mirror of
https://github.com/f4exb/sdrangel.git
synced 2024-11-03 15:31:15 -05:00
360 lines
12 KiB
C++
360 lines
12 KiB
C++
///////////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
|
|
// //
|
|
// This program is free software; you can redistribute it and/or modify //
|
|
// it under the terms of the GNU General Public License as published by //
|
|
// the Free Software Foundation as version 3 of the License, or //
|
|
// (at your option) any later version. //
|
|
// //
|
|
// This program is distributed in the hope that it will be useful, //
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
|
// GNU General Public License V3 for more details. //
|
|
// //
|
|
// You should have received a copy of the GNU General Public License //
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include <QTimer>
|
|
#include <QDebug>
|
|
|
|
#include "dsp/samplemofifo.h"
|
|
#include "dsp/basebandsamplesink.h"
|
|
|
|
#include "testmosyncsettings.h"
|
|
#include "testmosyncworker.h"
|
|
|
|
TestMOSyncWorker::TestMOSyncWorker(QObject* parent) :
|
|
QObject(parent),
|
|
m_running(false),
|
|
m_buf(nullptr),
|
|
m_log2Interp(0),
|
|
m_throttlems(TestMOSyncSettings::m_msThrottle),
|
|
m_throttleToggle(false),
|
|
m_samplesRemainder(0),
|
|
m_samplerate(0),
|
|
m_feedSpectrumIndex(0),
|
|
m_spectrumSink(nullptr)
|
|
{
|
|
qDebug("TestMOSyncWorker::TestMOSyncWorker");
|
|
setSamplerate(48000);
|
|
}
|
|
|
|
TestMOSyncWorker::~TestMOSyncWorker()
|
|
{
|
|
qDebug("TestMOSyncWorker::~TestMOSyncWorker");
|
|
|
|
if (m_running) {
|
|
stopWork();
|
|
}
|
|
|
|
delete[] m_buf;
|
|
}
|
|
|
|
void TestMOSyncWorker::startWork()
|
|
{
|
|
qDebug("TestMOSyncWorker::startWork");
|
|
m_elapsedTimer.start();
|
|
m_running = true;
|
|
}
|
|
|
|
void TestMOSyncWorker::stopWork()
|
|
{
|
|
qDebug("TestMOSyncWorker::stopWork");
|
|
m_running = false;
|
|
}
|
|
|
|
void TestMOSyncWorker::connectTimer(const QTimer& timer)
|
|
{
|
|
qDebug() << "TestMOSyncWorker::connectTimer";
|
|
connect(&timer, SIGNAL(timeout()), this, SLOT(tick()));
|
|
}
|
|
|
|
void TestMOSyncWorker::setSamplerate(int samplerate)
|
|
{
|
|
if (samplerate != m_samplerate)
|
|
{
|
|
qDebug() << "TestMOSyncWorker::setSamplerate:"
|
|
<< " new:" << samplerate
|
|
<< " old:" << m_samplerate;
|
|
|
|
bool wasRunning = false;
|
|
|
|
if (m_running)
|
|
{
|
|
stopWork();
|
|
wasRunning = true;
|
|
}
|
|
|
|
m_samplerate = samplerate;
|
|
m_samplesChunkSize = (m_samplerate * m_throttlems) / 1000;
|
|
m_blockSize = (m_samplerate * 50) / 1000;
|
|
|
|
if (m_buf) {
|
|
delete[] m_buf;
|
|
}
|
|
|
|
m_buf = new qint16[2*m_blockSize*2];
|
|
|
|
if (wasRunning) {
|
|
startWork();
|
|
}
|
|
}
|
|
}
|
|
|
|
void TestMOSyncWorker::setLog2Interpolation(unsigned int log2Interpolation)
|
|
{
|
|
if (log2Interpolation > 6) {
|
|
return;
|
|
}
|
|
|
|
if (log2Interpolation != m_log2Interp)
|
|
{
|
|
qDebug() << "TestSinkThread::setLog2Interpolation:"
|
|
<< " new:" << log2Interpolation
|
|
<< " old:" << m_log2Interp;
|
|
|
|
bool wasRunning = false;
|
|
|
|
if (m_running)
|
|
{
|
|
stopWork();
|
|
wasRunning = true;
|
|
}
|
|
|
|
m_log2Interp = log2Interpolation;
|
|
|
|
if (wasRunning) {
|
|
startWork();
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned int TestMOSyncWorker::getLog2Interpolation() const
