1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-27 10:19:15 -05:00
sdrangel/plugins/samplesink/hackrfoutput/hackrfoutput.cpp

399 lines
11 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include "hackrfoutput.h"
#include <string.h>
#include <errno.h>
#include <QDebug>
#include "util/simpleserializer.h"
#include "dsp/dspcommands.h"
#include "dsp/dspengine.h"
#include "device/devicesourceapi.h"
#include "device/devicesinkapi.h"
#include "hackrf/devicehackrfshared.h"
#include "hackrfoutputgui.h"
#include "hackrfoutputthread.h"
MESSAGE_CLASS_DEFINITION(HackRFOutput::MsgConfigureHackRF, Message)
MESSAGE_CLASS_DEFINITION(HackRFOutput::MsgReportHackRF, Message)
HackRFOutput::HackRFOutput(DeviceSinkAPI *deviceAPI) :
m_deviceAPI(deviceAPI),
m_settings(),
m_dev(0),
m_hackRFThread(0),
m_deviceDescription("HackRFOutput"),
m_running(false)
{
openDevice();
m_deviceAPI->setBuddySharedPtr(&m_sharedParams);
}
HackRFOutput::~HackRFOutput()
{
if (m_running) stop();
closeDevice();
m_deviceAPI->setBuddySharedPtr(0);
}
void HackRFOutput::destroy()
{
delete this;
}
bool HackRFOutput::openDevice()
{
if (m_dev != 0)
{
closeDevice();
}
m_sampleSourceFifo.resize(m_settings.m_devSampleRate/(1<<(m_settings.m_log2Interp <= 4 ? m_settings.m_log2Interp : 4)));
if (m_deviceAPI->getSourceBuddies().size() > 0)
{
DeviceSourceAPI *buddy = m_deviceAPI->getSourceBuddies()[0];
DeviceHackRFParams *buddySharedParams = (DeviceHackRFParams *) buddy->getBuddySharedPtr();
if (buddySharedParams == 0)
{
qCritical("HackRFOutput::openDevice: could not get shared parameters from buddy");
return false;
}
if ((m_dev = buddySharedParams->m_dev) == 0) // device is not opened by buddy
{
qCritical("HackRFOutput::openDevice: could not get HackRF handle from buddy");
return false;
}
m_sharedParams = *(buddySharedParams); // copy parameters from buddy
m_sharedParams.m_dev = m_dev;
}
else
{
if ((m_dev = DeviceHackRF::open_hackrf(qPrintable(m_deviceAPI->getSampleSinkSerial()))) == 0)
{
qCritical("HackRFOutput::openDevice: could not open HackRF %s", qPrintable(m_deviceAPI->getSampleSinkSerial()));
return false;
}
m_sharedParams.m_dev = m_dev;
}
return true;
}
bool HackRFOutput::start()
{
if (!m_dev) {
return false;
}
if (m_running) stop();
if((m_hackRFThread = new HackRFOutputThread(m_dev, &m_sampleSourceFifo)) == 0)
{
qFatal("HackRFOutput::start: out of memory");
stop();
return false;
}
// mutexLocker.unlock();
applySettings(m_settings, true);
m_hackRFThread->setLog2Interpolation(m_settings.m_log2Interp);
m_hackRFThread->startWork();
qDebug("HackRFOutput::start: started");
m_running = true;
return true;
}
void HackRFOutput::closeDevice()
{
if (m_deviceAPI->getSourceBuddies().size() == 0)
{
qDebug("HackRFOutput::closeDevice: closing device since Rx side is not open");
if(m_dev != 0) // close HackRF
{
hackrf_close(m_dev);
//hackrf_exit(); // TODO: this may not work if several HackRF Devices are running concurrently. It should be handled globally in the application
}
}
m_sharedParams.m_dev = 0;
m_dev = 0;
}
void HackRFOutput::stop()
{
qDebug("HackRFOutput::stop");
// QMutexLocker mutexLocker(&m_mutex);
