1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-29 19:28:47 -05:00
sdrangel/plugins/channelrx/udpsink/udpsinksink.cpp

510 lines
19 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QUdpSocket>
#include <QHostAddress>
#include <QNetworkAccessManager>
#include <QNetworkReply>
#include <QBuffer>
#include "SWGChannelSettings.h"
#include "SWGUDPSinkSettings.h"
#include "SWGChannelReport.h"
#include "SWGUDPSinkReport.h"
#include "dsp/basebandsamplesink.h"
#include "dsp/dspengine.h"
#include "dsp/dspcommands.h"
#include "dsp/devicesamplemimo.h"
#include "device/deviceapi.h"
#include "util/db.h"
#include "udpsinksink.h"
const Real UDPSinkSink::m_agcTarget = 16384.0f;
UDPSinkSink::UDPSinkSink() :
m_channelSampleRate(48000),
m_channelFrequencyOffset(0),
m_outMovingAverage(480, 1e-10),
m_inMovingAverage(480, 1e-10),
m_amMovingAverage(1200, 1e-10),
m_audioFifo(24000),
m_spectrum(nullptr),
m_spectrumEnabled(false),
m_spectrumPositiveOnly(false),
m_squelch(1e-6),
m_squelchOpen(false),
m_squelchOpenCount(0),
m_squelchCloseCount(0),
m_squelchGate(4800),
m_squelchRelease(4800),
m_agc(9600, m_agcTarget, 1e-6)
{
m_udpBuffer16 = new UDPSinkUtil<Sample16>(this, udpBlockSize, m_settings.m_udpPort);
m_udpBufferMono16 = new UDPSinkUtil<int16_t>(this, udpBlockSize, m_settings.m_udpPort);
m_udpBuffer24 = new UDPSinkUtil<Sample24>(this, udpBlockSize, m_settings.m_udpPort);
m_audioSocket = new QUdpSocket(this);
m_udpAudioBuf = new char[m_udpAudioPayloadSize];
m_audioBuffer.resize(1<<9);
m_audioBufferFill = 0;
m_nco.setFreq(0, m_channelSampleRate);
m_interpolator.create(16, m_channelSampleRate, m_settings.m_rfBandwidth / 2.0);
m_sampleDistanceRemain = m_channelSampleRate / m_settings.m_outputSampleRate;
m_spectrumEnabled = false;
m_nextSSBId = 0;
m_nextS16leId = 0;
m_last = 0;
m_this = 0;
m_scale = 0;
m_magsq = 0;
m_inMagsq = 0;
UDPFilter = new fftfilt(0.0, (m_settings.m_rfBandwidth / 2.0) / m_settings.m_outputSampleRate, udpBlockSize);
m_phaseDiscri.setFMScaling((float) m_settings. m_outputSampleRate / (2.0f * m_settings.m_fmDeviation));
if (m_audioSocket->bind(QHostAddress::LocalHost, m_settings.m_audioPort))
{
qDebug("UDPSinkSink::UDPSinkSink: bind audio socket to port %d", m_settings.m_audioPort);
connect(m_audioSocket, SIGNAL(readyRead()), this, SLOT(audioReadyRead()), Qt::QueuedConnection);
}
else
{
qWarning("UDPSinkSink::UDPSinkSink: cannot bind audio port");
}
m_agc.setClampMax(SDR_RX_SCALED*SDR_RX_SCALED);
m_agc.setClamping(true);
//DSPEngine::instance()->addAudioSink(&m_audioFifo);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
applySettings(m_settings, true);
}
UDPSinkSink::~UDPSinkSink()
{
delete m_audioSocket;
delete m_udpBuffer24;
delete m_udpBuffer16;
delete m_udpBufferMono16;
delete[] m_udpAudioBuf;
delete UDPFilter;
}
void UDPSinkSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
{
Complex ci;
fftfilt::cmplx* sideband;
double l, r;
m_sampleBuffer.clear();
for(SampleVector::const_iterator it = begin; it < end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if(m_interpolator.decimate(&m_sampleDistanceRemain, c, &ci))
{
double inMagSq;
double agcFactor = 1.0;
if ((m_settings.m_agc) &&
(m_settings.m_sampleFormat != UDPSinkSettings::FormatNFM) &&
(m_settings.m_sampleFormat != UDPSinkSettings::FormatNFMMono) &&
(m_settings.m_sampleFormat != UDPSinkSettings::FormatIQ16) &&
(m_settings.m_sampleFormat != UDPSinkSettings::FormatIQ24))
{
agcFactor = m_agc.feedAndGetValue(ci);
inMagSq = m_agc.getMagSq();
}
else
{
inMagSq = ci.real()*ci.real() + ci.imag()*ci.imag();
}
m_inMovingAverage.feed(inMagSq / (SDR_RX_SCALED*SDR_RX_SCALED));
m_inMagsq = m_inMovingAverage.average();
Sample ss(ci.real(), ci.imag());
