1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-29 19:28:47 -05:00
sdrangel/plugins/channeltx/modais/aismodsource.cpp

529 lines
16 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// Copyright (C) 2020 Jon Beniston, M7RCE //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QDebug>
#include "dsp/basebandsamplesink.h"
#include "dsp/datafifo.h"
#include "dsp/scopevis.h"
#include "aismodsource.h"
#include "util/crc.h"
#include "util/messagequeue.h"
#include "maincore.h"
#include "channel/channelapi.h"
AISModSource::AISModSource() :
m_channelSampleRate(AISModSettings::AISMOD_SAMPLE_RATE),
m_channelFrequencyOffset(0),
m_fmPhase(0.0),
m_spectrumSink(nullptr),
m_scopeSink(nullptr),
m_magsq(0.0),
m_levelCalcCount(0),
m_peakLevel(0.0f),
m_levelSum(0.0f),
m_state(idle),
m_byteIdx(0),
m_bitIdx(0),
m_last5Bits(0),
m_bitCount(0),
m_scopeSampleBufferIndex(0),
m_specSampleBufferIndex(0)
{
m_demodBuffer.resize(1<<12);
m_demodBufferFill = 0;
m_scopeSampleBuffer.resize(m_scopeSampleBufferSize);
m_specSampleBuffer.resize(m_specSampleBufferSize);
applySettings(m_settings, true);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
}
AISModSource::~AISModSource()
{
}
void AISModSource::pull(SampleVector::iterator begin, unsigned int nbSamples)
{
std::for_each(
begin,
begin + nbSamples,
[this](Sample& s) {
pullOne(s);
}
);
}
void AISModSource::pullOne(Sample& sample)
{
if (m_settings.m_channelMute)
{
sample.m_real = 0.0f;
sample.m_imag = 0.0f;
return;
}
Complex ci;
if (m_interpolatorDistance > 1.0f)
{
modulateSample();
while (!m_interpolator.decimate(&m_interpolatorDistanceRemain, m_modSample, &ci))
{
modulateSample();
}
}
else
{
if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ci))
{
modulateSample();
}
}
m_interpolatorDistanceRemain += m_interpolatorDistance;
ci *= m_carrierNco.nextIQ(); // shift to carrier frequency
// Calculate power
double magsq = ci.real() * ci.real() + ci.imag() * ci.imag();
m_movingAverage(magsq);
m_magsq = m_movingAverage.asDouble();
// Convert from float to fixed point
sample.m_real = (FixReal) (ci.real() * SDR_TX_SCALEF);
sample.m_imag = (FixReal) (ci.imag() * SDR_TX_SCALEF);
}
void AISModSource::sampleToSpectrum(Complex sample)
{
if (m_spectrumSink)
{
Real r = std::real(sample) * SDR_TX_SCALEF;
Real i = std::imag(sample) * SDR_TX_SCALEF;
m_specSampleBuffer[m_specSampleBufferIndex++] = Sample(r, i);
if (m_specSampleBufferIndex == m_specSampleBufferSize)
{
m_spectrumSink->feed(m_specSampleBuffer.begin(), m_specSampleBuffer.end(), false);
m_specSampleBufferIndex = 0;
}
}
}
void AISModSource::sampleToScope(Complex sample)
{
if (m_scopeSink)
{
Real r = std::real(sample) * SDR_RX_SCALEF;
Real i = std::imag(sample) * SDR_RX_SCALEF;
m_scopeSampleBuffer[m_scopeSampleBufferIndex++] = Sample(r, i);
if (m_scopeSampleBufferIndex == m_scopeSampleBufferSize)
{
std::vector<SampleVector::const_iterator> vbegin;
vbegin.push_back(m_scopeSampleBuffer.begin());
m_scopeSink->feed(vbegin, m_scopeSampleBufferSize);
m_scopeSampleBufferIndex = 0;
}
}
}
void AISModSource::modulateSample()
{
Real mod;
Real linearRampGain;
if ((m_state == idle) || (m_state == wait))
{
m_modSample.real(0.0f);
m_modSample.imag(0.0f);
sampleToSpectrum(m_modSample);
sampleToScope(m_modSample);
Real s = std::abs(m_modSample);
calculateLevel(s);
if (m_state == wait)
{
m_waitCounter--;
if (m_waitCounter == 0) {
initTX();
}
}
}
else
{
if (m_sampleIdx == 0)
{
if (bitsValid())
{
// NRZI encoding - encode 0 as change of freq, 1 no change
if (getBit() == 0) {
m_nrziBit = m_nrziBit == 1 ? 0 : 1;
}
}
// Should we start ramping down power?
