1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-08-27 00:06:34 -04:00
sdrangel/plugins/channelrx/chanalyzer/chanalyzersink.cpp
Jon Beniston 5d5b221e83 Add Costas Loop PLL in Channel Analyzer
Add loop bandwidth and other PLL controls to Channel Analyzer GUI.
Fix bug where PLL lock frequency would be incorrect by the decimation
factor.
2021-03-05 13:37:49 +00:00

373 lines
12 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include "chanalyzersink.h"
#include <QTime>
#include <QDebug>
#include <stdio.h>
#include "dsp/basebandsamplesink.h"
const unsigned int ChannelAnalyzerSink::m_ssbFftLen = 1024;
const unsigned int ChannelAnalyzerSink::m_corrFFTLen = 4*m_ssbFftLen;
ChannelAnalyzerSink::ChannelAnalyzerSink() :
m_channelSampleRate(48000),
m_channelFrequencyOffset(0),
m_sinkSampleRate(48000),
m_costasLoop(0.002, 2),
m_sampleSink(nullptr)
{
m_usb = true;
m_magsq = 0;
SSBFilter = new fftfilt(m_settings.m_lowCutoff / m_channelSampleRate, m_settings.m_bandwidth / m_channelSampleRate, m_ssbFftLen);
DSBFilter = new fftfilt(m_settings.m_bandwidth / m_channelSampleRate, 2*m_ssbFftLen);
RRCFilter = new fftfilt(m_settings.m_bandwidth / m_channelSampleRate, 2*m_ssbFftLen);
m_corr = new fftcorr(2*m_corrFFTLen); // 8k for 4k effective samples
m_pll.computeCoefficients(m_settings.m_pllBandwidth, m_settings.m_pllDampingFactor, m_settings.m_pllLoopGain);
m_costasLoop.computeCoefficients(m_settings.m_pllBandwidth);
applyChannelSettings(m_channelSampleRate, m_sinkSampleRate, m_channelFrequencyOffset, true);
applySettings(m_settings, true);
}
ChannelAnalyzerSink::~ChannelAnalyzerSink()
{
delete SSBFilter;
delete DSBFilter;
delete RRCFilter;
delete m_corr;
}
void ChannelAnalyzerSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
{
fftfilt::cmplx *sideband = 0;
for (SampleVector::const_iterator it = begin; it < end; ++it)
{
Complex ci;
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if (m_decimator.getDecim() == 1)
{
processOneSample(c, sideband);
}
else
{
if (m_decimator.decimate(c, ci))
{
if (m_settings.m_rationalDownSample)
{
Complex cj;
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, ci, &cj))
{
processOneSample(cj, sideband);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
else
{
processOneSample(ci, sideband);
}
}
}
}
if (m_sampleSink) {
m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), m_settings.m_ssb); // m_ssb = positive only
}
m_sampleBuffer.clear();
}
void ChannelAnalyzerSink::processOneSample(Complex& c, fftfilt::cmplx *sideband)
{
int n_out;
if (m_settings.m_ssb)
{
n_out = SSBFilter->runSSB(c, &sideband, m_usb);
}
else
{
if (m_settings.m_rrc) {
n_out = RRCFilter->runFilt(c, &sideband);
} else {
n_out = DSBFilter->runDSB(c, &sideband);
}
}
for (int i = 0; i < n_out; i++)
{
fftfilt::cmplx si = sideband[i];
Real re = si.real() / SDR_RX_SCALEF;
Real im = si.imag() / SDR_RX_SCALEF;
m_magsq = re*re + im*im;
m_channelPowerAvg(m_magsq);
std::complex<float> mix;
if (m_settings.m_pll)
{
// Use -fPLL to mix (exchange PLL real and image in the complex multiplication)
if (m_settings.m_costasLoop)
{
m_costasLoop.feed(re, im);
