1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-30 03:38:55 -05:00
sdrangel/sdrbase/dsp/fmpreemphasis.cpp

81 lines
3.5 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2020 Kacper Michajłow <kasper93@gmail.com> //
// Copyright (C) 2020 Jon Beniston, M7RCE <jon@beniston.com> //
// Copyright (C) 2005,2007,2012 Free Software Foundation, Inc.
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <cmath>
#include <QDebug>
#include "dsp/fmpreemphasis.h"
FMPreemphasis::FMPreemphasis(int sampleRate, Real tau, Real highFreq)
{
configure(sampleRate, tau, highFreq);
}
void FMPreemphasis::configure(int sampleRate, Real tau, Real highFreq)
{
// Based on: https://github.com/gnuradio/gnuradio/blob/master/gr-analog/python/analog/fm_emph.py
// Compare to freq response in https://www.mathworks.com/help/comm/ref/comm.fmbroadcastmodulator-system-object.html
// High frequency corner at which to flatten the gain
double fh = std::min((double)highFreq, 0.925 * sampleRate/2.0);
// Digital corner frequencies
double w_cl = 1.0 / tau;
double w_ch = 2.0 * M_PI * fh;
// Prewarped analog corner frequencies
double w_cla = 2.0 * sampleRate * std::tan(w_cl / (2.0 * sampleRate));
double w_cha = 2.0 * sampleRate * std::tan(w_ch / (2.0 * sampleRate));
// Resulting digital pole, zero, and gain term from the bilinear
// transformation of H(s) = (s + w_cla) / (s + w_cha) to
// H(z) = b0 (1 - z1 z^-1)/(1 - p1 z^-1)
double kl = -w_cla / (2.0 * sampleRate);
double kh = -w_cha / (2.0 * sampleRate);
double z1 = (1.0 + kl) / (1.0 - kl);
double p1 = (1.0 + kh) / (1.0 - kh);
double b0 = (1.0 - kl) / (1.0 - kh);
// Adjust with a gain, g, so 0 dB gain at DC
double g = std::abs(1.0 - p1) / (b0 * std::abs(1.0 - z1));
// Caclulate IIR taps
m_b0 = (Real)(g * b0 * 1.0);
m_b1 = (Real)(g * b0 * -z1);
m_a1 = (Real)-p1;
// Zero delay line so we get reproducible results
m_z = 0;
qDebug() << "FMPreemphasis::configure: tau: " << tau
<< " sampleRate: " << sampleRate
<< " b0: " << m_b0
<< " b1: " << m_b1
<< " a1: " << m_a1;
}
Real FMPreemphasis::filter(const Real sampleIn)
{
Real sampleOut;
// See Transposed Direct form 2 - https://en.wikipedia.org/wiki/Digital_biquad_filter
sampleOut = sampleIn * m_b0 + m_z;
m_z = sampleIn * m_b1 + sampleOut * -m_a1;
return sampleOut;
}