1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-12-25 04:03:30 -05:00
sdrangel/sdrbase/dsp/phaselock.cpp
2020-11-04 23:05:41 +01:00

367 lines
11 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2015 F4EXB //
// written by Edouard Griffiths //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <cmath>
#include "dsp/phaselock.h"
// Construct phase-locked loop.
PhaseLock::PhaseLock(Real freq, Real bandwidth, Real minsignal)
{
/*
* This is a type-2, 4th order phase-locked loop.
*
* Open-loop transfer function:
* G(z) = K * (z - q1) / ((z - p1) * (z - p2) * (z - 1) * (z - 1))
* K = 3.788 * (bandwidth * 2 * Pi)**3
* q1 = exp(-0.1153 * bandwidth * 2*Pi)
* p1 = exp(-1.146 * bandwidth * 2*Pi)
* p2 = exp(-5.331 * bandwidth * 2*Pi)
*
* I don't understand what I'm doing; hopefully it will work.
*/
// Set min/max locking frequencies.
m_minfreq = (freq - bandwidth) * 2.0 * M_PI;
m_maxfreq = (freq + bandwidth) * 2.0 * M_PI;
// Set valid signal threshold.
m_minsignal = minsignal;
m_lock_delay = int(20.0 / bandwidth);
m_lock_cnt = 0;
m_pilot_level = 0;
m_psin = 0.0;
m_pcos = 1.0;
// Create 2nd order filter for I/Q representation of phase error.
// Filter has two poles, unit DC gain.
double p1 = exp(-1.146 * bandwidth * 2.0 * M_PI);
double p2 = exp(-5.331 * bandwidth * 2.0 * M_PI);
m_phasor_a1 = - p1 - p2;
m_phasor_a2 = p1 * p2;
m_phasor_b0 = 1 + m_phasor_a1 + m_phasor_a2;
// Create loop filter to stabilize the loop.
double q1 = exp(-0.1153 * bandwidth * 2.0 * M_PI);
m_loopfilter_b0 = 0.62 * bandwidth * 2.0 * M_PI;
m_loopfilter_b1 = - m_loopfilter_b0 * q1;
// After the loop filter, the phase error is integrated to produce
// the frequency. Then the frequency is integrated to produce the phase.
// These integrators form the two remaining poles, both at z = 1.
// Initialize frequency and phase.
m_freq = freq * 2.0 * M_PI;
m_phase = 0;
m_phasor_i1 = 0;
m_phasor_i2 = 0;
m_phasor_q1 = 0;
m_phasor_q2 = 0;
m_loopfilter_x1 = 0;
// Initialize PPS generator.
m_pilot_periods = 0;
m_pps_cnt = 0;
m_sample_cnt = 0;
}
void PhaseLock::configure(Real freq, Real bandwidth, Real minsignal)
{
qDebug("PhaseLock::configure: freq: %f bandwidth: %f minsignal: %f", freq, bandwidth, minsignal);
/*
* This is a type-2, 4th order phase-locked loop.
*
* Open-loop transfer function:
* G(z) = K * (z - q1) / ((z - p1) * (z - p2) * (z - 1) * (z - 1))
* K = 3.788 * (bandwidth * 2 * Pi)**3
* q1 = exp(-0.1153 * bandwidth * 2*Pi)
* p1 = exp(-1.146 * bandwidth * 2*Pi)
* p2 = exp(-5.331 * bandwidth * 2*Pi)
*
* I don't understand what I'm doing; hopefully it will work.
*/
// Set min/max locking frequencies.
m_minfreq = (freq - bandwidth) * 2.0 * M_PI;
m_maxfreq = (freq + bandwidth) * 2.0 * M_PI;
// Set valid signal threshold.
m_minsignal = minsignal;
m_lock_delay = int(20.0 / bandwidth);
m_lock_cnt = 0;
m_pilot_level = 0;
// Create 2nd order filter for I/Q representation of phase error.