if ((m_bitCount < m_settings.m_rampDownBits) || ((m_bitCount == 0) && !m_settings.m_rampDownBits))
{
m_state = ramp_down;
if (m_settings.m_rampDownBits > 0) {
m_powRamp = -m_settings.m_rampRange/(m_settings.m_rampDownBits * (Real)m_samplesPerSymbol);
}
}
}
m_sampleIdx++;
if (m_sampleIdx >= m_samplesPerSymbol) {
m_sampleIdx = 0;
}
// Apply Gaussian pulse shaping filter
mod = m_pulseShape.filter(m_nrziBit ? 1.0f : -1.0f);
// FM
m_fmPhase += m_phaseSensitivity * mod;
// Keep phase in range -pi,pi
if (m_fmPhase > M_PI) {
m_fmPhase -= 2.0f * M_PI;
} else if (m_fmPhase < -M_PI) {
m_fmPhase += 2.0f * M_PI;
}
linearRampGain = powf(10.0f, m_pow/20.0f);
m_modSample.real(m_linearGain * linearRampGain * cos(m_fmPhase));
m_modSample.imag(m_linearGain * linearRampGain * sin(m_fmPhase));
if (m_iqFile.is_open()) {
m_iqFile << mod << "," << m_modSample.real() << "," << m_modSample.imag() << "\n";
}
if (m_settings.m_rfNoise)
{
// Noise to test filter frequency response
m_modSample.real(m_linearGain * ((Real)rand()/((Real)RAND_MAX)-0.5f));
m_modSample.imag(m_linearGain * ((Real)rand()/((Real)RAND_MAX)-0.5f));
}
// Display baseband in spectrum analyser and scope
sampleToSpectrum(m_modSample);
sampleToScope(m_modSample);
// Ramp up/down power at start/end of packet
if ((m_state == ramp_up) || (m_state == ramp_down))
{
m_pow += m_powRamp;
if ((m_state == ramp_up) && (m_pow >= 0.0f))
{
// Finished ramp up, transmit at full gain
m_state = tx;
m_pow = 0.0f;
}
else if ((m_state == ramp_down) && ( (m_settings.m_rampRange == 0)
|| (m_settings.m_rampDownBits == 0)
|| (m_pow <= -(Real)m_settings.m_rampRange)
))
{
m_state = idle;
// Do we need to retransmit the packet?