|
|
{
|
|
return m_log2Interp;
|
|
}
|
|
|
|
void TestMOSyncWorker::setFcPos(int fcPos)
|
|
{
|
|
m_fcPos = fcPos;
|
|
}
|
|
|
|
int TestMOSyncWorker::getFcPos() const
|
|
{
|
|
return m_fcPos;
|
|
}
|
|
|
|
void TestMOSyncWorker::callback(qint16* buf, qint32 samplesPerChannel)
|
|
{
|
|
unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End;
|
|
m_sampleFifo->readSync(samplesPerChannel/(1<<m_log2Interp), iPart1Begin, iPart1End, iPart2Begin, iPart2End);
|
|
|
|
if (iPart1Begin != iPart1End)
|
|
{
|
|
callbackPart(buf, (iPart1End - iPart1Begin)*(1<<m_log2Interp), iPart1Begin);
|
|
}
|
|
|
|
if (iPart2Begin != iPart2End)
|
|
{
|
|
unsigned int shift = (iPart1End - iPart1Begin)*(1<<m_log2Interp);
|
|
callbackPart(buf + 2*shift, (iPart2End - iPart2Begin)*(1<<m_log2Interp), iPart2Begin);
|
|
}
|
|
}
|
|
|
|
// Interpolate according to specified log2 (ex: log2=4 => decim=16). len is a number of samples (not a number of I or Q)
|
|
void TestMOSyncWorker::callbackPart(qint16* buf, qint32 nSamples, int iBegin)
|
|
{
|
|
for (unsigned int channel = 0; channel < 2; channel++)
|
|
{
|
|
SampleVector::iterator begin = m_sampleFifo->getData(channel).begin() + iBegin;
|
|
|
|
if (m_log2Interp == 0)
|
|
{
|
|
m_interpolators[channel].interpolate1(&begin, &buf[channel*2*nSamples], 2*nSamples);
|
|
}
|
|
else
|
|
{
|
|
if (m_fcPos == 0) // Infra
|
|
{
|
|
switch (m_log2Interp)
|
|
{
|
|
case 1:
|
|
m_interpolators[channel].interpolate2_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
|
|
break;
|
|
case 2:
|
|
m_interpolators[channel].interpolate4_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
|
|
break;
|
|
case 3:
|
|
m_interpolators[channel].interpolate8_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
|
|
break;
|
|
case 4:
|
|
m_interpolators[channel].interpolate16_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
|
|
break;
|
|
case 5:
|
|
m_interpolators[channel].interpolate32_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
|
|
break;
|
|
case 6:
|
|
m_interpolators[channel].interpolate64_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
else if (m_fcPos == 1) // Supra
|
|
{
|
|
switch (m_log2Interp)
|
|
{
|
|
case 1:
|
|
m_interpolators[channel].interpolate2_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
|
|
break;
|
|
case 2:
|
|
m_interpolators[channel].interpolate4_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
|
|
break;
|
|
case 3:
|
|
m_interpolators[channel].interpolate8_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
|
|
break;
|
|
case 4:
|
|
m_interpolators[channel].interpolate16_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
|
|
break;
|
|
case 5:
|
|
m_interpolators[channel].interpolate32_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
|
|
break;
|
|
case 6:
|
|
m_interpolators[channel].interpolate64_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
else if (m_fcPos == 2) // Center
|
|
{
|
|
switch (m_log2Interp)
|
|
{
|
|
case 1:
|
|
m_interpolators[channel].interpolate2_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
|
|
break;
|
|
case 2:
|
|
m_interpolators[channel].interpolate4_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
|
|
break;
|
|
case 3:
|
|
m_interpolators[channel].interpolate8_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