// Filter has two poles, unit DC gain.
double p1 = exp(-1.146 * bandwidth * 2.0 * M_PI);
double p2 = exp(-5.331 * bandwidth * 2.0 * M_PI);
m_phasor_a1 = - p1 - p2;
m_phasor_a2 = p1 * p2;
m_phasor_b0 = 1 + m_phasor_a1 + m_phasor_a2;
// Create loop filter to stabilize the loop.
double q1 = exp(-0.1153 * bandwidth * 2.0 * M_PI);
m_loopfilter_b0 = 0.62 * bandwidth * 2.0 * M_PI;
m_loopfilter_b1 = - m_loopfilter_b0 * q1;
// After the loop filter, the phase error is integrated to produce
// the frequency. Then the frequency is integrated to produce the phase.
// These integrators form the two remaining poles, both at z = 1.
// Initialize frequency and phase.
m_freq = freq * 2.0 * M_PI;
m_phase = 0;
m_phasor_i1 = 0;
m_phasor_i2 = 0;
m_phasor_q1 = 0;
m_phasor_q2 = 0;
m_loopfilter_x1 = 0;
// Initialize PPS generator.
m_pilot_periods = 0;
m_pps_cnt = 0;
m_sample_cnt = 0;
}
// Process samples. Bufferized version
void PhaseLock::process(const std::vector<Real>& samples_in, std::vector<Real>& samples_out)
{
unsigned int n = samples_in.size();
samples_out.resize(n);
bool was_locked = (m_lock_cnt >= m_lock_delay);
m_pps_events.clear();
if (n > 0)
m_pilot_level = 1000.0;
for (unsigned int i = 0; i < n; i++) {
// Generate locked pilot tone.
Real psin = sin(m_phase);
Real pcos = cos(m_phase);
// Generate double-frequency output.
// sin(2*x) = 2 * sin(x) * cos(x)
samples_out[i] = 2 * psin * pcos;
// Multiply locked tone with input.
Real x = samples_in[i];
Real phasor_i = psin * x;
Real phasor_q = pcos * x;
// Run IQ phase error through low-pass filter.
phasor_i = m_phasor_b0 * phasor_i
- m_phasor_a1 * m_phasor_i1
- m_phasor_a2 * m_phasor_i2;
phasor_q = m_phasor_b0 * phasor_q
- m_phasor_a1 * m_phasor_q1
- m_phasor_a2 * m_phasor_q2;
m_phasor_i2 = m_phasor_i1;
m_phasor_i1 = phasor_i;
m_phasor_q2 = m_phasor_q1;
m_phasor_q1 = phasor_q;
// Convert I/Q ratio to estimate of phase error.
Real phase_err;
if (phasor_i > std::abs(phasor_q)) {
// We are within +/- 45 degrees from lock.
// Use simple linear approximation of arctan.
phase_err = phasor_q / phasor_i;
} else if (phasor_q > 0) {
// We are lagging more than 45 degrees behind the input.
phase_err = 1;
} else {
// We are more than 45 degrees ahead of the input.
phase_err = -1;
}
// Detect pilot level (conservative).
m_pilot_level = std::min(m_pilot_level, phasor_i);
// Run phase error through loop filter and update frequency estimate.
m_freq += m_loopfilter_b0 * phase_err
+ m_loopfilter_b1 * m_loopfilter_x1;
m_loopfilter_x1 = phase_err;
// Limit frequency to allowable range.
m_freq = std::max(m_minfreq, std::min(m_maxfreq, m_freq));
// Update locked phase.
m_phase += m_freq;
if (m_phase > 2.0 * M_PI) {
m_phase -= 2.0 * M_PI;
m_pilot_periods++;
// Generate pulse-per-second.
if (m_pilot_periods == pilot_frequency) {
m_pilot_periods = 0;
if (was_locked) {
struct PpsEvent ev;
ev.pps_index = m_pps_cnt;
ev.sample_index = m_sample_cnt + i;
ev.block_position = double(i) / double(n);
m_pps_events.push_back(ev);
m_pps_cnt++;
}
}
}
}
// Update lock status.
