mirror of
https://github.com/f4exb/sdrangel.git
synced 2024-11-15 21:01:45 -05:00
226 lines
6.3 KiB
C++
226 lines
6.3 KiB
C++
///////////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2018 F4EXB //
|
|
// written by Edouard Griffiths //
|
|
// //
|
|
// See: http://liquidsdr.org/blog/pll-howto/ //
|
|
// Fixed filter registers saturation //
|
|
// Added order for PSK locking. This brilliant idea actually comes from this //
|
|
// post: https://www.dsprelated.com/showthread/comp.dsp/36356-1.php //
|
|
// //
|
|
// This program is free software; you can redistribute it and/or modify //
|
|
// it under the terms of the GNU General Public License as published by //
|
|
// the Free Software Foundation as version 3 of the License, or //
|
|
// //
|
|
// This program is distributed in the hope that it will be useful, //
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
|
// GNU General Public License V3 for more details. //
|
|
// //
|
|
// You should have received a copy of the GNU General Public License //
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include <complex.h>
|
|
#include <math.h>
|
|
#include "phaselockcomplex.h"
|
|
|
|
PhaseLockComplex::PhaseLockComplex() :
|
|
m_a1(1.0),
|
|
m_a2(1.0),
|
|
m_b0(1.0),
|
|
m_b1(1.0),
|
|
m_b2(1.0),
|
|
m_v0(0.0),
|
|
m_v1(0.0),
|
|
m_v2(0.0),
|
|
m_deltaPhi(0.0),
|
|
m_phiHat(0.0),
|
|
m_phiHatPrev(0.0),
|
|
m_y(1.0, 0.0),
|
|
m_p(1.0, 0.0),
|
|
m_yRe(1.0),
|
|
m_yIm(0.0),
|
|
m_freq(0.0),
|
|
m_freqPrev(0.0),
|
|
m_freqTest(0.0),
|
|
m_lockCount(0),
|
|
m_lockFreq(0.026f),
|
|
m_pskOrder(1),
|
|
m_lockTime(480),
|
|
m_lockTimeCount(0)
|
|
{
|
|
}
|
|
|
|
void PhaseLockComplex::computeCoefficients(Real wn, Real zeta, Real K)
|
|
{
|
|
double t1 = K/(wn*wn); //
|
|
double t2 = 2*zeta/wn - 1/K; //
|
|
|
|
double b0 = 2*K*(1.+t2/2.0f);
|
|
double b1 = 2*K*2.;
|
|
double b2 = 2*K*(1.-t2/2.0f);
|
|
|
|
double a0 = 1 + t1/2.0f;
|
|
double a1 = -t1;
|
|
double a2 = -1 + t1/2.0f;
|
|
|
|
qDebug("PhaseLockComplex::computeCoefficients: b_raw: %f %f %f", b0, b1, b2);
|
|
qDebug("PhaseLockComplex::computeCoefficients: a_raw: %f %f %f", a0, a1, a2);
|
|
|
|
m_b0 = b0 / a0;
|
|
m_b1 = b1 / a0;
|
|
m_b2 = b2 / a0;
|
|
|
|
// a0 = 1.0 is implied
|
|
m_a1 = a1 / a0;
|
|
m_a2 = a2 / a0;
|
|
|
|
qDebug("PhaseLockComplex::computeCoefficients: b: %f %f %f", m_b0, m_b1, m_b2);
|
|
qDebug("PhaseLockComplex::computeCoefficients: a: 1.0 %f %f", m_a1, m_a2);
|
|
|
|
reset();
|
|
}
|
|
|
|
void PhaseLockComplex::setPskOrder(unsigned int order)
|
|
{
|
|
m_pskOrder = order > 0 ? order : 1;
|
|
reset();
|
|
}
|
|
|
|
void PhaseLockComplex::setSampleRate(unsigned int sampleRate)
|
|
{
|
|
m_lockTime = sampleRate / 100; // 10ms for order 1
|
|
m_lockFreq = (2.0*M_PI*(m_pskOrder > 1 ? 6.0 : 1.0)) / sampleRate; // +/- 6 Hz frequency swing
|
|
