1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-12-23 10:05:46 -05:00
sdrangel/plugins/channelrx/demodatv/atvdemodsink.cpp

552 lines
20 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019-2021 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// Copyright (C) 2020 Vort <vvort@yandex.ru> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QTime>
#include <QDebug>
#include <stdio.h>
#include <complex.h>
#include "dsp/scopevis.h"
#include "atvdemodsink.h"
const int ATVDemodSink::m_ssbFftLen = 1024;
ATVDemodSink::ATVDemodSink() :
m_channelSampleRate(1000000),
m_channelFrequencyOffset(0),
m_samplesPerLine(100),
m_samplesPerLineFrac(0.0f),
m_videoTabIndex(0),
m_scopeSink(nullptr),
m_registeredTVScreen(nullptr),
m_numberSamplesPerHTop(0),
m_fieldIndex(0),
m_synchroSamples(0),
m_effMin(20.0f),
m_effMax(-20.0f),
m_ampMin(-1.0f),
m_ampMax(1.0f),
m_ampDelta(2.0f),
m_amSampleIndex(0),
m_sampleOffset(0),
m_sampleOffsetFrac(0.0f),
m_sampleOffsetDetected(0),
m_lineIndex(0),
m_hSyncShift(0.0f),
m_hSyncErrorCount(0),
m_ampAverage(4800),
m_bfoPLL(200/1000000, 100/1000000, 0.01),
m_bfoFilter(200.0, 1000000.0, 0.9),
m_DSBFilter(nullptr),
m_DSBFilterBuffer(nullptr),
m_DSBFilterBufferIndex(0)
{
qDebug("ATVDemodSink::ATVDemodSink");
//*************** ATV PARAMETERS ***************
m_synchroSamples=0;
m_interleaved = true;
m_DSBFilter = new fftfilt(m_settings.m_fftBandwidth / (float) m_channelSampleRate, 2*m_ssbFftLen); // arbitrary cutoff
m_DSBFilterBuffer = new Complex[m_ssbFftLen];
std::fill(m_DSBFilterBuffer, m_DSBFilterBuffer + m_ssbFftLen, Complex{0.0, 0.0});
std::fill(m_fltBufferI, m_fltBufferI+6, 0.0f);
std::fill(m_fltBufferQ, m_fltBufferQ+6, 0.0f);
m_objPhaseDiscri.setFMScaling(1.0f);
applySettings(m_settings, true);
applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
}
ATVDemodSink::~ATVDemodSink()
{
delete m_DSBFilter;
delete[] m_DSBFilterBuffer;
}
void ATVDemodSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
{
//********** Let's rock and roll buddy ! **********
//********** Accessing ATV Screen context **********
for (SampleVector::const_iterator it = begin; it != end; ++it /* ++it **/)
{
Complex c(it->real(), it->imag());
if (m_settings.m_inputFrequencyOffset != 0) {
c *= m_nco.nextIQ();
}
demod(c);
}
if ((m_videoTabIndex == 1) && (m_scopeSink)) // do only if scope tab is selected and scope is available
{
std::vector<SampleVector::const_iterator> vbegin;
vbegin.push_back(m_scopeSampleBuffer.begin());
m_scopeSink->feed(vbegin, m_scopeSampleBuffer.end() - m_scopeSampleBuffer.begin()); // m_ssb = positive only
m_scopeSampleBuffer.clear();
}
}
void ATVDemodSink::demod(Complex& c)
{
float sampleNormI;
float sampleNormQ;
float sampleNorm;
float sample;
int sampleVideo;
//********** FFT filtering **********
if (m_settings.m_fftFiltering)
{
int n_out;
Complex *filtered;
n_out = m_DSBFilter->runAsym(c, &filtered, m_settings.m_atvModulation != ATVDemodSettings::ATV_LSB); // all usb except explicitely lsb
if (n_out > 0)
{
std::copy(filtered, filtered + n_out, m_DSBFilterBuffer);
m_DSBFilterBufferIndex = 0;
}
else if (m_DSBFilterBufferIndex < m_ssbFftLen - 1) // safe
{
m_DSBFilterBufferIndex++;
}
}
//********** demodulation **********
const float& fltI = m_settings.m_fftFiltering ? m_DSBFilterBuffer[m_DSBFilterBufferIndex].real() : c.real();