if(m_hackRFThread != 0)
{
m_hackRFThread->stopWork();
delete m_hackRFThread;
m_hackRFThread = 0;
}
m_running = false;
}
const QString& HackRFOutput::getDeviceDescription() const
{
return m_deviceDescription;
}
int HackRFOutput::getSampleRate() const
{
int rate = m_settings.m_devSampleRate;
return (rate / (1<<m_settings.m_log2Interp));
}
quint64 HackRFOutput::getCenterFrequency() const
{
return m_settings.m_centerFrequency;
}
bool HackRFOutput::handleMessage(const Message& message)
{
if (MsgConfigureHackRF::match(message))
{
MsgConfigureHackRF& conf = (MsgConfigureHackRF&) message;
qDebug() << "HackRFOutput::handleMessage: MsgConfigureHackRF";
bool success = applySettings(conf.getSettings(), conf.getForce());
if (!success)
{
qDebug("HackRFOutput::handleMessage: MsgConfigureHackRF: config error");
}
return true;
}
else if (DeviceHackRFShared::MsgConfigureFrequencyDelta::match(message))
{
DeviceHackRFShared::MsgConfigureFrequencyDelta& conf = (DeviceHackRFShared::MsgConfigureFrequencyDelta&) message;
HackRFOutputSettings newSettings = m_settings;
newSettings.m_centerFrequency = m_settings.m_centerFrequency + conf.getFrequencyDelta();
qDebug() << "HackRFOutput::handleMessage: DeviceHackRFShared::MsgConfigureFrequencyDelta: newFreq: " << newSettings.m_centerFrequency;
applySettings(newSettings, false);
return true;
}
else
{
return false;
}
}
void HackRFOutput::setCenterFrequency(quint64 freq_hz, qint32 LOppmTenths)
{
qint64 df = ((qint64)freq_hz * LOppmTenths) / 10000000LL;
freq_hz += df;
hackrf_error rc = (hackrf_error) hackrf_set_freq(m_dev, static_cast<uint64_t>(freq_hz));
if (rc != HACKRF_SUCCESS)
{
qWarning("HackRFOutput::setCenterFrequency: could not frequency to %llu Hz", freq_hz);
}
else
{
qWarning("HackRFOutput::setCenterFrequency: frequency set to %llu Hz", freq_hz);
}
}
bool HackRFOutput::applySettings(const HackRFOutputSettings& settings, bool force)
{
// QMutexLocker mutexLocker(&m_mutex);
bool forwardChange = false;
bool suspendThread = false;
bool threadWasRunning = false;
hackrf_error rc;
qDebug() << "HackRFOutput::applySettings";
if ((m_settings.m_devSampleRate != settings.m_devSampleRate) ||
(m_settings.m_log2Interp != settings.m_log2Interp) || force)
{
suspendThread = true;
}
if (suspendThread)
{
if (m_hackRFThread)
{
if (m_hackRFThread->isRunning())
{
m_hackRFThread->stopWork();
threadWasRunning = true;
}
}
}
if ((m_settings.m_devSampleRate != settings.m_devSampleRate) || (m_settings.m_log2Interp != settings.m_log2Interp) || force)
{
forwardChange = true;
int fifoSize = std::max(
(int) ((settings.m_devSampleRate/(1<<settings.m_log2Interp)) * DeviceHackRFShared::m_sampleFifoLengthInSeconds),
DeviceHackRFShared::m_sampleFifoMinSize);
m_sampleSourceFifo.resize(fifoSize);
}
if ((m_settings.m_devSampleRate != settings.m_devSampleRate) || force)
{
if (m_dev != 0)
{
rc = (hackrf_error) hackrf_set_sample_rate_manual(m_dev, settings.m_devSampleRate, 1);
if (rc != HACKRF_SUCCESS)
{
qCritical("HackRFOutput::applySettings: could not set sample rate to %llu S/s: %s",
settings.m_devSampleRate,
hackrf_error_name(rc));
}
else
{
