1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-25 17:28:50 -05:00
sdrangel/plugins/channelrx/demodnfm/nfmdemodsettings.cpp

298 lines
8.7 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany //
// written by Christian Daniel //
// Copyright (C) 2015-2022 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// Copyright (C) 2021 Jon Beniston, M7RCE <jon@beniston.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QColor>
#include "dsp/dspengine.h"
#include "util/simpleserializer.h"
#include "settings/serializable.h"
#include "nfmdemodsettings.h"
// Standard channel spacings (kHz) using Carson rule
// beta based ............ 11F3 16F3 (36F9)
// 5 6.25 7.5 8.33 12.5 25 40 Spacing
// 0.43 0.43 0.43 0.43 0.83 1.67 1.0 Beta
const int NFMDemodSettings::m_channelSpacings[] = {
5000, 6250, 7500, 8333, 12500, 25000, 40000
};
const int NFMDemodSettings::m_rfBW[] = { // RF bandwidth (Hz)
4800, 6000, 7200, 8000, 11000, 16000, 36000
};
const int NFMDemodSettings::m_afBW[] = { // audio bandwidth (Hz)
1700, 2100, 2500, 2800, 3000, 3000, 9000
};
const int NFMDemodSettings::m_fmDev[] = { // peak deviation (Hz) - full is double
731, 903, 1075, 1204, 2500, 5000, 9000
};
const int NFMDemodSettings::m_nbChannelSpacings = 7;
NFMDemodSettings::NFMDemodSettings() :
m_channelMarker(nullptr),
m_rollupState(nullptr)
{
resetToDefaults();
}
void NFMDemodSettings::resetToDefaults()
{
m_inputFrequencyOffset = 0;
m_rfBandwidth = 12500;
m_afBandwidth = 3000;
m_fmDeviation = 5000;
m_squelchGate = 5; // 10s of ms at 48000 Hz sample rate. Corresponds to 2400 for AGC attack
m_deltaSquelch = false;
m_squelch = -30.0;
m_volume = 1.0;
m_ctcssOn = false;
m_audioMute = false;
m_ctcssIndex = 0;
m_dcsOn = false;
m_dcsCode = 0023;
m_dcsPositive = false;
m_rgbColor = QColor(255, 0, 0).rgb();
m_title = "NFM Demodulator";
m_audioDeviceName = AudioDeviceManager::m_defaultDeviceName;
m_highPass = true;
m_streamIndex = 0;
m_useReverseAPI = false;
m_reverseAPIAddress = "127.0.0.1";
m_reverseAPIPort = 8888;
m_reverseAPIDeviceIndex = 0;
m_reverseAPIChannelIndex = 0;
m_workspaceIndex = 0;
m_hidden = false;
}
QByteArray NFMDemodSettings::serialize() const
{
SimpleSerializer s(1);
s.writeS32(1, m_inputFrequencyOffset);
s.writeReal(2, m_rfBandwidth);
s.writeReal(3, m_afBandwidth);
s.writeS32(4, m_volume*10.0);
s.writeS32(5, static_cast<int>(m_squelch));
s.writeBool(6, m_highPass);
s.writeU32(7, m_rgbColor);
s.writeS32(8, m_ctcssIndex);
s.writeBool(9, m_ctcssOn);
s.writeBool(10, m_audioMute);
s.writeS32(11, m_squelchGate);
s.writeBool(12, m_deltaSquelch);
if (m_channelMarker) {
s.writeBlob(13, m_channelMarker->serialize());
}
s.writeString(14, m_title);
s.writeString(15, m_audioDeviceName);
s.writeBool(16, m_useReverseAPI);
s.writeString(17, m_reverseAPIAddress);
s.writeU32(18, m_reverseAPIPort);
s.writeU32(19, m_reverseAPIDeviceIndex);
s.writeU32(20, m_reverseAPIChannelIndex);
s.writeS32(21, m_streamIndex);
s.writeReal(22, m_fmDeviation);
s.writeBool(23, m_dcsOn);
s.writeU32(24, m_dcsCode);
s.writeBool(25, m_dcsPositive);
if (m_rollupState) {
s.writeBlob(26, m_rollupState->serialize());
}
s.writeS32(27, m_workspaceIndex);
s.writeBlob(28, m_geometryBytes);
s.writeBool(29, m_hidden);
return s.final();
}
bool NFMDemodSettings::deserialize(const QByteArray& data)