if (2 * m_pilot_level > m_minsignal) {
if (m_lock_cnt < m_lock_delay)
m_lock_cnt += n;
} else {
m_lock_cnt = 0;
}
// Drop PPS events when pilot not locked.
if (m_lock_cnt < m_lock_delay) {
m_pilot_periods = 0;
m_pps_cnt = 0;
m_pps_events.clear();
}
// Update sample counter.
m_sample_cnt += n;
}
// Process samples. Multiple output
void PhaseLock::process(const Real& sample_in, Real *samples_out)
{
m_pps_events.clear();
// Generate locked pilot tone.
m_psin = sin(m_phase);
m_pcos = cos(m_phase);
// Generate output
processPhase(samples_out);
// Multiply locked tone with input.
Real phasor_i = m_psin * sample_in;
Real phasor_q = m_pcos * sample_in;
// Actual PLL
process_phasor(phasor_i, phasor_q);
}
void PhaseLock::process(const Real& real_in, const Real& imag_in, Real *samples_out)
{
m_pps_events.clear();
// Generate locked pilot tone.
m_psin = sin(m_phase);
m_pcos = cos(m_phase);
// Generate output
processPhase(samples_out);
// Multiply locked tone with input.
Real phasor_i = m_psin * real_in - m_pcos * imag_in;
Real phasor_q = m_pcos * real_in + m_psin * imag_in;
// Actual PLL
process_phasor(phasor_i, phasor_q);
}
void PhaseLock::process_phasor(Real& phasor_i, Real& phasor_q)
{
// Run IQ phase error through low-pass filter.
phasor_i = m_phasor_b0 * phasor_i
- m_phasor_a1 * m_phasor_i1
- m_phasor_a2 * m_phasor_i2;
phasor_q = m_phasor_b0 * phasor_q
- m_phasor_a1 * m_phasor_q1
- m_phasor_a2 * m_phasor_q2;
m_phasor_i2 = m_phasor_i1;
m_phasor_i1 = phasor_i;
m_phasor_q2 = m_phasor_q1;
m_phasor_q1 = phasor_q;
// Convert I/Q ratio to estimate of phase error.
Real phase_err;
if (phasor_i > std::abs(phasor_q)) {
// We are within +/- 45 degrees from lock.
// Use simple linear approximation of arctan.
phase_err = phasor_q / phasor_i;
} else if (phasor_q > 0) {
// We are lagging more than 45 degrees behind the input.
phase_err = 1;
} else {
// We are more than 45 degrees ahead of the input.
phase_err = -1;
}
// Detect pilot level (conservative).
// m_pilot_level = std::min(m_pilot_level, phasor_i);
m_pilot_level = phasor_i;
// Run phase error through loop filter and update frequency estimate.
m_freq += m_loopfilter_b0 * phase_err
+ m_loopfilter_b1 * m_loopfilter_x1;
m_loopfilter_x1 = phase_err;
// Limit frequency to allowable range.
m_freq = std::max(m_minfreq, std::min(m_maxfreq, m_freq));
// Update locked phase.
m_phase += m_freq;
if (m_phase > 2.0 * M_PI)
{
m_phase -= 2.0 * M_PI;
m_pilot_periods++;
// Generate pulse-per-second.
if (m_pilot_periods == pilot_frequency)
{
m_pilot_periods = 0;
}
}
// Update lock status.
if (2 * m_pilot_level > m_minsignal)
{
if (m_lock_cnt < m_lock_delay)
{
m_lock_cnt += 1; // n
}
}
else
{
m_lock_cnt = 0;
}
// Drop PPS events when pilot not locked.
if (m_lock_cnt < m_lock_delay) {
m_pilot_periods = 0;
m_pps_cnt = 0;
m_pps_events.clear();
}
// Update sample counter.
m_sample_cnt += 1; // n
}