sdrangel/plugins/samplesource/remoteinput/remoteinputbuffer.cpp

418 lines
16 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QDebug>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <boost/crc.hpp>
#include <boost/cstdint.hpp>
#include "remoteinputbuffer.h"
RemoteInputBuffer::RemoteInputBuffer() :
m_decoderSlots(nullptr),
m_frames(nullptr),
m_decoderIndexHead(m_nbDecoderSlots/2),
m_curNbBlocks(0),
m_minNbBlocks(256),
m_curOriginalBlocks(0),
m_minOriginalBlocks(128),
m_curNbRecovery(0),
m_maxNbRecovery(0),
m_framesDecoded(true),
m_readIndex(0),
m_readBuffer(0),
m_readSize(0),
m_bufferLenSec(0.0f),
m_nbReads(0),
m_nbWrites(0),
m_balCorrection(0),
m_balCorrLimit(0)
{
m_currentMeta.init();
setNbDecoderSlots(16);
m_tvOut_sec = 0;
m_tvOut_usec = 0;
m_readNbBytes = 1;
m_paramsCM256.BlockBytes = sizeof(RemoteProtectedBlock); // never changes
m_paramsCM256.OriginalCount = RemoteNbOrginalBlocks; // never changes
if (!m_cm256.isInitialized()) {
m_cm256_OK = false;
qDebug() << "RemoteInputBuffer::RemoteInputBuffer: cannot initialize CM256 library";
} else {
m_cm256_OK = true;
}
std::fill(m_decoderSlots, m_decoderSlots + m_nbDecoderSlots, DecoderSlot());
std::fill(m_frames, m_frames + m_nbDecoderSlots, BufferFrame());
}
RemoteInputBuffer::~RemoteInputBuffer()
{
if (m_readBuffer) {
delete[] m_readBuffer;
}
if (m_decoderSlots) {
delete[] m_decoderSlots;
}
if (m_frames) {
delete[] m_frames;
}
}
void RemoteInputBuffer::setNbDecoderSlots(int nbDecoderSlots)
{
m_nbDecoderSlots = nbDecoderSlots;
m_framesSize = m_nbDecoderSlots * (RemoteNbOrginalBlocks - 1) * RemoteNbBytesPerBlock;
m_framesNbBytes = m_nbDecoderSlots * sizeof(BufferFrame);
m_wrDeltaEstimate = m_framesNbBytes / 2;
if (m_decoderSlots) {
delete[] m_decoderSlots;
}
if (m_frames) {
delete[] m_frames;
}
m_decoderSlots = new DecoderSlot[m_nbDecoderSlots];
m_frames = new BufferFrame[m_nbDecoderSlots];
m_frameHead = -1;
}
void RemoteInputBuffer::setBufferLenSec(const RemoteMetaDataFEC& metaData)
{
m_bufferLenSec = (float) m_framesNbBytes / (float) (metaData.m_sampleRate * metaData.m_sampleBytes * 2);
}
void RemoteInputBuffer::initDecodeAllSlots()
{
for (int i = 0; i < m_nbDecoderSlots; i++)
{
m_decoderSlots[i].m_blockCount = 0;
m_decoderSlots[i].m_originalCount = 0;
m_decoderSlots[i].m_recoveryCount = 0;
m_decoderSlots[i].m_decoded = false;
m_decoderSlots[i].m_metaRetrieved = false;
resetOriginalBlocks(i);
memset((void *) m_decoderSlots[i].m_recoveryBlocks, 0, RemoteNbOrginalBlocks * sizeof(RemoteProtectedBlock));
}
}
void RemoteInputBuffer::initDecodeSlot(int slotIndex)
{
// collect stats before voiding the slot
m_curNbBlocks = m_decoderSlots[slotIndex].m_blockCount;
m_curOriginalBlocks = m_decoderSlots[slotIndex].m_originalCount;
m_curNbRecovery = m_decoderSlots[slotIndex].m_recoveryCount;
m_avgNbBlocks(m_curNbBlocks);
m_avgOrigBlocks(m_curOriginalBlocks);
m_avgNbRecovery(m_curNbRecovery);
m_framesDecoded = m_framesDecoded && m_decoderSlots[slotIndex].m_decoded;
if (m_curNbBlocks < m_minNbBlocks) {
m_minNbBlocks = m_curNbBlocks;
}
if (m_curOriginalBlocks < m_minOriginalBlocks) {
m_minOriginalBlocks = m_curOriginalBlocks;
}
if (m_curNbRecovery > m_maxNbRecovery) {
m_maxNbRecovery = m_curNbRecovery;
