitialized = false;
void NCO::initTable()
{
if(m_tableInitialized)
return;
for(int i = 0; i < TableSize; i++)
m_table[i] = cos((2.0 * M_PI * i) / TableSize);
m_tableInitialized = true;
}
NCO::NCO()
{
initTable();
m_phase = 0;
m_phaseIncrement = 0;
}
uint64_t NCO::prsg63()
{
m_lfsr = m_lfsr << 32 | (m_lfsr << 1 ^ m_lfsr << 2) >> 32;
m_lfsr = m_lfsr << 32 | (m_lfsr << 1 ^ m_lfsr << 2) >> 32;
return m_lfsr;
}
void NCO::setFreq(Real freq, Real sampleRate, bool integerPhase, int ditherBits)
{
m_phaseIncrement = (Phase) std::round((freq * pow(2.0, PhaseBits)) / sampleRate);
if (integerPhase) {
m_phaseIncrement &= ~FracMask;
}
m_ditherMask = (1ull << ditherBits) - 1;
qDebug("NCO freq: %f phase inc: %u sr: %f dither: %d", freq, m_phaseIncrement, sampleRate, ditherBits);
}
Real NCO::next()
{
nextPhase();
return get();
}
Complex NCO::nextIQ()
{
nextPhase();
return getIQ();
}
Complex NCO::nextQI()
{
Complex iq = nextIQ();
return Complex(iq.imag(), iq.real());
}
Complex NCO::nextIQ(float imbalance)
{
nextPhase();
Phase phaseQ = imbalance < 0.0f ? m_phase + (Phase) (imbalance * powf(2.0f, PhaseBits)) : m_phase;
Phase phaseI = imbalance < 0.0f ? m_phase : m_phase + (Phase) (imbalance * powf(2.0f, PhaseBits));
Phase phaseIIntBits = (phaseI >> IntShift) & IntMask;
Phase phaseIFracBits = phaseI & FracMask;
Phase phaseQIntBits = (phaseQ >> IntShift) & IntMask;
Phase phaseQFracBits = phaseQ & FracMask;
unsigned i = phaseIIntBits;
unsigned j = (i + 1) & IntMask;
unsigned k = (phaseQIntBits + TableSize / 4) & IntMask;
unsigned l = (k + 1) & IntMask;
Frac fracI = ((Frac) phaseIFracBits) / Denom;
Frac fracQ = ((Frac) phaseQFracBits) / Denom;
Frac s = m_table[i] + fracI * (m_table[j] - m_table[i]); // Linear interpolation for sin
Frac c = m_table[k] + fracQ * (m_table[l] - m_table[k]); // Linear interpolation for cos
return Complex(s, -c);
}
void NCO::nextIQMul(Real& i, Real& q)
{
Real x = i;
Real y = q;
Complex iq = nextIQ();
i = x*iq.real() - y*iq.imag();
q = x*iq.imag() + y*iq.real();
}
Real NCO::get() const
{
Phase intBits = (m_phaseDithered >> IntShift) & IntMask;
Phase fracBits = m_phaseDithered & FracMask;
unsigned i = intBits;
unsigned j = (i + 1) & IntMask;
Frac frac = ((Frac) fracBits) / Denom;
return m_table[i] + frac * (m_table[j] - m_table[i]); // Linear interpolation
}
Complex NCO::getIQ() const
{
Phase intBits = (m_phaseDithered >> IntShift) & IntMask;
Phase fracBits = m_phaseDithered & FracMask;
unsigned i = intBits;
unsigned j = (i + 1) & IntMask;
unsigned k = (i + TableSize / 4) & IntMask;
unsigned l = (j + TableSize / 4) & IntMask;
Frac frac = ((Frac) fracBits) / Denom;
Frac s = m_table[i] + frac * (m_table[j] - m_table[i]); // Linear interpolation for sin
Frac c = m_table[k] + frac * (m_table[l] - m_table[k]); // Linear interpolation for cos
return Complex(s, -c);
}
void NCO::getIQ(Complex& c) const
{
c = getIQ();
}
Complex NCO::getQI() const
{
Complex iq = getIQ();
return Complex(iq.imag(), iq.real());
}
void NCO::getQI(Complex& c) const
{
c = getQI();
}