mix = si * std::conj(m_costasLoop.getComplex());
feedOneSample(mix, m_costasLoop.getComplex());
}
else if (m_settings.m_fll)
{
m_fll.feed(re, im);
mix = si * std::conj(m_fll.getComplex());
feedOneSample(mix, m_fll.getComplex());
}
else
{
m_pll.feed(re, im);
mix = si * std::conj(m_pll.getComplex());
feedOneSample(mix, m_pll.getComplex());
}
}
else
feedOneSample(si, si);
}
}
void ChannelAnalyzerSink::applyChannelSettings(int channelSampleRate, int sinkSampleRate, int channelFrequencyOffset, bool force)
{
qDebug() << "ChannelAnalyzerSink::applyChannelSettings:"
<< " channelSampleRate: " << channelSampleRate
<< " sinkSampleRate: " << sinkSampleRate
<< " channelFrequencyOffset: " << channelFrequencyOffset;
bool doApplySampleRate = false;
if ((m_channelFrequencyOffset != channelFrequencyOffset) ||
(m_channelSampleRate != channelSampleRate) || force)
{
m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
}
if ((m_channelSampleRate != channelSampleRate)
|| (m_sinkSampleRate != sinkSampleRate) || force)
{
m_interpolator.create(16, sinkSampleRate, sinkSampleRate / 4.0f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) sinkSampleRate / (Real) m_settings.m_rationalDownSamplerRate;
int decim = channelSampleRate / sinkSampleRate;
m_decimator.setLog2Decim(0);
for (int i = 0; i < 7; i++) // find log2 between 0 and 6
{
if ((decim & 1) == 1)
{
qDebug() << "ChannelAnalyzerSink::applyChannelSettings: log2decim: " << i;
m_decimator.setLog2Decim(i);
break;
}
decim >>= 1;
}
doApplySampleRate = true;
}
m_channelSampleRate = channelSampleRate;
m_channelFrequencyOffset = channelFrequencyOffset;
m_sinkSampleRate = sinkSampleRate;
if (doApplySampleRate) {
applySampleRate();
}
}
void ChannelAnalyzerSink::setFilters(int sampleRate, float bandwidth, float lowCutoff)
{
qDebug("ChannelAnalyzerSink::setFilters: sampleRate: %d bandwidth: %f lowCutoff: %f",
sampleRate, bandwidth, lowCutoff);
if (bandwidth < 0)
{
bandwidth = -bandwidth;
lowCutoff = -lowCutoff;
m_usb = false;
}
else
{
m_usb = true;
}
if (bandwidth < 100.0f)
{
bandwidth = 100.0f;
lowCutoff = 0;
}
SSBFilter->create_filter(lowCutoff / sampleRate, bandwidth / sampleRate);
DSBFilter->create_dsb_filter(bandwidth / sampleRate);
RRCFilter->create_rrc_filter(bandwidth / sampleRate, m_settings.m_rrcRolloff / 100.0);
}
void ChannelAnalyzerSink::applySettings(const ChannelAnalyzerSettings& settings, bool force)
{
qDebug() << "ChannelAnalyzerSink::applySettings:"
<< " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
<< " m_rcc: " << settings.m_rrc
<< " m_rrcRolloff: " << settings.m_rrcRolloff / 100.0
<< " m_bandwidth: " << settings.m_bandwidth
<< " m_lowCutoff: " << settings.m_lowCutoff
<< " m_log2Decim: " << settings.m_log2Decim
<< " m_rationalDownSample: " << settings.m_rationalDownSample
<< " m_rationalDownSamplerRate: " << settings.m_rationalDownSamplerRate
<< " m_ssb: " << settings.m_ssb
<< " m_pll: " << settings.m_pll
<< " m_fll: " << settings.m_fll
<< " m_costasLoop: " << settings.m_costasLoop
<< " m_pllPskOrder: " << settings.m_pllPskOrder
<< " m_pllBandwidth: " << settings.m_pllBandwidth