qDebug("HackRFOutput::applySettings: sample rate set to %llu S/s",
settings.m_devSampleRate);
}
}
}
if ((m_settings.m_log2Interp != settings.m_log2Interp) || force)
{
if (m_hackRFThread != 0)
{
m_hackRFThread->setLog2Interpolation(settings.m_log2Interp);
qDebug() << "HackRFOutput: set interpolation to " << (1<<settings.m_log2Interp);
}
}
if (force || (m_settings.m_centerFrequency != settings.m_centerFrequency) ||
(m_settings.m_LOppmTenths != settings.m_LOppmTenths))
{
if (m_dev != 0)
{
setCenterFrequency(settings.m_centerFrequency, settings.m_LOppmTenths);
qDebug() << "HackRFOutput::applySettings: center freq: " << settings.m_centerFrequency << " Hz LOppm: " << settings.m_LOppmTenths;
}
forwardChange = true;
}
if ((m_settings.m_vgaGain != settings.m_vgaGain) || force)
{
if (m_dev != 0)
{
rc = (hackrf_error) hackrf_set_txvga_gain(m_dev, settings.m_vgaGain);
if(rc != HACKRF_SUCCESS)
{
qDebug("HackRFOutput::applySettings: hackrf_set_txvga_gain failed: %s", hackrf_error_name(rc));
}
else
{
qDebug() << "HackRFOutput:applySettings: TxVGA gain set to " << settings.m_vgaGain;
}
}
}
if ((m_settings.m_bandwidth != settings.m_bandwidth) || force)
{
if (m_dev != 0)
{
uint32_t bw_index = hackrf_compute_baseband_filter_bw_round_down_lt(settings.m_bandwidth + 1); // +1 so the round down to lower than yields desired bandwidth
rc = (hackrf_error) hackrf_set_baseband_filter_bandwidth(m_dev, bw_index);
if (rc != HACKRF_SUCCESS)
{
qDebug("HackRFInput::applySettings: hackrf_set_baseband_filter_bandwidth failed: %s", hackrf_error_name(rc));
}
else
{
qDebug() << "HackRFInput:applySettings: Baseband BW filter set to " << settings.m_bandwidth << " Hz";
}
}
}
if ((m_settings.m_biasT != settings.m_biasT) || force)
{
if (m_dev != 0)
{
rc = (hackrf_error) hackrf_set_antenna_enable(m_dev, (settings.m_biasT ? 1 : 0));
if(rc != HACKRF_SUCCESS)
{
qDebug("HackRFInput::applySettings: hackrf_set_antenna_enable failed: %s", hackrf_error_name(rc));
}
else
{
qDebug() << "HackRFInput:applySettings: bias tee set to " << settings.m_biasT;
}
}
}
if ((m_settings.m_lnaExt != settings.m_lnaExt) || force)
{
if (m_dev != 0)
{
rc = (hackrf_error) hackrf_set_amp_enable(m_dev, (settings.m_lnaExt ? 1 : 0));
if(rc != HACKRF_SUCCESS)
{
qDebug("HackRFInput::applySettings: hackrf_set_amp_enable failed: %s", hackrf_error_name(rc));
}
else
{
qDebug() << "HackRFInput:applySettings: extra LNA set to " << settings.m_lnaExt;
}
}
}
if (threadWasRunning)
{
m_hackRFThread->startWork();
}
m_settings.m_devSampleRate = settings.m_devSampleRate;
m_settings.m_log2Interp = settings.m_log2Interp;
m_settings.m_centerFrequency = settings.m_centerFrequency;
m_settings.m_LOppmTenths = settings.m_LOppmTenths;
m_settings.m_vgaGain = settings.m_vgaGain;
m_settings.m_bandwidth = settings.m_bandwidth;
m_settings.m_biasT = settings.m_biasT;
m_settings.m_lnaExt = settings.m_lnaExt;
if (forwardChange)
{
int sampleRate = m_settings.m_devSampleRate/(1<<m_settings.m_log2Interp);
DSPSignalNotification *notif = new DSPSignalNotification(sampleRate, m_settings.m_centerFrequency);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif);
}
return true;
}