if (m_settings.m_repeat)
{
if (m_packetRepeatCount > 0)
m_packetRepeatCount--;
if ((m_packetRepeatCount == AISModSettings::infinitePackets) || (m_packetRepeatCount > 0))
{
if (m_settings.m_repeatDelay > 0.0f)
{
// Wait before retransmitting
m_state = wait;
m_waitCounter = m_settings.m_repeatDelay * AISModSettings::AISMOD_SAMPLE_RATE;
}
else
{
// Retransmit immediately
initTX();
}
}
}
}
}
Real s = std::abs(m_modSample);
calculateLevel(s);
}
// Send Gaussian filter output to mod analyzer
m_demodBuffer[m_demodBufferFill] = std::real(mod) * std::numeric_limits<int16_t>::max();
++m_demodBufferFill;
if (m_demodBufferFill >= m_demodBuffer.size())
{
QList<DataFifo*> *dataFifos = MainCore::instance()->getDataPipes().getFifos(m_channel, "demod");
if (dataFifos)
{
QList<DataFifo*>::iterator it = dataFifos->begin();
for (; it != dataFifos->end(); ++it) {
(*it)->write((quint8*) &m_demodBuffer[0], m_demodBuffer.size() * sizeof(qint16), DataFifo::DataTypeI16);
}
}
m_demodBufferFill = 0;
}
}
void AISModSource::calculateLevel(Real& sample)
{
if (m_levelCalcCount < m_levelNbSamples)
{
m_peakLevel = std::max(std::fabs(m_peakLevel), sample);
m_levelSum += sample * sample;
m_levelCalcCount++;
}
else
{
m_rmsLevel = sqrt(m_levelSum / m_levelNbSamples);
m_peakLevelOut = m_peakLevel;
m_peakLevel = 0.0f;
m_levelSum = 0.0f;
m_levelCalcCount = 0;
}
}
void AISModSource::applySettings(const AISModSettings& settings, bool force)
{
if ((settings.m_bt != m_settings.m_bt)
|| (settings.m_symbolSpan != m_settings.m_symbolSpan)
|| (settings.m_baud != m_settings.m_baud) || force)
{
qDebug() << "AISModSource::applySettings: Recreating pulse shaping filter: "
<< " SampleRate:" << AISModSettings::AISMOD_SAMPLE_RATE
<< " bt: " << settings.m_bt
<< " symbolSpan: " << settings.m_symbolSpan
<< " baud:" << settings.m_baud
<< " data:" << settings.m_data;
m_pulseShape.create(settings.m_bt, settings.m_symbolSpan, AISModSettings::AISMOD_SAMPLE_RATE/settings.m_baud);
}
if ((settings.m_data != m_settings.m_data) || force)
{
qDebug() << "AISModSource::applySettings: new data: " << settings.m_data;
addTXPacket(settings.m_data);
}
m_settings = settings;
// Precalculate FM sensensity and linear gain to save doing it in the loop
m_samplesPerSymbol = AISModSettings::AISMOD_SAMPLE_RATE / m_settings.m_baud;
Real modIndex = m_settings.m_fmDeviation / (Real)m_settings.m_baud;
m_phaseSensitivity = 2.0f * M_PI * modIndex / (Real)m_samplesPerSymbol;
m_linearGain = powf(10.0f, m_settings.m_gain/20.0f);
}
void AISModSource::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "AISModSource::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset
<< " rfBandwidth: " << m_settings.m_rfBandwidth;
if ((channelFrequencyOffset != m_channelFrequencyOffset)
|| (channelSampleRate != m_channelSampleRate) || force)
{
m_carrierNco.setFreq(channelFrequencyOffset, channelSampleRate);
}
if ((m_channelSampleRate != channelSampleRate) || force)
{
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) AISModSettings::AISMOD_SAMPLE_RATE / (Real) channelSampleRate;
m_interpolator.create(48, AISModSettings::AISMOD_SAMPLE_RATE, m_settings.m_rfBandwidth / 2.2, 3.0);
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