reset();
|
|
}
|
|
|
|
void PhaseLockComplex::reset()
|
|
{
|
|
// reset filter accumulators and phase
|
|
m_v0 = 0.0f;
|
|
m_v1 = 0.0f;
|
|
m_v2 = 0.0f;
|
|
m_deltaPhi = 0.0f;
|
|
m_phiHat = 0.0f;
|
|
m_phiHatPrev = 0.0f;
|
|
m_y.real(1.0);
|
|
m_y.imag(0.0);
|
|
m_p.real(1.0);
|
|
m_p.imag(0.0);
|
|
m_yRe = 1.0f;
|
|
m_yIm = 0.0f;
|
|
m_freq = 0.0f;
|
|
m_freqPrev = 0.0f;
|
|
m_freqTest = 0.0f;
|
|
m_lockCount = 0;
|
|
m_lockTimeCount = 0;
|
|
}
|
|
|
|
void PhaseLockComplex::feed(float re, float im)
|
|
{
|
|
m_yRe = cos(m_phiHat);
|
|
m_yIm = sin(m_phiHat);
|
|
m_y.real(m_yRe);
|
|
m_y.imag(m_yIm);
|
|
std::complex<float> x(re, im);
|
|
m_deltaPhi = std::arg(x * std::conj(m_y));
|
|
|
|
// bring phase 0 on any of the PSK symbols
|
|
if (m_pskOrder > 1) {
|
|
m_deltaPhi = normalizeAngle(m_pskOrder*m_deltaPhi);
|
|
}
|
|
|
|
// advance buffer
|
|
m_v2 = m_v1; // shift center register to upper register
|
|
m_v1 = m_v0; // shift lower register to center register
|
|
|
|
// compute new lower register
|
|
m_v0 = m_deltaPhi - m_v1*m_a1 - m_v2*m_a2;
|
|
|
|
// compute new output
|
|
m_phiHat = m_v0*m_b0 + m_v1*m_b1 + m_v2*m_b2;
|
|
|
|
// prevent saturation
|
|
if (m_phiHat > 2.0*M_PI)
|
|
{
|
|
m_v0 *= (m_phiHat - 2.0*M_PI) / m_phiHat;
|
|
m_v1 *= (m_phiHat - 2.0*M_PI) / m_phiHat;
|
|
m_v2 *= (m_phiHat - 2.0*M_PI) / m_phiHat;
|
|
m_phiHat -= 2.0*M_PI;
|
|
}
|
|
|
|
if (m_phiHat < -2.0*M_PI)
|
|
{
|
|
m_v0 *= (m_phiHat + 2.0*M_PI) / m_phiHat;
|
|
m_v1 *= (m_phiHat + 2.0*M_PI) / m_phiHat;
|
|
m_v2 *= (m_phiHat + 2.0*M_PI) / m_phiHat;
|
|
m_phiHat += 2.0*M_PI;
|
|
}
|
|
|
|
// lock and frequency estimation
|
|
if (m_pskOrder > 1)
|
|
{
|
|
float dPhi = normalizeAngle(m_phiHat - m_phiHatPrev);
|
|
m_freq = m_expAvg.feed(dPhi);
|
|
|
|
if (m_lockTimeCount < m_lockTime-1)
|
|
{
|
|
m_lockTimeCount++;
|
|
}
|
|
else
|
|
{
|
|
float dF = m_freq - m_freqTest;
|
|
|
|
if ((dF > -m_lockFreq) && (dF < m_lockFreq))
|
|
{
|
|
if (m_lockCount < 20) {
|
|
m_lockCount++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (m_lockCount > 0) {
|
|
m_lockCount--;
|
|
}
|
|
}
|
|
|
|
m_freqTest = m_freq;
|
|
m_lockTimeCount = 0;
|
|
}
|
|
|
|
m_phiHatPrev = m_phiHat;
|
|
}
|
|
else
|
|
{
|
|
m_freqTest = normalizeAngle(m_phiHat - m_phiHatPrev);
|
|
m_freq = m_expAvg.feed(m_freqTest);
|
|
|
|
float dFreq = m_freqTest - m_freqPrev;
|
|
|
|
if ((dFreq > -0.01) && (dFreq < 0.01))
|
|
{
|
|
if (m_lockCount < (m_lockTime-1)) { // [0..479]
|
|
m_lockCount++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m_lockCount = 0;
|
|
}
|
|
|
|
m_phiHatPrev = m_phiHat;
|
|
m_freqPrev = m_freqTest;
|
|
}
|
|
}
|
|
|
|
float PhaseLockComplex::normalizeAngle(float angle)
|
|
{
|
|
while (angle <= -M_PI) {
|
|
angle += 2.0*M_PI;
|
|
}
|
|
while (angle > M_PI) {
|
|
angle -= 2.0*M_PI;
|
|
}
|
|
return angle;
|
|
}
|