1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-09 01:56:05 -05:00
sdrangel/devices/sdrdaemon/sdrdaemonfecbuffer.h
2017-05-25 20:13:34 +02:00

273 lines
12 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef DEVICES_SDRDAEMON_SDRDAEMONFECBUFFER_H_
#define DEVICES_SDRDAEMON_SDRDAEMONFECBUFFER_H_
#include <QString>
#include <QDebug>
#include <cstdlib>
#include "cm256.h"
#include "util/movingaverage.h"
#define SDRDAEMONFEC_UDPSIZE 512 // UDP payload size
#define SDRDAEMONFEC_NBORIGINALBLOCKS 128 // number of sample blocks per frame excluding FEC blocks
#define SDRDAEMONFEC_NBDECODERSLOTS 16 // power of two sub multiple of uint16_t size. A too large one is superfluous.
class SDRdaemonFECBuffer
{
public:
#pragma pack(push, 1)
struct MetaDataFEC
{
uint32_t m_centerFrequency; //!< 4 center frequency in kHz
uint32_t m_sampleRate; //!< 8 sample rate in Hz
uint8_t m_sampleBytes; //!< 9 MSB(4): indicators, LSB(4) number of bytes per sample
uint8_t m_sampleBits; //!< 10 number of effective bits per sample
uint8_t m_nbOriginalBlocks; //!< 11 number of blocks with original (protected) data
uint8_t m_nbFECBlocks; //!< 12 number of blocks carrying FEC
uint32_t m_tv_sec; //!< 16 seconds of timestamp at start time of super-frame processing
uint32_t m_tv_usec; //!< 20 microseconds of timestamp at start time of super-frame processing
uint32_t m_crc32; //!< 24 CRC32 of the above
bool operator==(const MetaDataFEC& rhs)
{
return (memcmp((const void *) this, (const void *) &rhs, 12) == 0); // Only the 12 first bytes are relevant
}
void init()
{
memset((void *) this, 0, sizeof(MetaDataFEC));
}
};
struct Sample
{
int16_t i;
int16_t q;
};
struct Header
{
uint16_t frameIndex;
uint8_t blockIndex;
uint8_t filler;
};
static const int samplesPerBlock = (SDRDAEMONFEC_UDPSIZE - sizeof(Header)) / sizeof(Sample);
static const int framesSize = SDRDAEMONFEC_NBDECODERSLOTS * (SDRDAEMONFEC_NBORIGINALBLOCKS - 1) * (SDRDAEMONFEC_UDPSIZE - sizeof(Header));
struct ProtectedBlock
{
Sample samples[samplesPerBlock];
};
struct SuperBlock
{
Header header;
ProtectedBlock protectedBlock;
};
#pragma pack(pop)
SDRdaemonFECBuffer(uint32_t throttlems);
~SDRdaemonFECBuffer();
// R/W operations
void writeData(char *array); //!< Write data into buffer.
uint8_t *readData(uint32_t length); //!< Read data from buffer
// meta data
const MetaDataFEC& getCurrentMeta() const { return m_currentMeta; }
// samples timestamp
uint32_t getTVOutSec() const { return m_tvOut_sec; }
uint32_t getTVOutUsec() const { return m_tvOut_usec; }
// stats
int getCurNbBlocks() const { return m_curNbBlocks; }
int getCurOriginalBlocks() const { return m_curOriginalBlocks; }
int getCurNbRecovery() const { return m_curNbRecovery; }
float getAvgNbBlocks() const { return m_avgNbBlocks; }
float getAvgOriginalBlocks() const { return m_avgOrigBlocks; }
float getAvgNbRecovery() const { return m_avgNbRecovery; }
int getMinNbBlocks()
{
int minNbBlocks = m_minNbBlocks;
m_minNbBlocks = 256;
return minNbBlocks;
}
int getMinOriginalBlocks()
{
int minOriginalBlocks = m_minOriginalBlocks;
m_minOriginalBlocks = 128;
return minOriginalBlocks;
}
int getMaxNbRecovery()
{
int maxNbRecovery = m_maxNbRecovery;
m_maxNbRecovery = 0;
return maxNbRecovery;
}
bool allFramesDecoded()
{
bool framesDecoded = m_framesDecoded;
m_framesDecoded = true;
return framesDecoded;
}
float getBufferLengthInSecs() const { return m_bufferLenSec; }
int32_t getRWBalanceCorrection() const { return m_balCorrection; }
/** Get buffer gauge value in % of buffer size ([-50:50])
* [-50:0] : write leads or read lags
* [0:50] : read leads or write lags
*/
inline int32_t getBufferGauge() const
{
if (m_framesNbBytes)
{
int32_t val = (m_wrDeltaEstimate * 100) / (int32_t) m_framesNbBytes;
int32_t ret = val < 0 ? -val - 50 : 50 -val;
return ret;
}
else
{
return 0; // default position
}
}
static const int m_udpPayloadSize = SDRDAEMONFEC_UDPSIZE;
static const int m_nbOriginalBlocks = SDRDAEMONFEC_NBORIGINALBLOCKS;
static const int m_sampleSize;
static const int m_iqSampleSize;
private:
static const int nbDecoderSlots = SDRDAEMONFEC_NBDECODERSLOTS;
#pragma pack(push, 1)
struct BufferFrame
{
ProtectedBlock m_blocks[m_nbOriginalBlocks - 1];
};
#pragma pack(pop)
struct DecoderSlot
{
ProtectedBlock m_blockZero; //!< First block of a frame. Has meta data.