{
SimpleDeserializer d(data);
if (!d.isValid())
{
resetToDefaults();
return false;
}
if (d.getVersion() == 1)
{
QByteArray bytetmp;
qint32 tmp;
uint32_t utmp;
if (m_channelMarker)
{
d.readBlob(13, &bytetmp);
m_channelMarker->deserialize(bytetmp);
}
d.readS32(1, &tmp, 0);
m_inputFrequencyOffset = tmp;
d.readReal(2, &m_rfBandwidth, 12500.0);
d.readReal(3, &m_afBandwidth, 3000.0);
d.readS32(4, &tmp, 20);
m_volume = tmp / 10.0;
d.readS32(5, &tmp, -30);
m_squelch = (tmp < -100 ? tmp/10 : tmp) * 1.0;
d.readBool(6, &m_highPass, true);
d.readU32(7, &m_rgbColor, QColor(255, 0, 0).rgb());
d.readS32(8, &m_ctcssIndex, 0);
d.readBool(9, &m_ctcssOn, false);
d.readBool(10, &m_audioMute, false);
d.readS32(11, &m_squelchGate, 5);
d.readBool(12, &m_deltaSquelch, false);
d.readString(14, &m_title, "NFM Demodulator");
d.readString(15, &m_audioDeviceName, AudioDeviceManager::m_defaultDeviceName);
d.readBool(16, &m_useReverseAPI, false);
d.readString(17, &m_reverseAPIAddress, "127.0.0.1");
d.readU32(18, &utmp, 0);
if ((utmp > 1023) && (utmp < 65535)) {
m_reverseAPIPort = utmp;
} else {
m_reverseAPIPort = 8888;
}
d.readU32(19, &utmp, 0);
m_reverseAPIDeviceIndex = utmp > 99 ? 99 : utmp;
d.readU32(20, &utmp, 0);
m_reverseAPIChannelIndex = utmp > 99 ? 99 : utmp;
d.readS32(21, &m_streamIndex, 0);
d.readReal(22, &m_fmDeviation, 5000.0);
d.readBool(23, &m_dcsOn, false);
d.readU32(24, &utmp, 0023);
m_dcsCode = utmp < 511 ? utmp : 511;
d.readBool(25, &m_dcsPositive, false);
if (m_rollupState)
{
d.readBlob(26, &bytetmp);
m_rollupState->deserialize(bytetmp);
}
d.readS32(27, &m_workspaceIndex, 0);
d.readBlob(28, &m_geometryBytes);
d.readBool(29, &m_hidden, false);
return true;
}
else
{
resetToDefaults();
return false;
}
}
int NFMDemodSettings::getChannelSpacing(int index)
{
if (index < 0) {
return m_channelSpacings[0];
} else if (index < m_nbChannelSpacings) {
return m_channelSpacings[index];
} else {
return m_channelSpacings[m_nbChannelSpacings-1];
}
}
int NFMDemodSettings::getChannelSpacingIndex(int channelSpacing)
{
for (int i = 0; i < m_nbChannelSpacings; i++)
{
if (channelSpacing <= m_channelSpacings[i]) {
return i;
}
}
return m_nbChannelSpacings-1;
}
int NFMDemodSettings::getRFBW(int index)
{
if (index < 0) {
return m_rfBW[0];
} else if (index < m_nbChannelSpacings) {
return m_rfBW[index];
} else {
return m_rfBW[m_nbChannelSpacings-1];
}
}
int NFMDemodSettings::getRFBWIndex(int rfbw)
{
for (int i = 0; i < m_nbChannelSpacings; i++)
{
if (rfbw <= m_rfBW[i]) {
return i;
}
}
return m_nbChannelSpacings-1;
}
int NFMDemodSettings::getAFBW(int index)
{
if (index < 0) {
return m_afBW[0];
} else if (index < m_nbChannelSpacings) {
return m_afBW[index];
} else {
return m_afBW[m_nbChannelSpacings-1];
}
}
int NFMDemodSettings::getAFBWIndex(int afbw)
{
for (int i = 0; i < m_nbChannelSpacings; i++)
{
if (afbw <= m_afBW[i]) {
return i;
}
}
return m_nbChannelSpacings-1;
}
int NFMDemodSettings::getFMDev(int index)
{
if (index < 0) {
return m_fmDev[0];
} else if (index < m_nbChannelSpacings) {
return m_fmDev[index];
} else {
return m_fmDev[m_nbChannelSpacings-1];
}
}
int NFMDemodSettings::getFMDevIndex(int fmDev)
{
for (int i = 0; i < m_nbChannelSpacings; i++)
{
if (fmDev <= m_rfBW[i]) {
return i;
}
}
return m_nbChannelSpacings-1;
}