1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-14 20:31:53 -05:00
sdrangel/plugins/samplesource/bladerf/bladerfinput.cpp

487 lines
12 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2015 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <string.h>
#include <errno.h>
#include <QDebug>
#include "device/deviceapi.h"
#include "util/simpleserializer.h"
#include "dsp/dspcommands.h"
#include "dsp/dspengine.h"
#include "bladerfgui.h"
#include "bladerfinput.h"
#include "bladerfthread.h"
MESSAGE_CLASS_DEFINITION(BladerfInput::MsgConfigureBladerf, Message)
MESSAGE_CLASS_DEFINITION(BladerfInput::MsgReportBladerf, Message)
BladerfInput::BladerfInput(DeviceAPI *deviceAPI) :
m_deviceAPI(deviceAPI),
m_settings(),
m_dev(0),
m_bladerfThread(0),
m_deviceDescription("BladeRF")
{
}
BladerfInput::~BladerfInput()
{
stop();
}
bool BladerfInput::init(const Message& cmd)
{
return false;
}
bool BladerfInput::start(int device)
{
QMutexLocker mutexLocker(&m_mutex);
if (m_dev != 0)
{
stop();
}
int res;
int fpga_loaded;
if (!m_sampleFifo.setSize(96000 * 4))
{
qCritical("Could not allocate SampleFifo");
return false;
}
if ((m_dev = open_bladerf_from_serial(0)) == 0) // TODO: fix; Open first available device as there is no proper handling for multiple devices
{
qCritical("could not open BladeRF");
return false;
}
fpga_loaded = bladerf_is_fpga_configured(m_dev);
if (fpga_loaded < 0)
{
qCritical("Failed to check FPGA state: %s",
bladerf_strerror(fpga_loaded));
return false;
}
else if (fpga_loaded == 0)
{
qCritical("The device's FPGA is not loaded.");
return false;
}
// TODO: adjust USB transfer data according to sample rate
if ((res = bladerf_sync_config(m_dev, BLADERF_MODULE_RX, BLADERF_FORMAT_SC16_Q11, 64, 8192, 32, 10000)) < 0)
{
qCritical("bladerf_sync_config with return code %d", res);
goto failed;
}
if ((res = bladerf_enable_module(m_dev, BLADERF_MODULE_RX, true)) < 0)
{
qCritical("bladerf_enable_module with return code %d", res);
goto failed;
}
if((m_bladerfThread = new BladerfThread(m_dev, &m_sampleFifo)) == NULL) {
qFatal("out of memory");
goto failed;
}
m_bladerfThread->startWork();
mutexLocker.unlock();
applySettings(m_settings, true);
qDebug("BladerfInput::startInput: started");
return true;
failed:
stop();
return false;
}
void BladerfInput::stop()
{
QMutexLocker mutexLocker(&m_mutex);
if(m_bladerfThread != 0)
{
m_bladerfThread->stopWork();
delete m_bladerfThread;
m_bladerfThread = 0;
}
if(m_dev != 0)
{
bladerf_close(m_dev);
m_dev = 0;
}
}
const QString& BladerfInput::getDeviceDescription() const
{
return m_deviceDescription;
}
int BladerfInput::getSampleRate() const
{
int rate = m_settings.m_devSampleRate;
return (rate / (1<<m_settings.m_log2Decim));
}
quint64 BladerfInput::getCenterFrequency() const
{
return m_settings.m_centerFrequency;
}
bool BladerfInput::handleMessage(const Message& message)
{
if (MsgConfigureBladerf::match(message))
{
MsgConfigureBladerf& conf = (MsgConfigureBladerf&) message;
qDebug() << "BladerfInput::handleMessage: MsgConfigureBladerf";
if (!applySettings(conf.getSettings(), false))
{
qDebug("BladeRF config error");
}
return true;
}
else
{
return false;
}
}
bool BladerfInput::applySettings(const BladeRFSettings& settings, bool force)
{
bool forwardChange = false;
QMutexLocker mutexLocker(&m_mutex);
qDebug() << "BladerfInput::applySettings: m_dev: " << m_dev;
if (m_settings.m_dcBlock != settings.m_dcBlock)
{
m_settings.m_dcBlock = settings.m_dcBlock;
m_deviceAPI->configureCorrections(m_settings.m_dcBlock, m_settings.m_iqCorrection);