m_sampleBuffer.push_back(ss);
m_sampleDistanceRemain += m_channelSampleRate / m_settings.m_outputSampleRate;
calculateSquelch(m_inMagsq);
if (m_settings.m_sampleFormat == UDPSinkSettings::FormatLSB) // binaural LSB
{
ci *= agcFactor;
int n_out = UDPFilter->runSSB(ci, &sideband, false);
if (n_out)
{
for (int i = 0; i < n_out; i++)
{
l = m_squelchOpen ? sideband[i].real() * m_settings.m_gain : 0;
r = m_squelchOpen ? sideband[i].imag() * m_settings.m_gain : 0;
udpWrite(l, r);
m_outMovingAverage.feed((l*l + r*r) / (SDR_RX_SCALED*SDR_RX_SCALED));
}
}
}
if (m_settings.m_sampleFormat == UDPSinkSettings::FormatUSB) // binaural USB
{
ci *= agcFactor;
int n_out = UDPFilter->runSSB(ci, &sideband, true);
if (n_out)
{
for (int i = 0; i < n_out; i++)
{
l = m_squelchOpen ? sideband[i].real() * m_settings.m_gain : 0;
r = m_squelchOpen ? sideband[i].imag() * m_settings.m_gain : 0;
udpWrite(l, r);
m_outMovingAverage.feed((l*l + r*r) / (SDR_RX_SCALED*SDR_RX_SCALED));
}
}
}
else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatNFM)
{
Real discri = m_squelchOpen ? m_phaseDiscri.phaseDiscriminator(ci) * m_settings.m_gain : 0;
udpWriteNorm(discri, discri);
m_outMovingAverage.feed(discri*discri);
}
else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatNFMMono)
{
Real discri = m_squelchOpen ? m_phaseDiscri.phaseDiscriminator(ci) * m_settings.m_gain : 0;
udpWriteNormMono(discri);
m_outMovingAverage.feed(discri*discri);
}
else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatLSBMono) // Monaural LSB
{
ci *= agcFactor;
int n_out = UDPFilter->runSSB(ci, &sideband, false);
if (n_out)
{
for (int i = 0; i < n_out; i++)
{
l = m_squelchOpen ? (sideband[i].real() + sideband[i].imag()) * 0.7 * m_settings.m_gain : 0;
udpWriteMono(l);
m_outMovingAverage.feed((l * l) / (SDR_RX_SCALED*SDR_RX_SCALED));
}
}
}
else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatUSBMono) // Monaural USB
{
ci *= agcFactor;
int n_out = UDPFilter->runSSB(ci, &sideband, true);
if (n_out)
{
for (int i = 0; i < n_out; i++)
{
l = m_squelchOpen ? (sideband[i].real() + sideband[i].imag()) * 0.7 * m_settings.m_gain : 0;
udpWriteMono(l);
m_outMovingAverage.feed((l * l) / (SDR_RX_SCALED*SDR_RX_SCALED));
}
}
}
else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatAMMono)
{
Real amplitude = m_squelchOpen ? sqrt(inMagSq) * agcFactor * m_settings.m_gain : 0;
FixReal demod = (FixReal) amplitude;
udpWriteMono(demod);
m_outMovingAverage.feed((amplitude/SDR_RX_SCALEF)*(amplitude/SDR_RX_SCALEF));
}
else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatAMNoDCMono)
{
if (m_squelchOpen)
{
double demodf = sqrt(inMagSq);
m_amMovingAverage.feed(demodf);
Real amplitude = (demodf - m_amMovingAverage.average()) * agcFactor * m_settings.m_gain;
FixReal demod = (FixReal) amplitude;
udpWriteMono(demod);
m_outMovingAverage.feed((amplitude/SDR_RX_SCALEF)*(amplitude/SDR_RX_SCALEF));
}
else
{
udpWriteMono(0);
m_outMovingAverage.feed(0);
}
}
else if (m_settings.m_sampleFormat == UDPSinkSettings::FormatAMBPFMono)
{
if (m_squelchOpen)
{
double demodf = sqrt(inMagSq);
demodf = m_bandpass.filter(demodf);
Real amplitude = demodf * agcFactor * m_settings.m_gain;
FixReal demod = (FixReal) amplitude;
udpWriteMono(demod);
m_outMovingAverage.feed((amplitude/SDR_RX_SCALEF)*(amplitude/SDR_RX_SCALEF));
}
else
{
udpWriteMono(0);
m_outMovingAverage.feed(0);
}
}
else // Raw I/Q samples
{
if (m_squelchOpen)
{
udpWrite(ci.real() * m_settings.m_gain, ci.imag() * m_settings.m_gain);
m_outMovingAverage.feed((inMagSq*m_settings.m_gain*m_settings.m_gain) / (SDR_RX_SCALED*SDR_RX_SCALED));
}
else
{
udpWrite(0, 0);
m_outMovingAverage.feed(0);
}
}
m_magsq = m_outMovingAverage.average();
}
}