}
// void the slot
m_decoderSlots[slotIndex].m_blockCount = 0;
m_decoderSlots[slotIndex].m_originalCount = 0;
m_decoderSlots[slotIndex].m_recoveryCount = 0;
m_decoderSlots[slotIndex].m_decoded = false;
m_decoderSlots[slotIndex].m_metaRetrieved = false;
resetOriginalBlocks(slotIndex);
memset((void *) m_decoderSlots[slotIndex].m_recoveryBlocks, 0, RemoteNbOrginalBlocks * sizeof(RemoteProtectedBlock));
}
void RemoteInputBuffer::initReadIndex()
{
m_readIndex = ((m_decoderIndexHead + (m_nbDecoderSlots/2)) % m_nbDecoderSlots) * sizeof(BufferFrame);
m_wrDeltaEstimate = m_framesNbBytes / 2;
m_nbReads = 0;
m_nbWrites = 0;
}
void RemoteInputBuffer::rwCorrectionEstimate(int slotIndex)
{
if (m_nbReads >= 40) // check every ~1s as tick is ~50ms
{
int targetPivotSlot = (slotIndex + (m_nbDecoderSlots/2)) % m_nbDecoderSlots; // slot at half buffer opposite of current write slot
int targetPivotIndex = targetPivotSlot * sizeof(BufferFrame); // buffer index corresponding to start of above slot
int normalizedReadIndex = (m_readIndex < targetPivotIndex ? m_readIndex + m_nbDecoderSlots * sizeof(BufferFrame) : m_readIndex)
- (targetPivotSlot * sizeof(BufferFrame)); // normalize read index so it is positive and zero at start of pivot slot
int dBytes;
int rwDelta = (m_nbReads * m_readNbBytes) - (m_nbWrites * sizeof(BufferFrame));
if (normalizedReadIndex < (m_nbDecoderSlots/ 2) * (int) sizeof(BufferFrame)) // read leads
{
dBytes = - normalizedReadIndex - rwDelta;
}
else // read lags
{
int bufSize = (m_nbDecoderSlots * sizeof(BufferFrame));
dBytes = bufSize - normalizedReadIndex - rwDelta;
}
// calculate exponential moving average on floating point for better accuracy (was int)
double newCorrection = ((double) dBytes) / (((int) m_currentMeta.m_sampleBytes) * 2 * m_nbReads);
m_balCorrection = 0.25*m_balCorrection + 0.75*newCorrection; // exponential average with alpha = 0.75 (original is wrong)
//m_balCorrection = (m_balCorrection / 4) + (dBytes / (int) (m_currentMeta.m_sampleBytes * 2 * m_nbReads)); // correction is in number of samples. Alpha = 0.25
if (m_balCorrection < -m_balCorrLimit) {
m_balCorrection = -m_balCorrLimit;
} else if (m_balCorrection > m_balCorrLimit) {
m_balCorrection = m_balCorrLimit;
}
m_nbReads = 0;
m_nbWrites = 0;
}
}
void RemoteInputBuffer::checkSlotData(int slotIndex)
{
int pseudoWriteIndex = slotIndex * sizeof(BufferFrame);
m_wrDeltaEstimate = pseudoWriteIndex - m_readIndex;
int rwDelayBytes = (m_wrDeltaEstimate > 0 ? m_wrDeltaEstimate : sizeof(BufferFrame) * m_nbDecoderSlots + m_wrDeltaEstimate);
int sampleRate = m_currentMeta.m_sampleRate;
if (sampleRate > 0)
{
int64_t ts = m_currentMeta.m_tv_sec * 1000000LL + m_currentMeta.m_tv_usec;
ts -= (rwDelayBytes * 1000000LL) / (sampleRate * 2 * m_currentMeta.m_sampleBytes);
m_tvOut_sec = ts / 1000000LL;
m_tvOut_usec = ts - (m_tvOut_sec * 1000000LL);
}
if (!m_decoderSlots[slotIndex].m_decoded)
{
qDebug() << "RemoteInputBuffer::checkSlotData: incomplete frame:"
<< " slotIndex: " << slotIndex
<< " m_blockCount: " << m_decoderSlots[slotIndex].m_blockCount
<< " m_recoveryCount: " << m_decoderSlots[slotIndex].m_recoveryCount;
}
}
void RemoteInputBuffer::writeData(char *array)
{