}
if (m_settings.m_iqCorrection != settings.m_iqCorrection)
{
m_settings.m_iqCorrection = settings.m_iqCorrection;
m_deviceAPI->configureCorrections(m_settings.m_dcBlock, m_settings.m_iqCorrection);
}
if ((m_settings.m_lnaGain != settings.m_lnaGain) || force)
{
m_settings.m_lnaGain = settings.m_lnaGain;
if (m_dev != 0)
{
if(bladerf_set_lna_gain(m_dev, getLnaGain(m_settings.m_lnaGain)) != 0)
{
qDebug("bladerf_set_lna_gain() failed");
}
else
{
qDebug() << "BladerfInput: LNA gain set to " << getLnaGain(m_settings.m_lnaGain);
}
}
}
if ((m_settings.m_vga1 != settings.m_vga1) || force)
{
m_settings.m_vga1 = settings.m_vga1;
if (m_dev != 0)
{
if(bladerf_set_rxvga1(m_dev, m_settings.m_vga1) != 0)
{
qDebug("bladerf_set_rxvga1() failed");
}
else
{
qDebug() << "BladerfInput: VGA1 gain set to " << m_settings.m_vga1;
}
}
}
if ((m_settings.m_vga2 != settings.m_vga2) || force)
{
m_settings.m_vga2 = settings.m_vga2;
if(m_dev != 0)
{
if(bladerf_set_rxvga2(m_dev, m_settings.m_vga2) != 0)
{
qDebug("bladerf_set_rxvga2() failed");
}
else
{
qDebug() << "BladerfInput: VGA2 gain set to " << m_settings.m_vga2;
}
}
}
if ((m_settings.m_xb200 != settings.m_xb200) || force)
{
m_settings.m_xb200 = settings.m_xb200;
if (m_dev != 0)
{
if (m_settings.m_xb200)
{
if (bladerf_expansion_attach(m_dev, BLADERF_XB_200) != 0)
{
qDebug("bladerf_expansion_attach(xb200) failed");
}
else
{
qDebug() << "BladerfInput: Attach XB200";
}
}
else
{
if (bladerf_expansion_attach(m_dev, BLADERF_XB_NONE) != 0)
{
qDebug("bladerf_expansion_attach(none) failed");
}
else
{
qDebug() << "BladerfInput: Detach XB200";
}
}
}
}
if ((m_settings.m_xb200Path != settings.m_xb200Path) || force)
{
m_settings.m_xb200Path = settings.m_xb200Path;
if (m_dev != 0)
{
if(bladerf_xb200_set_path(m_dev, BLADERF_MODULE_RX, m_settings.m_xb200Path) != 0)
{
qDebug("bladerf_xb200_set_path(BLADERF_MODULE_RX) failed");
}
else
{
qDebug() << "BladerfInput: set xb200 path to " << m_settings.m_xb200Path;
}
}
}
if ((m_settings.m_xb200Filter != settings.m_xb200Filter) || force)
{
m_settings.m_xb200Filter = settings.m_xb200Filter;
if (m_dev != 0)
{
if(bladerf_xb200_set_filterbank(m_dev, BLADERF_MODULE_RX, m_settings.m_xb200Filter) != 0)
{
qDebug("bladerf_xb200_set_filterbank(BLADERF_MODULE_RX) failed");
}
else
{
qDebug() << "BladerfInput: set xb200 filter to " << m_settings.m_xb200Filter;
}
}
}
if ((m_settings.m_devSampleRate != settings.m_devSampleRate) || force)
{
m_settings.m_devSampleRate = settings.m_devSampleRate;
forwardChange = true;
if (m_dev != 0)
{
unsigned int actualSamplerate;
if (bladerf_set_sample_rate(m_dev, BLADERF_MODULE_RX, m_settings.m_devSampleRate, &actualSamplerate) < 0)
{
qCritical("could not set sample rate: %d", m_settings.m_devSampleRate);
}
else
{
qDebug() << "bladerf_set_sample_rate(BLADERF_MODULE_RX) actual sample rate is " << actualSamplerate;
m_bladerfThread->setSamplerate(m_settings.m_devSampleRate);
}
}
}
if ((m_settings.m_bandwidth != settings.m_bandwidth) || force)
{
m_settings.m_bandwidth = settings.m_bandwidth;
if(m_dev != 0)
{
unsigned int actualBandwidth;
if( bladerf_set_bandwidth(m_dev, BLADERF_MODULE_RX, m_settings.m_bandwidth, &actualBandwidth) < 0)
{
qCritical("could not set bandwidth: %d", m_settings.m_bandwidth);
}
else
{
qDebug() << "bladerf_set_bandwidth(BLADERF_MODULE_RX) actual bandwidth is " << actualBandwidth;
}
}
}
if ((m_settings.m_log2Decim != settings.m_log2Decim) || force)
{
m_settings.m_log2Decim = settings.m_log2Decim;
forwardChange = true;
if(m_dev != 0)
{
m_bladerfThread->setLog2Decimation(m_settings.m_log2Decim);