//qDebug() << "UDPSink::feed: " << m_sampleBuffer.size() * 4;
if ((m_spectrum != 0) && (m_spectrumEnabled)) {
m_spectrum->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), m_spectrumPositiveOnly);
}
}
void UDPSinkSink::audioReadyRead()
{
while (m_audioSocket->hasPendingDatagrams())
{
qint64 pendingDataSize = m_audioSocket->pendingDatagramSize();
qint64 udpReadBytes = m_audioSocket->readDatagram(m_udpAudioBuf, pendingDataSize, 0, 0);
//qDebug("UDPSink::audioReadyRead: %lld", udpReadBytes);
if (m_settings.m_audioActive)
{
if (m_settings.m_audioStereo)
{
for (int i = 0; i < udpReadBytes - 3; i += 4)
{
qint16 l_sample = (qint16) *(&m_udpAudioBuf[i]);
qint16 r_sample = (qint16) *(&m_udpAudioBuf[i+2]);
m_audioBuffer[m_audioBufferFill].l = l_sample * m_settings.m_volume;
m_audioBuffer[m_audioBufferFill].r = r_sample * m_settings.m_volume;
++m_audioBufferFill;
if (m_audioBufferFill >= m_audioBuffer.size())
{
uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill);
if (res != m_audioBufferFill) {
qDebug("UDPSinkSink::audioReadyRead: (stereo) lost %u samples", m_audioBufferFill - res);
}
m_audioBufferFill = 0;
}
}
}
else
{
for (int i = 0; i < udpReadBytes - 1; i += 2)
{
qint16 sample = (qint16) *(&m_udpAudioBuf[i]);
m_audioBuffer[m_audioBufferFill].l = sample * m_settings.m_volume;
m_audioBuffer[m_audioBufferFill].r = sample * m_settings.m_volume;
++m_audioBufferFill;
if (m_audioBufferFill >= m_audioBuffer.size())
{
uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill);
if (res != m_audioBufferFill) {
qDebug("UDPSinkSink::audioReadyRead: (mono) lost %u samples", m_audioBufferFill - res);
}
m_audioBufferFill = 0;
}
}
}
if (m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill) != m_audioBufferFill) {
qDebug("UDPSinkSink::audioReadyRead: lost samples");
}
m_audioBufferFill = 0;
}
}
}
void UDPSinkSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "UDPSinkSink::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset;
if((channelFrequencyOffset != m_channelFrequencyOffset) ||
(channelSampleRate != m_channelSampleRate) || force)
{
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
}
if ((channelSampleRate != m_channelSampleRate) || force)
{
m_interpolator.create(16, channelSampleRate, m_settings.m_rfBandwidth / 2.0);
m_sampleDistanceRemain = channelSampleRate / m_settings.m_outputSampleRate;
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
}
void UDPSinkSink::applySettings(const UDPSinkSettings& settings, bool force)
{
qDebug() << "UDPSinkSink::applySettings:"
<< " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
<< " m_audioActive: " << settings.m_audioActive
<< " m_audioStereo: " << settings.m_audioStereo
<< " m_gain: " << settings.m_gain
<< " m_volume: " << settings.m_volume
<< " m_squelchEnabled: " << settings.m_squelchEnabled
<< " m_squelchdB: " << settings.m_squelchdB
<< " m_squelchGate" << settings.m_squelchGate
<< " m_agc" << settings.m_agc
<< " m_sampleFormat: " << settings.m_sampleFormat
<< " m_outputSampleRate: " << settings.m_outputSampleRate
<< " m_rfBandwidth: " << settings.m_rfBandwidth
<< " m_fmDeviation: " << settings.m_fmDeviation
<< " m_udpAddressStr: " << settings.m_udpAddress
<< " m_udpPort: " << settings.m_udpPort
<< " m_audioPort: " << settings.m_audioPort
<< " m_streamIndex: " << settings.m_streamIndex
<< " m_useReverseAPI: " << settings.m_useReverseAPI
<< " m_reverseAPIAddress: " << settings.m_reverseAPIAddress
<< " m_reverseAPIPort: " << settings.m_reverseAPIPort
<< " m_reverseAPIDeviceIndex: " << settings.m_reverseAPIDeviceIndex
<< " m_reverseAPIChannelIndex: " << settings.m_reverseAPIChannelIndex
<< " force: " << force;
if ((settings.m_audioActive != m_settings.m_audioActive) || force)
{