|
|
break;
|
|
case 4:
|
|
m_interpolators[channel].interpolate16_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
|
|
break;
|
|
case 5:
|
|
m_interpolators[channel].interpolate32_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
|
|
break;
|
|
case 6:
|
|
m_interpolators[channel].interpolate64_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (channel == m_feedSpectrumIndex) {
|
|
feedSpectrum(&buf[channel*2*nSamples], nSamples*2);
|
|
}
|
|
}
|
|
}
|
|
|
|
void TestMOSyncWorker::tick()
|
|
{
|
|
if (m_running)
|
|
{
|
|
qint64 throttlems = m_elapsedTimer.restart();
|
|
|
|
if (throttlems != m_throttlems)
|
|
{
|
|
m_throttlems = throttlems;
|
|
m_samplesChunkSize = (m_samplerate * (m_throttlems+(m_throttleToggle ? 1 : 0))) / 1000;
|
|
m_throttleToggle = !m_throttleToggle;
|
|
}
|
|
|
|
unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End;
|
|
std::vector<SampleVector>& data = m_sampleFifo->getData();
|
|
m_sampleFifo->readSync(m_samplesChunkSize, iPart1Begin, iPart1End, iPart2Begin, iPart2End);
|
|
|
|
if (iPart1Begin != iPart1End) {
|
|
callbackPart(data, iPart1Begin, iPart1End);
|
|
}
|
|
|
|
if (iPart2Begin != iPart2End) {
|
|
callbackPart(data, iPart2Begin, iPart2End);
|
|
}
|
|
}
|
|
}
|
|
|
|
void TestMOSyncWorker::callbackPart(std::vector<SampleVector>& data, unsigned int iBegin, unsigned int iEnd)
|
|
{
|
|
unsigned int chunkSize = iEnd - iBegin;
|
|
|
|
for (unsigned int channel = 0; channel < 2; channel++)
|
|
{
|
|
SampleVector::iterator beginRead = data[channel].begin() + iBegin;
|
|
|
|
if (m_log2Interp == 0)
|
|
{
|
|
m_interpolators[channel].interpolate1(&beginRead, m_buf, 2*chunkSize);
|
|
|
|
if (channel == m_feedSpectrumIndex) {
|
|
feedSpectrum(m_buf, 2*chunkSize);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (m_log2Interp)
|
|
{
|
|
case 1:
|
|
m_interpolators[channel].interpolate2_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interp)*2);
|
|
break;
|
|
case 2:
|
|
m_interpolators[channel].interpolate4_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interp)*2);
|
|
break;
|
|
case 3:
|
|
m_interpolators[channel].interpolate8_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interp)*2);
|
|
break;
|
|
case 4:
|
|
m_interpolators[channel].interpolate16_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interp)*2);
|
|
break;
|
|
case 5:
|
|
m_interpolators[channel].interpolate32_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interp)*2);
|
|
break;
|
|
case 6:
|
|
m_interpolators[channel].interpolate64_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interp)*2);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (channel == m_feedSpectrumIndex) {
|
|
feedSpectrum(m_buf, 2*chunkSize*(1<<m_log2Interp));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void TestMOSyncWorker::feedSpectrum(int16_t *buf, unsigned int bufSize)
|
|
{
|
|
if (!m_spectrumSink) {
|
|
return;
|
|
}
|
|
|
|
m_samplesVector.allocate(bufSize/2);
|
|
Sample16 *s16Buf = (Sample16*) buf;
|
|
|
|
std::transform(
|
|
s16Buf,
|
|
s16Buf + (bufSize/2),
|
|
m_samplesVector.m_vector.begin(),
|
|
[](Sample16 s) -> Sample {
|
|
return Sample{s.m_real, s.m_imag};
|
|
}
|
|
);
|
|
|
|
m_spectrumSink->feed(m_samplesVector.m_vector.begin(), m_samplesVector.m_vector.begin() + (bufSize/2), false);
|
|
}
|