mirror of
https://github.com/f4exb/sdrangel.git
synced 2024-12-22 17:45:48 -05:00
215 lines
4.8 KiB
C++
215 lines
4.8 KiB
C++
///////////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2015 Edouard Griffiths, F4EXB. //
|
|
// //
|
|
// This program is free software; you can redistribute it and/or modify //
|
|
// it under the terms of the GNU General Public License as published by //
|
|
// the Free Software Foundation as version 3 of the License, or //
|
|
// //
|
|
// This program is distributed in the hope that it will be useful, //
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
|
// GNU General Public License V3 for more details. //
|
|
// //
|
|
// You should have received a copy of the GNU General Public License //
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include <cmath>
|
|
#include "dsp/afsquelch.h"
|
|
|
|
AFSquelch::AFSquelch() :
|
|
N(0),
|
|
sampleRate(0),
|
|
samplesProcessed(0),
|
|
maxPowerIndex(0),
|
|
nTones(2),
|
|
samplesAttack(0),
|
|
attackCount(0),
|
|
samplesDecay(0),
|
|
decayCount(0),
|
|
isOpen(false),
|
|
threshold(0.0)
|
|
{
|
|
k = new double[nTones];
|
|
coef = new double[nTones];
|
|
toneSet = new Real[nTones];
|
|
u0 = new double[nTones];
|
|
u1 = new double[nTones];
|
|
power = new double[nTones];
|
|
|
|
toneSet[0] = 2000.0;
|
|
toneSet[1] = 10000.0;
|
|
}
|
|
|
|
AFSquelch::AFSquelch(unsigned int nbTones, const Real *tones) :
|
|
N(0),
|
|
sampleRate(0),
|
|
samplesProcessed(0),
|
|
maxPowerIndex(0),
|
|
nTones(nbTones),
|
|
samplesAttack(0),
|
|
attackCount(0),
|
|
samplesDecay(0),
|
|
decayCount(0),
|
|
isOpen(false),
|
|
threshold(0.0)
|
|
{
|
|
k = new double[nTones];
|
|
coef = new double[nTones];
|
|
toneSet = new Real[nTones];
|
|
u0 = new double[nTones];
|
|
u1 = new double[nTones];
|
|
power = new double[nTones];
|
|
|
|
for (int j = 0; j < nTones; ++j)
|
|
{
|
|
toneSet[j] = tones[j];
|
|
}
|
|
}
|
|
|
|
|
|
AFSquelch::~AFSquelch()
|
|
{
|
|
delete[] k;
|
|
delete[] coef;
|
|
delete[] toneSet;
|
|
delete[] u0;
|
|
delete[] u1;
|
|
delete[] power;
|
|
}
|
|
|
|
|
|
void AFSquelch::setCoefficients(int _N, int _samplerate, int _samplesAttack, int _samplesDecay )
|
|
{
|
|
N = _N; // save the basic parameters for use during analysis
|
|
sampleRate = _samplerate;
|
|
samplesAttack = _samplesAttack;
|
|
samplesDecay = _samplesDecay;
|
|
|
|
// for each of the frequencies (tones) of interest calculate
|
|
// k and the associated filter coefficient as per the Goertzel
|
|
// algorithm. Note: we are using a real value (as apposed to
|
|
// an integer as described in some references. k is retained
|
|
// for later display. The tone set is specified in the
|
|
// constructor. Notice that the resulting coefficients are
|
|
// independent of N.
|
|
for (int j = 0; j < nTones; ++j)
|
|
{
|
|
k[j] = ((double)N * toneSet[j]) / (double)sampleRate;
|
|
coef[j] = 2.0 * cos((2.0 * M_PI * toneSet[j])/(double)sampleRate);
|
|
}
|
|
}
|
|
|
|
|
|
// Analyze an input signal
|
|
bool AFSquelch::analyze(Real *sample)
|
|
{
|
|
|
|
feedback(*sample); // Goertzel feedback
|
|
samplesProcessed += 1;
|
|
|
|
if (samplesProcessed == N) // completed a block of N
|
|
{
|
|
feedForward(); // calculate the power at each tone
|
|
samplesProcessed = 0;
|
|
return true; // have a result
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
void AFSquelch::feedback(Real in)
|
|
{
|
|
double t;
|
|
|
|
// feedback for each tone
|
|
for (int j = 0; j < nTones; ++j)
|
|
{
|
|
t = u0[j];
|
|
u0[j] = in + (coef[j] * u0[j]) - u1[j];
|
|
u1[j] = t;
|
|
}
|
|
}
|
|
|
|
|
|
void AFSquelch::feedForward()
|
|
{
|
|
for (int j = 0; j < nTones; ++j)
|
|
{
|
|
power[j] = (u0[j] * u0[j]) + (u1[j] * u1[j]) - (coef[j] * u0[j] * u1[j]);
|
|
u0[j] = u1[j] = 0.0; // reset for next block.
|
|
}
|
|
|
|
evaluate();
|
|
}
|
|
|
|
|
|
void AFSquelch::reset()
|
|
{
|
|
for (int j = 0; j < nTones; ++j)
|
|
{
|
|
power[j] = u0[j] = u1[j] = 0.0; // reset
|
|
}
|
|
|
|
samplesProcessed = 0;
|
|
maxPowerIndex = 0;
|
|
isOpen = false;
|
|
}
|
|
|
|
|
|
void AFSquelch::evaluate()
|
|
{
|
|
double maxPower = 0.0;
|
|
double minPower;
|
|
int minIndex = 0, maxIndex = 0;
|
|
|
|
for (int j = 0; j < nTones; ++j)
|
|
{
|
|
if (power[j] > maxPower) {
|
|
maxPower = power[j];
|
|
maxIndex = j;
|
|
}
|
|
}
|
|
|
|
minPower = maxPower;
|
|
|
|
for (int j = 0; j < nTones; ++j)
|
|
{
|
|
if (power[j] < minPower) {
|
|
minPower = power[j];
|
|
minIndex = j;
|
|
}
|
|
}
|
|
|
|
// principle is to open if power is uneven because noise gives even power
|
|
bool open = ((maxPower - minPower) > threshold) && (minIndex > maxIndex);
|
|
|
|
if (open)
|
|
{
|
|
if (samplesAttack && (attackCount < samplesAttack))
|
|
{
|
|
attackCount++;
|
|
}
|
|
else
|
|
{
|
|
isOpen = true;
|
|
decayCount = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (samplesDecay && (decayCount < samplesDecay))
|
|
{
|
|
decayCount++;
|
|
}
|
|
else
|
|
{
|
|
isOpen = false;
|
|
attackCount = 0;
|
|
}
|
|
}
|
|
}
|