if (settings.m_audioActive) {
m_audioBufferFill = 0;
}
}
if ((settings.m_inputFrequencyOffset != m_settings.m_inputFrequencyOffset) ||
(settings.m_rfBandwidth != m_settings.m_rfBandwidth) ||
(settings.m_outputSampleRate != m_settings.m_outputSampleRate) || force)
{
m_interpolator.create(16, m_channelSampleRate, settings.m_rfBandwidth / 2.0);
m_sampleDistanceRemain = m_channelSampleRate / settings.m_outputSampleRate;
if ((settings.m_sampleFormat == UDPSinkSettings::FormatLSB) ||
(settings.m_sampleFormat == UDPSinkSettings::FormatLSBMono) ||
(settings.m_sampleFormat == UDPSinkSettings::FormatUSB) ||
(settings.m_sampleFormat == UDPSinkSettings::FormatUSBMono))
{
m_squelchGate = settings.m_outputSampleRate * 0.05;
}
else
{
m_squelchGate = (settings.m_outputSampleRate * settings.m_squelchGate) / 100;
}
m_squelchRelease = (settings.m_outputSampleRate * settings.m_squelchGate) / 100;
initSquelch(m_squelchOpen);
m_agc.resize(settings.m_outputSampleRate/5, settings.m_outputSampleRate/20, m_agcTarget); // Fixed 200 ms
int stepDownDelay = (settings.m_outputSampleRate * (settings.m_squelchGate == 0 ? 1 : settings.m_squelchGate))/100;
m_agc.setStepDownDelay(stepDownDelay);
m_agc.setGate(settings.m_outputSampleRate * 0.05);
m_bandpass.create(301, settings.m_outputSampleRate, 300.0, settings.m_rfBandwidth / 2.0f);
m_inMovingAverage.resize(settings.m_outputSampleRate * 0.01, 1e-10); // 10 ms
m_amMovingAverage.resize(settings.m_outputSampleRate * 0.005, 1e-10); // 5 ms
m_outMovingAverage.resize(settings.m_outputSampleRate * 0.01, 1e-10); // 10 ms
}
if ((settings.m_squelchGate != m_settings.m_squelchGate) || force)
{
if ((settings.m_sampleFormat == UDPSinkSettings::FormatLSB) ||
(settings.m_sampleFormat == UDPSinkSettings::FormatLSBMono) ||
(settings.m_sampleFormat == UDPSinkSettings::FormatUSB) ||
(settings.m_sampleFormat == UDPSinkSettings::FormatUSBMono))
{
m_squelchGate = settings.m_outputSampleRate * 0.05;
}
else
{
m_squelchGate = (settings.m_outputSampleRate * settings.m_squelchGate)/100;
}
m_squelchRelease = (settings.m_outputSampleRate * settings.m_squelchGate)/100;
initSquelch(m_squelchOpen);
int stepDownDelay = (settings.m_outputSampleRate * (settings.m_squelchGate == 0 ? 1 : settings.m_squelchGate))/100;
m_agc.setStepDownDelay(stepDownDelay); // same delay for up and down
}
if ((settings.m_squelchdB != m_settings.m_squelchdB) || force)
{
m_squelch = CalcDb::powerFromdB(settings.m_squelchdB);
m_agc.setThreshold(m_squelch*(1<<23));
}
if ((settings.m_udpAddress != m_settings.m_udpAddress) || force)
{
m_udpBuffer16->setAddress(const_cast<QString&>(settings.m_udpAddress));
m_udpBufferMono16->setAddress(const_cast<QString&>(settings.m_udpAddress));
m_udpBuffer24->setAddress(const_cast<QString&>(settings.m_udpAddress));
}
if ((settings.m_udpPort != m_settings.m_udpPort) || force)
{
m_udpBuffer16->setPort(settings.m_udpPort);
m_udpBufferMono16->setPort(settings.m_udpPort);
m_udpBuffer24->setPort(settings.m_udpPort);
}
if ((settings.m_audioPort != m_settings.m_audioPort) || force)
{
disconnect(m_audioSocket, SIGNAL(readyRead()), this, SLOT(audioReadyRead()));
delete m_audioSocket;
m_audioSocket = new QUdpSocket(this);
if (m_audioSocket->bind(QHostAddress::LocalHost, settings.m_audioPort))
{
connect(m_audioSocket, SIGNAL(readyRead()), this, SLOT(audioReadyRead()), Qt::QueuedConnection);
qDebug("UDPSinkSink::handleMessage: audio socket bound to port %d", settings.m_audioPort);
}
else
{
qWarning("UDPSinkSink::handleMessage: cannot bind audio socket");
}
}
if ((settings.m_fmDeviation != m_settings.m_fmDeviation) || force) {
m_phaseDiscri.setFMScaling((float) settings.m_outputSampleRate / (2.0f * settings.m_fmDeviation));
}
m_settings = settings;
}