QList<MessageQueue*> *messageQueues = MainCore::instance()->getMessagePipes().getMessageQueues(m_channel, "reportdemod");
if (messageQueues)
{
QList<MessageQueue*>::iterator it = messageQueues->begin();
for (; it != messageQueues->end(); ++it)
{
MainCore::MsgChannelDemodReport *msg = MainCore::MsgChannelDemodReport::create(m_channel, m_channelSampleRate);
(*it)->push(msg);
}
}
}
bool AISModSource::bitsValid()
{
return m_bitCount > 0;
}
int AISModSource::getBit()
{
int bit;
if (m_bitCount > 0)
{
bit = (m_bits[m_byteIdx] >> m_bitIdx) & 1;
m_bitIdx++;
m_bitCount--;
if (m_bitIdx == 8)
{
m_byteIdx++;
m_bitIdx = 0;
}
}
else
bit = 0;
return bit;
}
void AISModSource::addBit(int bit)
{
// Transmit LSB first
m_bits[m_byteIdx] |= bit << m_bitIdx;
m_bitIdx++;
m_bitCount++;
m_bitCountTotal++;
if (m_bitIdx == 8)
{
m_byteIdx++;
m_bits[m_byteIdx] = 0;
m_bitIdx = 0;
}
m_last5Bits = ((m_last5Bits << 1) | bit) & 0x1f;
}
void AISModSource::initTX()
{
m_byteIdx = 0;
m_bitIdx = 0;
m_bitCount = m_bitCountTotal; // Reset to allow retransmission
m_nrziBit = 1;
if (m_settings.m_rampUpBits == 0)
{
m_state = tx;
m_pow = 0.0f;
}
else
{
m_state = ramp_up;
m_pow = -(Real)m_settings.m_rampRange;
m_powRamp = m_settings.m_rampRange/(m_settings.m_rampUpBits * (Real)m_samplesPerSymbol);
}
}
void AISModSource::addTXPacket(const QString& data)
{
QByteArray ba = QByteArray::fromHex(data.toUtf8());
addTXPacket(ba);
}
void AISModSource::addTXPacket(QByteArray data)
{
uint8_t packet[AIS_MAX_BYTES];
uint8_t *crc_start;
uint8_t *packet_end;
uint8_t *p;
crc16x25 crc;
uint16_t crcValue;
int packet_length;
// Create AIS message
p = packet;
// Training
*p++ = AIS_TRAIN;
*p++ = AIS_TRAIN;
*p++ = AIS_TRAIN;
// Flag
*p++ = AIS_FLAG;
crc_start = p;
// Copy packet payload
for (int i = 0; i < data.size(); i++) {
*p++ = data[i];
}
// CRC (do not include flags)
crc.calculate(crc_start, p-crc_start);
crcValue = crc.get();
*p++ = crcValue & 0xff;
*p++ = (crcValue >> 8);
packet_end = p;
// Flag
*p++ = AIS_FLAG;
// Buffer
*p++ = 0;
packet_length = p-&packet[0];
encodePacket(packet, packet_length, crc_start, packet_end);
}
void AISModSource::encodePacket(uint8_t *packet, int packet_length, uint8_t *crc_start, uint8_t *packet_end)
{
// HDLC bit stuffing
m_byteIdx = 0;
m_bitIdx = 0;
m_last5Bits = 0;
m_bitCount = 0;
m_bitCountTotal = 0;
for (int i = 0; i < packet_length; i++)
{
for (int j = 0; j < 8; j++)
{
int tx_bit = (packet[i] >> j) & 1;
// Stuff 0 if last 5 bits are 1s, unless transmitting flag
// Except for special case of when last 5 bits of CRC are 1s
if ( ( (packet[i] != AIS_FLAG)
|| ( (&packet[i] >= crc_start)
&& ( (&packet[i] < packet_end)
|| ((&packet[i] == packet_end) && (j == 0))
)
)
)
&& (m_last5Bits == 0x1f)
)
addBit(0);
addBit(tx_bit);
}
}
//m_samplesPerSymbol = AISMOD_SAMPLE_RATE / m_settings.m_baud;
m_packetRepeatCount = m_settings.m_repeatCount;
}
void AISModSource::transmit()
{
initTX();
// Only reset phases at start of new packet TX, not in initTX(), so that
// there isn't a discontinuity in phase when repeatedly transmitting a
// single tone
m_sampleIdx = 0;
m_fmPhase = 0.0;
if (m_settings.m_writeToFile)
m_iqFile.open("aismod.csv", std::ofstream::out);
else if (m_iqFile.is_open())
m_iqFile.close();
}