qDebug() << "BladerfInput: set decimation to " << (1<<m_settings.m_log2Decim);
}
}
if ((m_settings.m_fcPos != settings.m_fcPos) || force)
{
m_settings.m_fcPos = settings.m_fcPos;
if(m_dev != 0)
{
m_bladerfThread->setFcPos((int) m_settings.m_fcPos);
qDebug() << "BladerfInput: set fc pos (enum) to " << (int) m_settings.m_fcPos;
}
}
if (m_settings.m_centerFrequency != settings.m_centerFrequency)
{
forwardChange = true;
}
m_settings.m_centerFrequency = settings.m_centerFrequency;
qint64 deviceCenterFrequency = m_settings.m_centerFrequency;
qint64 f_img = deviceCenterFrequency;
qint64 f_cut = deviceCenterFrequency + m_settings.m_bandwidth/2;
if ((m_settings.m_log2Decim == 0) || (m_settings.m_fcPos == BladeRFSettings::FC_POS_CENTER))
{
deviceCenterFrequency = m_settings.m_centerFrequency;
f_img = deviceCenterFrequency;
f_cut = deviceCenterFrequency + m_settings.m_bandwidth/2;
}
else
{
if (m_settings.m_fcPos == BladeRFSettings::FC_POS_INFRA)
{
deviceCenterFrequency = m_settings.m_centerFrequency + (m_settings.m_devSampleRate / 4);
f_img = deviceCenterFrequency + m_settings.m_devSampleRate/2;
f_cut = deviceCenterFrequency + m_settings.m_bandwidth/2;
}
else if (m_settings.m_fcPos == BladeRFSettings::FC_POS_SUPRA)
{
deviceCenterFrequency = m_settings.m_centerFrequency - (m_settings.m_devSampleRate / 4);
f_img = deviceCenterFrequency - m_settings.m_devSampleRate/2;
f_cut = deviceCenterFrequency - m_settings.m_bandwidth/2;
}
}
if (m_dev != NULL)
{
if (bladerf_set_frequency( m_dev, BLADERF_MODULE_RX, deviceCenterFrequency ) != 0)
{
qDebug("bladerf_set_frequency(%lld) failed", m_settings.m_centerFrequency);
}
}
if (forwardChange)
{
int sampleRate = m_settings.m_devSampleRate/(1<<m_settings.m_log2Decim);
DSPSignalNotification *notif = new DSPSignalNotification(sampleRate, m_settings.m_centerFrequency);
m_deviceAPI->getDeviceInputMessageQueue()->push(notif);
}
qDebug() << "BladerfInput::applySettings: center freq: " << m_settings.m_centerFrequency << " Hz"
<< " device center freq: " << deviceCenterFrequency << " Hz"
<< " device sample rate: " << m_settings.m_devSampleRate << "Hz"
<< " Actual sample rate: " << m_settings.m_devSampleRate/(1<<m_settings.m_log2Decim) << "Hz"
<< " BW: " << m_settings.m_bandwidth << "Hz"
<< " img: " << f_img << "Hz"
<< " cut: " << f_cut << "Hz"
<< " img - cut: " << f_img - f_cut;
return true;
}
bladerf_lna_gain BladerfInput::getLnaGain(int lnaGain)
{
if (lnaGain == 2)
{
return BLADERF_LNA_GAIN_MAX;
}
else if (lnaGain == 1)
{
return BLADERF_LNA_GAIN_MID;
}
else
{
return BLADERF_LNA_GAIN_BYPASS;
}
}
struct bladerf *BladerfInput::open_bladerf_from_serial(const char *serial)
{
int status;
struct bladerf *dev;
struct bladerf_devinfo info;
/* Initialize all fields to "don't care" wildcard values.
*
* Immediately passing this to bladerf_open_with_devinfo() would cause
* libbladeRF to open any device on any available backend. */
bladerf_init_devinfo(&info);
/* Specify the desired device's serial number, while leaving all other
* fields in the info structure wildcard values */
if (serial != NULL)
{
strncpy(info.serial, serial, BLADERF_SERIAL_LENGTH - 1);
info.serial[BLADERF_SERIAL_LENGTH - 1] = '\0';
}
status = bladerf_open_with_devinfo(&dev, &info);
if (status == BLADERF_ERR_NODEV)
{
fprintf(stderr, "No devices available with serial=%s\n", serial);
return NULL;
}
else if (status != 0)
{
fprintf(stderr, "Failed to open device with serial=%s (%s)\n",
serial, bladerf_strerror(status));
return NULL;
}
else
{
return dev;
}
}