const float& fltQ = m_settings.m_fftFiltering ? m_DSBFilterBuffer[m_DSBFilterBufferIndex].imag() : c.imag();
double magSq;
if ((m_settings.m_atvModulation == ATVDemodSettings::ATV_FM1) || (m_settings.m_atvModulation == ATVDemodSettings::ATV_FM2))
{
//Amplitude FM
magSq = fltI*fltI + fltQ*fltQ;
m_magSqAverage(magSq);
sampleNorm = sqrt(magSq);
sampleNormI = fltI/sampleNorm;
sampleNormQ = fltQ/sampleNorm;
//-2 > 2 : 0 -> 1 volt
//0->0.3 synchro 0.3->1 image
if (m_settings.m_atvModulation == ATVDemodSettings::ATV_FM1)
{
//YDiff Cd
sample = m_fltBufferI[0]*(sampleNormQ - m_fltBufferQ[1]);
sample -= m_fltBufferQ[0]*(sampleNormI - m_fltBufferI[1]);
sample += 2.0f;
sample /= 4.0f;
}
else
{
//YDiff Folded
sample = m_fltBufferI[2]*((m_fltBufferQ[5]-sampleNormQ)/16.0f + m_fltBufferQ[1] - m_fltBufferQ[3]);
sample -= m_fltBufferQ[2]*((m_fltBufferI[5]-sampleNormI)/16.0f + m_fltBufferI[1] - m_fltBufferI[3]);
sample += 2.125f;
sample /= 4.25f;
m_fltBufferI[5] = m_fltBufferI[4];
m_fltBufferQ[5] = m_fltBufferQ[4];
m_fltBufferI[4] = m_fltBufferI[3];
m_fltBufferQ[4] = m_fltBufferQ[3];
m_fltBufferI[3] = m_fltBufferI[2];
m_fltBufferQ[3] = m_fltBufferQ[2];
m_fltBufferI[2] = m_fltBufferI[1];
m_fltBufferQ[2] = m_fltBufferQ[1];
}
m_fltBufferI[1] = m_fltBufferI[0];
m_fltBufferQ[1] = m_fltBufferQ[0];
m_fltBufferI[0] = sampleNormI;
m_fltBufferQ[0] = sampleNormQ;
if (m_settings.m_fmDeviation != 1.0f)
{
sample = ((sample - 0.5f) / m_settings.m_fmDeviation) + 0.5f;
}
}
else if (m_settings.m_atvModulation == ATVDemodSettings::ATV_AM)
{
//Amplitude AM
magSq = fltI*fltI + fltQ*fltQ;
m_magSqAverage(magSq);
sampleNorm = sqrt(magSq);
float sampleRaw = sampleNorm / SDR_RX_SCALEF;
m_ampAverage(sampleRaw);
sample = sampleRaw / (2.0f * m_ampAverage.asFloat()); // AGC
}
else if ((m_settings.m_atvModulation == ATVDemodSettings::ATV_USB) || (m_settings.m_atvModulation == ATVDemodSettings::ATV_LSB))
{
magSq = fltI*fltI + fltQ*fltQ;
m_magSqAverage(magSq);
sampleNorm = sqrt(magSq);
Real bfoValues[2];
float fltFiltered = m_bfoFilter.run(fltI);
m_bfoPLL.process(fltFiltered, bfoValues);
// do the mix
float mixI = fltI * bfoValues[0] - fltQ * bfoValues[1];
float mixQ = fltI * bfoValues[1] + fltQ * bfoValues[0];
if (m_settings.m_atvModulation == ATVDemodSettings::ATV_USB) {
sample = (mixI + mixQ);
} else {
sample = (mixI - mixQ);
}
}
else if (m_settings.m_atvModulation == ATVDemodSettings::ATV_FM3)
{
float rawDeviation;
sample = m_objPhaseDiscri.phaseDiscriminatorDelta(c, magSq, rawDeviation) + 0.5f;
m_magSqAverage(magSq);
sampleNorm = sqrt(magSq);
}
else
{
magSq = fltI*fltI + fltQ*fltQ;
m_magSqAverage(magSq);
sampleNorm = sqrt(magSq);
sample = 0.0f;
}
//********** AM sample normalization and coarse scale estimation **********
if ((m_settings.m_atvModulation == ATVDemodSettings::ATV_AM)
|| (m_settings.m_atvModulation == ATVDemodSettings::ATV_USB)
|| (m_settings.m_atvModulation == ATVDemodSettings::ATV_LSB))
{
// Mini and Maxi Amplitude tracking
if (sample < m_effMin) {
m_effMin = sample;
}
if (sample > m_effMax) {
m_effMax = sample;
}
if (m_amSampleIndex < m_samplesPerLine * m_settings.m_nbLines * 2) // calculate on two full images
{
m_amSampleIndex++;
}
else
{
// scale signal based on extrema on the estimation period
m_ampMin = m_effMin;
m_ampMax = m_effMax;
m_ampDelta = (m_ampMax - m_ampMin);
