1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-25 17:28:50 -05:00
sdrangel/sdrbase/channel/remotedatareadqueue.h

146 lines
7.0 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany //
// written by Christian Daniel //
// Copyright (C) 2015-2019, 2021 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// Copyright (C) 2015 John Greb <hexameron@spam.no> //
// Copyright (C) 2019 Davide Gerhard <rainbow@irh.it> //
// Copyright (C) 2020 Kacper Michajłow <kasper93@gmail.com> //
// //
// Remote sink channel (Rx) data blocks to read queue //
// //
// SDRangel can serve as a remote SDR front end that handles the interface //
// with a physical device and sends or receives the I/Q samples stream via UDP //
// to or from another SDRangel instance or any program implementing the same //
// protocol. The remote SDRangel is controlled via its Web REST API. //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef CHANNEL_REMOTEDATAREADQUEUE_H_
#define CHANNEL_REMOTEDATAREADQUEUE_H_
#include <QQueue>
#include "export.h"
class RemoteDataFrame;
struct Sample;
class SDRBASE_API RemoteDataReadQueue
{
public:
RemoteDataReadQueue();
~RemoteDataReadQueue();
void push(RemoteDataFrame* dataFrame); //!< push frame on the queue
void readSample(Sample& s, bool isTx); //!< Read sample from queue
uint32_t length() const { return m_dataReadQueue.size(); } //!< Returns queue length
uint32_t size() const { return m_maxSize; } //!< Returns queue size (max length)
void setSize(uint32_t size); //!< Sets the queue size (max length)
uint32_t readSampleCount() const { return m_sampleCount; } //!< Returns the absolute number of samples read
static const uint32_t MinimumMaxSize;
private:
QQueue<RemoteDataFrame*> m_dataReadQueue;
RemoteDataFrame *m_dataFrame;
uint32_t m_maxSize;
uint32_t m_blockIndex;
uint32_t m_sampleIndex;
uint32_t m_sampleCount; //!< use a counter capped below 2^31 as it is going to be converted to an int in the web interface
RemoteDataFrame* pop(); //!< Pop frame from the queue
inline void convertDataToSample(Sample& s, uint32_t blockIndex, uint32_t sampleIndex, bool isTx)
{
int sampleSize = m_dataFrame->m_superBlocks[blockIndex].m_header.m_sampleBytes * 2; // I/Q sample size in data block
int32_t iconv, qconv;
if (sizeof(Sample) == sampleSize) // no conversion
{
s = *((Sample*) &(m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf[sampleIndex*sampleSize]));
}
else if (isTx)
{
if (sampleSize == 2) // 8 -> 16 bits
{
int8_t *buf = (int8_t*) m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf;
iconv = buf[sampleIndex*sampleSize] * (1<<8);
qconv = buf[sampleIndex*sampleSize+1] * (1<<8);
s.setReal(iconv);
s.setImag(qconv);
}
else if (sampleSize == 4) // just convert types (always 16 bits wide)
{
iconv = *((int16_t*) &(m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf[sampleIndex*sampleSize]));
qconv = *((int16_t*) &(m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf[sampleIndex*sampleSize+2]));
s.setReal(iconv);
s.setImag(qconv);
}
else if (sampleSize == 8) // just convert types (always 16 bits wide)
{
iconv = *((int32_t*) &(m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf[sampleIndex*sampleSize]));
qconv = *((int32_t*) &(m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf[sampleIndex*sampleSize+4]));
s.setReal(iconv);
s.setImag(qconv);
}
else // invalid
{
s = Sample{0, 0};
}
}
else
{
if ((sampleSize == 2) && (sizeof(Sample) == 2)) // 8 -> 16 bits
{
int8_t *buf = (int8_t*) m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf;
iconv = buf[sampleIndex*sampleSize] * (1<<8);
qconv = buf[sampleIndex*sampleSize+1] * (1<<8);
s.setReal(iconv);
s.setImag(qconv);
}
else if ((sampleSize == 2) && (sizeof(Sample) == 4)) // 8 -> 24 bits
{
int8_t *buf = (int8_t*) m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf;
iconv = buf[sampleIndex*sampleSize] * (1<<16);
qconv = buf[sampleIndex*sampleSize+1] * (1<<16);
s.setReal(iconv);
s.setImag(qconv);
}
else if (sampleSize == 4) // 16 -> 24 bits
{
iconv = *((int16_t*) &(m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf[sampleIndex*sampleSize])) * (1<<8);
qconv = *((int16_t*) &(m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf[sampleIndex*sampleSize+2])) * (1<<8);
s.setReal(iconv);
s.setImag(qconv);
}
else if (sampleSize == 8) // 24 -> 16 bits
{
iconv = *((int32_t*) &(m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf[sampleIndex*sampleSize])) / (1<<8);
qconv = *((int32_t*) &(m_dataFrame->m_superBlocks[blockIndex].m_protectedBlock.buf[sampleIndex*sampleSize+4])) / (1<<8);
s.setReal(iconv);
s.setImag(qconv);
}
else // invalid
{
s = Sample{0, 0};
}
}
}
};
#endif /* CHANNEL_REMOTEDATAREADQUEUE_H_ */