1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-23 08:28:36 -05:00
sdrangel/plugins/channelrx/demoddatv/leansdr/discrmath.h

269 lines
7.4 KiB
C++

// This file is part of LeanSDR Copyright (C) 2018 <pabr@pabr.org>.
// See the toplevel README for more information.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#ifndef LEANSDR_DISCRMATH_H
#define LEANSDR_DISCRMATH_H
#include <cstddef>
namespace leansdr
{
// Polynomials with N binary coefficients.
// This is designed to compile into trivial inline code.
// Bits are packed into words of type T.
// Unused most-significant bits of the last word are 0.
// T must be an unsigned type.
template <typename T, int N>
struct bitvect
{
static const size_t WSIZE = sizeof(T) * 8;
static const size_t NW = (N + WSIZE - 1) / WSIZE;
T v[NW];
bitvect() {}
bitvect(T val)
{
v[0] = val;
for (int i = 1; i < NW; ++i)
v[i] = 0;
}
// Assign from another bitvect, with truncation or padding
template <int M>
bitvect<T, N> &copy(const bitvect<T, M> &a)
{
int nw = (a.NW < NW) ? a.NW : NW;
for (int i = 0; i < nw; ++i)
v[i] = a.v[i];
if (M < N)
for (int i = a.NW; i < NW; ++i)
v[i] = 0;
if (M > N)
truncate_to_N();
return *this;
}
bool operator[](unsigned int i) const
{
return v[i / WSIZE] & ((T)1 << (i & (WSIZE - 1)));
}
// Add (in GF(2))
template <int M>
bitvect<T, N> &operator+=(const bitvect<T, M> &a)
{
int nw = (a.NW < NW) ? a.NW : NW;
for (int i = 0; i < nw; ++i)
v[i] ^= a.v[i];
if (M > N)
truncate_to_N();
return *this;
}
// Multiply by X^n
bitvect<T, N> &operator<<=(unsigned int n)
{
if (n >= WSIZE)
fail("shift exceeds word width");
T mask = ~(((T)-1) << n);
for (int i = NW - 1; i > 0; --i)
v[i] = (v[i] << n) | ((v[i - 1] >> (WSIZE - n)) & mask);
v[0] <<= n;
if (N != NW * WSIZE)
truncate_to_N();
return *this;
}
private:
// Call this whenever bits N .. NW*WSIZE-1 may have been set.
inline void truncate_to_N()
{
v[NW - 1] &= ((T)-1) >> (NW * WSIZE - N);
}
}; // bitvect
// Return m modulo (X^N+p).
// p is typically a generator polynomial of degree N
// with the highest-coefficient monomial omitted.
// m is packed into nm words of type Tm.
// The MSB of m[0] is the highest-order coefficient of m.
template <typename T, int N, typename Tm>
bitvect<T, N> divmod(const Tm *m, size_t nm, const bitvect<T, N> &p)
{
bitvect<T, N> res = 0;
const Tm bitmask = (Tm)1 << (sizeof(Tm) * 8 - 1);
for (; nm--; ++m)
{
Tm mi = *m;
for (int bit = sizeof(Tm) * 8; bit--; mi <<= 1)
{
// Multiply by X, save outgoing coeff of degree N
bool resN = res[N - 1];
res <<= 1;
// Add m[i]
if (mi & bitmask)
res.v[0] ^= 1;
// Modulo X^N+p
if (resN)
res += p;
}
}
return res;
}
// Return (m*X^N) modulo (X^N+p).
