1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-25 09:18:54 -05:00
sdrangel/wdsp/anf.cpp

211 lines
4.9 KiB
C++

/* anf.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2012, 2013 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "amd.hpp"
#include "snba.hpp"
#include "emnr.hpp"
#include "anr.hpp"
#include "anf.hpp"
#include "bandpass.hpp"
#include "RXA.hpp"
namespace WDSP {
ANF::ANF(
int _run,
int _position,
int _buff_size,
float *_in_buff,
float *_out_buff,
int _dline_size,
int _n_taps,
int _delay,
double _two_mu,
double _gamma,
double _lidx,
double _lidx_min,
double _lidx_max,
double _ngamma,
double _den_mult,
double _lincr,
double _ldecr
)
{
run = _run;
position = _position;
buff_size = _buff_size;
in_buff = _in_buff;
out_buff = _out_buff;
dline_size = _dline_size;
mask = _dline_size - 1;
n_taps = _n_taps;
delay = _delay;
two_mu = _two_mu;
gamma = _gamma;
in_idx = 0;
lidx = _lidx;
lidx_min = _lidx_min;
lidx_max = _lidx_max;
ngamma = _ngamma;
den_mult = _den_mult;
lincr = _lincr;
ldecr = _ldecr;
std::fill(d.begin(), d.end(), 0);
std::fill(w.begin(), w.end(), 0);
}
void ANF::execute(int _position)
{
int i, j, idx;
double c0, c1;
double y, error, sigma, inv_sigp;
double nel, nev;
if (run && (position == _position))
{
for (i = 0; i < buff_size; i++)
{
d[in_idx] = in_buff[2 * i + 0];
y = 0;
sigma = 0;
for (j = 0; j < n_taps; j++)
{
idx = (in_idx + j + delay) & mask;
y += w[j] * d[idx];
sigma += d[idx] * d[idx];
}
inv_sigp = 1.0 / (sigma + 1e-10);
error = d[in_idx] - y;
out_buff[2 * i + 0] = error;
out_buff[2 * i + 1] = 0.0;
if ((nel = error * (1.0 - two_mu * sigma * inv_sigp)) < 0.0)
nel = -nel;
if ((nev = d[in_idx] - (1.0 - two_mu * ngamma) * y - two_mu * error * sigma * inv_sigp) < 0.0)
nev = -nev;
if (nev < nel)
{
if ((lidx += lincr) > lidx_max) lidx = lidx_max;
}
else
{
if ((lidx -= ldecr) < lidx_min) lidx = lidx_min;
}
ngamma = gamma * (lidx * lidx) * (lidx * lidx) * den_mult;
c0 = 1.0 - two_mu * ngamma;
c1 = two_mu * error * inv_sigp;
for (j = 0; j < n_taps; j++)
{
idx = (in_idx + j + delay) & mask;
w[j] = c0 * w[j] + c1 * d[idx];
}
in_idx = (in_idx + mask) & mask;
}
}
else if (in_buff != out_buff)
{
std::copy(in_buff, in_buff + buff_size * 2, out_buff);
}
}
void ANF::flush()
{
std::fill(d.begin(), d.end(), 0);
std::fill(w.begin(), w.end(), 0);
in_idx = 0;
}
void ANF::setBuffers(float* _in, float* _out)
{
in_buff = _in;
out_buff = _out;
}
void ANF::setSamplerate(int)
{
flush();
}
void ANF::setSize(int _size)
{
buff_size = _size;
flush();
}
/********************************************************************************************************
* *
* RXA Properties *
* *
********************************************************************************************************/
void ANF::setVals(int _taps, int _delay, double _gain, double _leakage)
{
n_taps = _taps;
delay = _delay;
two_mu = _gain; //try two_mu = 1e-4
gamma = _leakage; //try gamma = 0.10
flush();
}
void ANF::setTaps(int _taps)
{
n_taps = _taps;
flush();
}
void ANF::setDelay(int _delay)
{
delay = _delay;
flush();
}
void ANF::setGain(double _gain)
{
two_mu = _gain;
flush();
}
void ANF::setLeakage(double _leakage)
{
gamma = _leakage;
flush();
}
} // namespace WDSP