RemoteSuperBlock *superBlock = (RemoteSuperBlock *) array;
int frameIndex = superBlock->m_header.m_frameIndex;
int decoderIndex = frameIndex % m_nbDecoderSlots;
// frame break
if (m_frameHead == -1) // initial state
{
m_decoderIndexHead = decoderIndex; // new decoder slot head
m_frameHead = frameIndex;
initReadIndex(); // reset read index
initDecodeAllSlots(); // initialize all slots
}
else if (m_frameHead != frameIndex) // frame break => new frame starts
{
m_decoderIndexHead = decoderIndex; // new decoder slot head
m_frameHead = frameIndex; // new frame head
checkSlotData(decoderIndex); // check slot before re-init
rwCorrectionEstimate(decoderIndex);
m_nbWrites++;
initDecodeSlot(decoderIndex); // collect stats and re-initialize current slot
}
// Block processing
if (m_decoderSlots[decoderIndex].m_blockCount < RemoteNbOrginalBlocks) // not enough blocks to decode -> store data
{
int blockIndex = superBlock->m_header.m_blockIndex;
int blockCount = m_decoderSlots[decoderIndex].m_blockCount;
int recoveryCount = m_decoderSlots[decoderIndex].m_recoveryCount;
m_decoderSlots[decoderIndex].m_cm256DescriptorBlocks[blockCount].Index = blockIndex;
if (blockIndex == 0) // first block with meta
{
m_decoderSlots[decoderIndex].m_metaRetrieved = true;
}
if (blockIndex < RemoteNbOrginalBlocks) // original data
{
m_decoderSlots[decoderIndex].m_cm256DescriptorBlocks[blockCount].Block = (void *) storeOriginalBlock(decoderIndex, blockIndex, superBlock->m_protectedBlock);
m_decoderSlots[decoderIndex].m_originalCount++;
}
else // recovery data
{
m_decoderSlots[decoderIndex].m_recoveryBlocks[recoveryCount] = superBlock->m_protectedBlock;
m_decoderSlots[decoderIndex].m_cm256DescriptorBlocks[blockCount].Block = (void *) &m_decoderSlots[decoderIndex].m_recoveryBlocks[recoveryCount];
m_decoderSlots[decoderIndex].m_recoveryCount++;
}
}
m_decoderSlots[decoderIndex].m_blockCount++;
if (m_decoderSlots[decoderIndex].m_blockCount == RemoteNbOrginalBlocks) // ready to decode
{
m_decoderSlots[decoderIndex].m_decoded = true;
if (m_cm256_OK && (m_decoderSlots[decoderIndex].m_recoveryCount > 0)) // recovery data used => need to decode FEC
{
m_paramsCM256.BlockBytes = sizeof(RemoteProtectedBlock); // never changes
m_paramsCM256.OriginalCount = RemoteNbOrginalBlocks; // never changes
if (m_decoderSlots[decoderIndex].m_metaRetrieved) {
m_paramsCM256.RecoveryCount = m_currentMeta.m_nbFECBlocks;
} else {
m_paramsCM256.RecoveryCount = m_decoderSlots[decoderIndex].m_recoveryCount;
}
if (m_cm256.cm256_decode(m_paramsCM256, m_decoderSlots[decoderIndex].m_cm256DescriptorBlocks)) // CM256 decode
{
qDebug() << "RemoteInputBuffer::writeData: decode CM256 error:"
<< " decoderIndex: " << decoderIndex
<< " m_blockCount: " << m_decoderSlots[decoderIndex].m_blockCount
<< " m_originalCount: " << m_decoderSlots[decoderIndex].m_originalCount
<< " m_recoveryCount: " << m_decoderSlots[decoderIndex].m_recoveryCount;
}
else
{
qDebug() << "RemoteInputBuffer::writeData: decode CM256 success:"
<< " decoderIndex: " << decoderIndex
<< " m_blockCount: " << m_decoderSlots[decoderIndex].m_blockCount
<< " m_originalCount: " << m_decoderSlots[decoderIndex].m_originalCount
<< " m_recoveryCount: " << m_decoderSlots[decoderIndex].m_recoveryCount;