<< " m_pllDampingFactor: " << settings.m_pllDampingFactor
<< " m_pllLoopGain: " << settings.m_pllLoopGain
<< " m_inputType: " << (int) settings.m_inputType;
bool doApplySampleRate = false;
if ((settings.m_bandwidth != m_settings.m_bandwidth) ||
(settings.m_lowCutoff != m_settings.m_lowCutoff) ||
(settings.m_rrcRolloff != m_settings.m_rrcRolloff) || force)
{
doApplySampleRate = true;
}
if (settings.m_pll != m_settings.m_pll || force)
{
if (settings.m_pll)
{
m_pll.reset();
m_fll.reset();
m_costasLoop.reset();
}
}
if (settings.m_fll != m_settings.m_fll || force)
{
if (settings.m_fll) {
m_fll.reset();
}
}
if (settings.m_costasLoop != m_settings.m_costasLoop || force)
{
if (settings.m_costasLoop) {
m_costasLoop.reset();
}
}
if (settings.m_pllPskOrder != m_settings.m_pllPskOrder || force)
{
if (settings.m_pllPskOrder < 32) {
m_pll.setPskOrder(settings.m_pllPskOrder);
}
if (settings.m_pllPskOrder < 16) {
m_costasLoop.setPskOrder(settings.m_pllPskOrder);
}
}
if ((settings.m_pllBandwidth != m_settings.m_pllBandwidth)
|| (settings.m_pllDampingFactor != m_settings.m_pllDampingFactor)
|| (settings.m_pllLoopGain != m_settings.m_pllLoopGain)
|| force)
{
m_pll.computeCoefficients(settings.m_pllBandwidth, settings.m_pllDampingFactor, settings.m_pllLoopGain);
m_costasLoop.computeCoefficients(settings.m_pllBandwidth);
}
if ((settings.m_rationalDownSample != m_settings.m_rationalDownSample) ||
(settings.m_rationalDownSamplerRate != m_settings.m_rationalDownSamplerRate) || force)
{
m_interpolator.create(16, m_sinkSampleRate, m_sinkSampleRate / 4.0f);
m_interpolatorDistanceRemain = 0;
m_interpolatorDistance = (Real) m_sinkSampleRate / (Real) settings.m_rationalDownSamplerRate;
doApplySampleRate = true;
}
m_settings = settings;
if (doApplySampleRate) {
applySampleRate();
}
}
bool ChannelAnalyzerSink::isPllLocked() const
{
if (m_settings.m_pll)
return m_pll.locked();
else
return false;
}
Real ChannelAnalyzerSink::getPllFrequency() const
{
if (m_settings.m_costasLoop)
return m_costasLoop.getFreq();
else if (m_settings.m_fll)
return m_fll.getFreq();
else if (m_settings.m_pll)
return m_pll.getFreq();
else
return 0.0;
}
Real ChannelAnalyzerSink::getPllPhase() const
{
if (m_settings.m_costasLoop)
return m_costasLoop.getPhiHat();
else if (m_settings.m_pll)
return m_pll.getPhiHat();
else
return 0.0f;
}
Real ChannelAnalyzerSink::getPllDeltaPhase() const
{
if (m_settings.m_pll)
return m_pll.getDeltaPhi();
else
return 0.0f;
}
int ChannelAnalyzerSink::getActualSampleRate()
{
if (m_settings.m_rationalDownSample) {
return m_settings.m_rationalDownSamplerRate;
} else {
return m_sinkSampleRate;
}
}
void ChannelAnalyzerSink::applySampleRate()
{
int sampleRate = getActualSampleRate();
qDebug("ChannelAnalyzerSink::applySampleRate: sampleRate: %d m_interpolatorDistance: %f", sampleRate, m_interpolatorDistance);
setFilters(sampleRate, m_settings.m_bandwidth, m_settings.m_lowCutoff);
m_pll.setSampleRate(sampleRate);
m_fll.setSampleRate(sampleRate);
m_costasLoop.setSampleRate(sampleRate);
RRCFilter->create_rrc_filter(m_settings.m_bandwidth / (float) sampleRate, m_settings.m_rrcRolloff / 100.0);
}