// Same as divmod(), slightly faster than appending N zeroes.
template <typename T, int N, typename Tm>
bitvect<T, N> shiftdivmod(const Tm *m, size_t nm, const bitvect<T, N> &p,
T init = 0)
{
bitvect<T, N> res;
for (int i = 0; i < res.NW; ++i)
res.v[i] = init;
const Tm bitmask = (Tm)1 << (sizeof(Tm) * 8 - 1);
for (; nm--; ++m)
{
Tm mi = *m;
for (int bit = sizeof(Tm) * 8; bit--; mi <<= 1)
{
// Multiply by X, save outgoing coeff of degree N
bool resN = res[N - 1];
res <<= 1;
// Add m[i]*X^N
resN ^= (bool)(mi & bitmask);
// Modulo X^N+p
if (resN)
res += p;
}
}
return res;
}
template <typename T, int N>
bool operator==(const bitvect<T, N> &a, const bitvect<T, N> &b)
{
for (int i = 0; i < a.NW; ++i)
if (a.v[i] != b.v[i])
return false;
return true;
}
// Add (in GF(2))
template <typename T, int N>
bitvect<T, N> operator+(const bitvect<T, N> &a, const bitvect<T, N> &b)
{
bitvect<T, N> res;
for (int i = 0; i < a.NW; ++i)
res.v[i] = a.v[i] ^ b.v[i];
return res;
}
// Polynomial multiplication.
template <typename T, int N, int NB>
bitvect<T, N> operator*(bitvect<T, N> a, const bitvect<T, NB> &b)
{
bitvect<T, N> res = 0;
for (int i = 0; i < NB; ++i, a <<= 1)
if (b[i])
res += a;
// TBD If truncation is needed, do it only once at the end.
return res;
}
// Finite group GF(2^N), for small N.
// GF(2) is the ring ({0,1},+,*).
// GF(2)[X] is the ring of polynomials with coefficients in GF(2).
// P(X) is an irreducible polynomial of GF(2)[X].
// N is the degree of P(x).
// GF(2)[X]/(P) is GF(2)[X] modulo P(X).
// (GF(2)[X]/(P), +) is a group with 2^N elements.
// (GF(2)[X]/(P)*, *) is a group with 2^N-1 elements.
// (GF(2)[X]/(P), +, *) is a field with 2^N elements, noted GF(2^N).
// Te is a C++ integer type for encoding elements of GF(2^N).
// Binary coefficients are packed, with degree 0 at LSB.
// (Te)0 is 0
// (Te)1 is 1
// (Te)2 is X
// (Te)3 is X+1
// (Te)4 is X^2
// TRUNCP is the encoding of the generator, with highest monomial omitted.
// ALPHA is a primitive element of GF(2^N). Usually "2"=[X] is chosen.
template <typename Te, int N, Te ALPHA, Te TRUNCP>
struct gf2n
{
typedef Te element;
static const Te alpha = ALPHA;
gf2n()
{
if (ALPHA != 2)
fail("alpha!=2 not implemented");
// Precompute log and exp tables.
Te alpha_i = 1; // ALPHA^0
for (int i = 0; i < (1 << N); ++i)
{
lut_exp[i] = alpha_i; // ALPHA^i
lut_exp[((1 << N) - 1) + i] = alpha_i; // Wrap to avoid modulo 2^N-1
lut_log[alpha_i] = i;
bool overflow = alpha_i & (1 << (N - 1));
alpha_i *= 2; // Multiply by alpha=[X] i.e. increase degrees
alpha_i &= ~((~(Te)0) << N); // In case Te is wider than N bits
if (overflow)
alpha_i ^= TRUNCP; // Modulo P iteratively
}
}
inline Te add(Te x, Te y) { return x ^ y; } // Addition modulo 2
inline Te sub(Te x, Te y) { return x ^ y; } // Subtraction modulo 2
inline Te mul(Te x, Te y)
{
if (!x || !y)
return 0;
return lut_exp[lut_log[x] + lut_log[y]];
}
inline Te div(Te x, Te y)
{
if (!x)
return 0;
return lut_exp[lut_log[x] + ((1 << N) - 1) - lut_log[y]];
}
inline Te inv(Te x)
{
return lut_exp[((1 << N) - 1) - lut_log[x]];
}
inline Te exp(Te x) { return lut_exp[x]; }
inline Te log(Te x) { return lut_log[x]; }
private:
Te lut_exp[(1 << N) * 2]; // Extra room for wrapping modulo 2^N-1
Te lut_log[1 << N];
}; // gf2n
} // namespace leansdr
#endif // LEANSDR_DISCRMATH_H