if (m_ampDelta <= 0.0) {
m_ampDelta = 1.0f;
}
// readjustment
m_ampDelta /= m_settings.m_amScalingFactor / 100.0f;
m_ampMin += m_ampDelta * (m_settings.m_amOffsetFactor / 100.0f);
// qDebug("ATVDemod::demod: m_ampMin: %f m_ampMax: %f m_ampDelta: %f", m_ampMin, m_ampMax, m_ampDelta);
//Reset extrema
m_effMin = 20.0f;
m_effMax = -20.0f;
m_amSampleIndex = 0;
}
//Normalisation of current sample
sample -= m_ampMin;
sample /= m_ampDelta;
}
sample = m_settings.m_invertVideo ? 1.0f - sample : sample;
// 0.0 -> 1.0
sample = (sample < 0.0f) ? 0.0f : (sample > 1.0f) ? 1.0f : sample;
if ((m_videoTabIndex == 1) && (m_scopeSink != 0)) { // feed scope buffer only if scope is present and visible
m_scopeSampleBuffer.push_back(Sample(sample * (SDR_RX_SCALEF - 1.0f), 0.0f));
}
//********** gray level **********
// -0.3 -> 0.7 / 0.7
sampleVideo = (int) ((sample - m_settings.m_levelBlack) * m_sampleRangeCorrection);
// 0 -> 255
sampleVideo = (sampleVideo < 0) ? 0 : (sampleVideo > 255) ? 255 : sampleVideo;
//********** process video sample **********
if (m_registeredTVScreen) // can process only if the screen is available (set via the GUI)
{
processSample(sample, sampleVideo);
}
}
void ATVDemodSink::applyStandard(int sampleRate, ATVDemodSettings::ATVStd atvStd, float lineDuration)
{
switch(atvStd)
{
case ATVDemodSettings::ATVStdHSkip:
// what is left in a line for the image
m_interleaved = false; // irrelevant
m_numberOfBlackLines = 0;
m_numberSamplesHSyncCrop = (int) (0.09f * lineDuration * sampleRate); // 9% of full line empirically
break;
case ATVDemodSettings::ATVStdShort:
// what is left in a line for the image
m_interleaved = false;
m_numberOfVSyncLines = 2;
m_numberOfBlackLines = 4;
m_firstVisibleLine = 3;
m_numberSamplesHSyncCrop = (int) (0.085f * lineDuration * sampleRate); // 8.5% of full line empirically
break;
case ATVDemodSettings::ATVStdShortInterleaved:
// what is left in a line for the image
m_interleaved = true;
m_numberOfVSyncLines = 2;
m_numberOfBlackLines = 5;
m_firstVisibleLine = 3;
m_numberSamplesHSyncCrop = (int) (0.085f * lineDuration * sampleRate); // 8.5% of full line empirically
break;
case ATVDemodSettings::ATVStd819: // 819 lines standard F
// what is left in a line for the image
m_interleaved = true;
m_numberOfVSyncLines = 4;
m_numberOfBlackLines = 59;
m_firstVisibleLine = 27;
m_numberSamplesHSyncCrop = (int) (0.085f * lineDuration * sampleRate); // 8.5% of full line empirically
break;
case ATVDemodSettings::ATVStdPAL525: // Follows PAL-M standard
// what is left in a 64/1.008 us line for the image
m_interleaved = true;
m_numberOfVSyncLines = 4;
m_numberOfBlackLines = 45;
m_firstVisibleLine = 20;
m_numberSamplesHSyncCrop = (int) (0.085f * lineDuration * sampleRate); // 8.5% of full line empirically
break;
case ATVDemodSettings::ATVStdPAL625: // Follows PAL-B/G/H standard
default:
// what is left in a 64 us line for the image
m_interleaved = true;
m_numberOfVSyncLines = 3;
m_numberOfBlackLines = 49;
m_firstVisibleLine = 23;
m_numberSamplesHSyncCrop = (int) (0.085f * lineDuration * sampleRate); // 8.5% of full line empirically
}
// for now all standards apply this
// Rec. ITU-R BT.1700
// Table 2. Details of line synchronizing signals
m_numberSamplesPerLineSignals = (int)(lineDuration * sampleRate * 12.0 / 64.0); // "a", Line-blanking interval