for (int ir = 0; ir < m_decoderSlots[decoderIndex].m_recoveryCount; ir++) // restore missing blocks
{
int recoveryIndex = RemoteNbOrginalBlocks - m_decoderSlots[decoderIndex].m_recoveryCount + ir;
int blockIndex = m_decoderSlots[decoderIndex].m_cm256DescriptorBlocks[recoveryIndex].Index;
RemoteProtectedBlock *recoveredBlock = (RemoteProtectedBlock *) m_decoderSlots[decoderIndex].m_cm256DescriptorBlocks[recoveryIndex].Block;
if (blockIndex == 0) // first block with meta
{
RemoteMetaDataFEC *metaData = (RemoteMetaDataFEC *) recoveredBlock;
boost::crc_32_type crc32;
crc32.process_bytes(metaData, sizeof(RemoteMetaDataFEC)-4);
if (crc32.checksum() == metaData->m_crc32)
{
m_decoderSlots[decoderIndex].m_metaRetrieved = true;
printMeta("RemoteInputBuffer::writeData: recovered meta", metaData);
}
else
{
qDebug() << "RemoteInputBuffer::writeData: recovered meta: invalid CRC32";
}
}
storeOriginalBlock(decoderIndex, blockIndex, *recoveredBlock);
qDebug() << "RemoteInputBuffer::writeData: recovered block #" << blockIndex;
} // restore missing blocks
} // CM256 decode
} // recovery
if (m_decoderSlots[decoderIndex].m_metaRetrieved) // block zero with its meta data has been received
{
RemoteMetaDataFEC *metaData = getMetaData(decoderIndex);
if (!(*metaData == m_currentMeta))
{
uint32_t sampleRate = metaData->m_sampleRate;
if (sampleRate != 0)
{
setBufferLenSec(*metaData);
m_balCorrLimit = sampleRate / 400; // +/- 5% correction max per read
m_readNbBytes = (sampleRate * metaData->m_sampleBytes * 2) / 20;
}
printMeta("RemoteInputBuffer::writeData: new meta", metaData); // print for change other than timestamp
}
m_currentMeta = *metaData; // renew current meta
} // check block 0
} // decode
}
uint8_t *RemoteInputBuffer::readData(int32_t length)
{
uint8_t *buffer = (uint8_t *) m_frames;
uint32_t readIndex = m_readIndex;
m_nbReads++;
// SEGFAULT FIX: arbitratily truncate so that it does not exceed buffer length
if (length > m_framesSize) {
length = m_framesSize;
}
if (m_readIndex + length < m_framesNbBytes) // ends before buffer bound
{
m_readIndex += length;
return &buffer[readIndex];
}
else if (m_readIndex + length == m_framesNbBytes) // ends at buffer bound
{
m_readIndex = 0;
return &buffer[readIndex];
}
else // ends after buffer bound
{
if (length > m_readSize) // reallocate composition buffer if necessary
{
if (m_readBuffer) {
delete[] m_readBuffer;
}
m_readBuffer = new uint8_t[length];
m_readSize = length;
}
std::memcpy((void *) m_readBuffer, (const void *) &buffer[m_readIndex], m_framesNbBytes - m_readIndex); // copy end of buffer
length -= m_framesNbBytes - m_readIndex;
std::memcpy((void *) &m_readBuffer[m_framesNbBytes - m_readIndex], (const void *) buffer, length); // copy start of buffer
m_readIndex = length;
return m_readBuffer;
}
}
void RemoteInputBuffer::printMeta(const QString& header, RemoteMetaDataFEC *metaData)
{
qDebug() << header << ": "
<< "|" << metaData->m_centerFrequency
<< ":" << metaData->m_sampleRate
<< ":" << (int) (metaData->m_sampleBytes & 0xF)
<< ":" << (int) metaData->m_sampleBits
<< ":" << (int) metaData->m_nbOriginalBlocks
<< ":" << (int) metaData->m_nbFECBlocks
<< "|" << metaData->m_tv_sec
<< ":" << metaData->m_tv_usec
<< "|";
}