m_numberSamplesPerHSync = (int)(lineDuration * sampleRate * 10.5 / 64.0); // "b", Interval between time datum and back edge of line-blanking pulse
m_numberSamplesPerHTop = (int)(lineDuration * sampleRate * 4.7 / 64.0); // "d", Duration of synchronizing pulse
// Table 3. Details of field synchronizing signals
float hl = 32.0f; // half of the line
float p = 2.35f; // "p", Duration of equalizing pulse
float q = 27.3f; // "q", Duration of field-synchronizing pulse
// In the first half of the first line field index is detected
m_fieldDetectStartPos = (int)(lineDuration * sampleRate * p / 64.0);
m_fieldDetectEndPos = (int)(lineDuration * sampleRate * q / 64.0);
// In the second half of the first line vertical synchronization is detected
m_vSyncDetectStartPos = (int)(lineDuration * sampleRate * (p + hl) / 64.0);
m_vSyncDetectEndPos = (int)(lineDuration * sampleRate * (q + hl) / 64.0);
float fieldDetectPercent = 0.75f; // It is better not to detect field index than detect it wrong
float detectTotalLen = lineDuration * sampleRate * (q - p) / 64.0; // same for field index and vSync detection
m_fieldDetectThreshold1 = (int)(detectTotalLen * fieldDetectPercent);
m_fieldDetectThreshold2 = (int)(detectTotalLen * (1.0f - fieldDetectPercent));
float vSyncDetectPercent = 0.5f;
m_vSyncDetectThreshold = (int)(detectTotalLen * vSyncDetectPercent);
}
bool ATVDemodSink::getBFOLocked()
{
if ((m_settings.m_atvModulation == ATVDemodSettings::ATV_USB) || (m_settings.m_atvModulation == ATVDemodSettings::ATV_LSB)) {
return m_bfoPLL.locked();
} else {
return false;
}
}
void ATVDemodSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "ATVDemodSink::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset;
if (channelSampleRate == 0)
{
qDebug("ATVDemodSink::applyChannelSettings: aborting");
return;
}
if ((channelFrequencyOffset != m_channelFrequencyOffset) ||
(channelSampleRate != m_channelSampleRate) || force)
{
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
}
if ((channelSampleRate != m_channelSampleRate) || force)
{
unsigned int samplesPerLineNom;
ATVDemodSettings::getBaseValues(channelSampleRate, m_settings.m_nbLines * m_settings.m_fps, samplesPerLineNom);
m_samplesPerLine = samplesPerLineNom;
m_samplesPerLineFrac = (float)channelSampleRate / (m_settings.m_nbLines * m_settings.m_fps) - m_samplesPerLine;
qDebug() << "ATVDemodSink::applyChannelSettings:"
<< " m_channelSampleRate: " << m_channelSampleRate
<< " m_fftBandwidth: " << m_settings.m_fftBandwidth
<< " m_fftOppBandwidth:" << m_settings.m_fftOppBandwidth
<< " m_bfoFrequency: " << m_settings.m_bfoFrequency;
m_channelSampleRate = channelSampleRate;
m_DSBFilter->create_asym_filter(
m_settings.m_fftOppBandwidth / (float) m_channelSampleRate,
m_settings.m_fftBandwidth / (float) m_channelSampleRate
);
std::fill(m_DSBFilterBuffer, m_DSBFilterBuffer + m_ssbFftLen, Complex{0.0, 0.0});
m_DSBFilterBufferIndex = 0;
m_bfoPLL.configure((float) m_settings.m_bfoFrequency / (float) m_channelSampleRate,
100.0 / m_channelSampleRate,
0.01);
m_bfoFilter.setFrequencies(m_channelSampleRate, m_settings.m_bfoFrequency);
}
applyStandard(m_channelSampleRate, m_settings.m_atvStd, ATVDemodSettings::getNominalLineTime(m_settings.m_nbLines, m_settings.m_fps));
if (m_registeredTVScreen)
{
m_registeredTVScreen->resizeTVScreen(
m_samplesPerLine - m_numberSamplesPerLineSignals,
m_settings.m_nbLines - m_numberOfBlackLines
);
m_tvScreenBuffer = m_registeredTVScreen->getBackBuffer();
}
m_fieldIndex = 0;
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
}
void ATVDemodSink::applySettings(const ATVDemodSettings& settings, bool force)
{
qDebug() << "ATVDemodSink::applySettings:"
<< "m_inputFrequencyOffset:" << settings.m_inputFrequencyOffset
<< "m_bfoFrequency:" << settings.m_bfoFrequency
<< "m_atvModulation:" << settings.m_atvModulation
<< "m_fmDeviation:" << settings.m_fmDeviation
<< "m_fftFiltering:" << settings.m_fftFiltering
<< "m_fftOppBandwidth:" << settings.m_fftOppBandwidth
<< "m_fftBandwidth:" << settings.m_fftBandwidth
<< "m_nbLines:" << settings.m_nbLines
<< "m_fps:" << settings.m_fps
<< "m_atvStd:" << settings.m_atvStd
<< "m_hSync:" << settings.m_hSync
<< "m_vSync:" << settings.m_vSync
<< "m_invertVideo:" << settings.m_invertVideo
<< "m_halfFrames:" << settings.m_halfFrames
<< "m_levelSynchroTop:" << settings.m_levelSynchroTop
<< "m_levelBlack:" << settings.m_levelBlack
<< "m_rgbColor:" << settings.m_rgbColor
<< "m_title:" << settings.m_title
<< "m_udpAddress:" << settings.m_udpAddress
<< "m_udpPort:" << settings.m_udpPort
<< "force:" << force;
if ((settings.m_fftBandwidth != m_settings.m_fftBandwidth)
|| (settings.m_fftOppBandwidth != m_settings.m_fftOppBandwidth) || force)
{
m_DSBFilter->create_asym_filter(
settings.m_fftOppBandwidth / (float) m_channelSampleRate,
settings.m_fftBandwidth / (float) m_channelSampleRate
);
std::fill(m_DSBFilterBuffer, m_DSBFilterBuffer + m_ssbFftLen, Complex{0.0, 0.0});
m_DSBFilterBufferIndex = 0;
}
if ((settings.m_bfoFrequency != m_settings.m_bfoFrequency) || force)
{
m_bfoPLL.configure((float) settings.m_bfoFrequency / (float) m_channelSampleRate,
100.0 / m_channelSampleRate,
0.01);
m_bfoFilter.setFrequencies(m_channelSampleRate, settings.m_bfoFrequency);
}
if ((settings.m_nbLines != m_settings.m_nbLines)
|| (settings.m_fps != m_settings.m_fps)
|| (settings.m_atvStd != m_settings.m_atvStd) || force)
{
unsigned int samplesPerLineNom;
ATVDemodSettings::getBaseValues(m_channelSampleRate, settings.m_nbLines * settings.m_fps, samplesPerLineNom);
m_samplesPerLine = samplesPerLineNom;
m_samplesPerLineFrac = (float)m_channelSampleRate / (settings.m_nbLines * settings.m_fps) - m_samplesPerLine;
m_ampAverage.resize(m_samplesPerLine * settings.m_nbLines * 2); // AGC average in two full images
qDebug() << "ATVDemodSink::applySettings:"
<< " m_channelSampleRate: " << m_channelSampleRate
<< " m_samplesPerLine:" << m_samplesPerLine
<< " m_samplesPerLineFrac:" << m_samplesPerLineFrac;
applyStandard(m_channelSampleRate, settings.m_atvStd,
ATVDemodSettings::getNominalLineTime(settings.m_nbLines, settings.m_fps));
if (m_registeredTVScreen)
{
m_registeredTVScreen->resizeTVScreen(
m_samplesPerLine - m_numberSamplesPerLineSignals,
settings.m_nbLines - m_numberOfBlackLines
);
m_tvScreenBuffer = m_registeredTVScreen->getBackBuffer();
}
m_fieldIndex = 0;
}
if ((settings.m_fmDeviation != m_settings.m_fmDeviation) || force) {
m_objPhaseDiscri.setFMScaling(1.0f / settings.m_fmDeviation);
}
if ((settings.m_levelBlack != m_settings.m_levelBlack) || force) {
m_sampleRangeCorrection = 255.0f / (1.0f - m_settings.m_levelBlack);
}
m_settings = settings;
}