ProtectedBlock m_originalBlocks[m_nbOriginalBlocks]; //!< Original blocks retrieved directly or by later FEC
ProtectedBlock m_recoveryBlocks[m_nbOriginalBlocks]; //!< Recovery blocks (FEC blocks) with max size
CM256::cm256_block m_cm256DescriptorBlocks[m_nbOriginalBlocks]; //!< CM256 decoder descriptors (block addresses and block indexes)
int m_blockCount; //!< number of blocks received for this frame
int m_originalCount; //!< number of original blocks received
int m_recoveryCount; //!< number of recovery blocks received
bool m_decoded; //!< true if decoded
bool m_metaRetrieved; //!< true if meta data (block zero) was retrieved
};
MetaDataFEC m_currentMeta; //!< Stored current meta data
CM256::cm256_encoder_params m_paramsCM256; //!< CM256 decoder parameters block
DecoderSlot m_decoderSlots[nbDecoderSlots]; //!< CM256 decoding control/buffer slots
BufferFrame m_frames[nbDecoderSlots]; //!< Samples buffer
uint32_t m_framesNbBytes; //!< Number of bytes in samples buffer
int m_decoderIndexHead; //!< index of the current head frame slot in decoding slots
int m_frameHead; //!< index of the current head frame sent
int m_curNbBlocks; //!< (stats) instantaneous number of blocks received
int m_minNbBlocks; //!< (stats) minimum number of blocks received since last poll
int m_curOriginalBlocks; //!< (stats) instantanous number of original blocks received
int m_minOriginalBlocks; //!< (stats) minimum number of original blocks received since last poll
int m_curNbRecovery; //!< (stats) instantaneous number of recovery blocks used
int m_maxNbRecovery; //!< (stats) maximum number of recovery blocks used since last poll
MovingAverage<int, int, 10> m_avgNbBlocks; //!< (stats) average number of blocks received
MovingAverage<int, int, 10> m_avgOrigBlocks; //!< (stats) average number of original blocks received
MovingAverage<int, int, 10> m_avgNbRecovery; //!< (stats) average number of recovery blocks used
bool m_framesDecoded; //!< [stats] true if all frames were decoded since last poll
int m_readIndex; //!< current byte read index in frames buffer
int m_wrDeltaEstimate; //!< Sampled estimate of write to read indexes difference
uint32_t m_tvOut_sec; //!< Estimated returned samples timestamp (seconds)
uint32_t m_tvOut_usec; //!< Estimated returned samples timestamp (microseconds)
int m_readNbBytes; //!< Nominal number of bytes per read (50ms)
uint32_t m_throttlemsNominal; //!< Initial throttle in ms
uint8_t* m_readBuffer; //!< Read buffer to hold samples when looping back to beginning of raw buffer
uint32_t m_readSize; //!< Read buffer size
float m_bufferLenSec;
int m_nbReads; //!< Number of buffer reads since start of auto R/W balance correction period
int m_nbWrites; //!< Number of buffer writes since start of auto R/W balance correction period
int m_balCorrection; //!< R/W balance correction in number of samples
int m_balCorrLimit; //!< Correction absolute value limit in number of samples
CM256 m_cm256; //!< CM256 library
bool m_cm256_OK; //!< CM256 library initialized OK
inline ProtectedBlock* storeOriginalBlock(int slotIndex, int blockIndex, const ProtectedBlock& protectedBlock)
{
if (blockIndex == 0) {
// m_decoderSlots[slotIndex].m_originalBlocks[0] = protectedBlock;
// return &m_decoderSlots[slotIndex].m_originalBlocks[0];
m_decoderSlots[slotIndex].m_blockZero = protectedBlock;
return &m_decoderSlots[slotIndex].m_blockZero;
} else {
// m_decoderSlots[slotIndex].m_originalBlocks[blockIndex] = protectedBlock;
// return &m_decoderSlots[slotIndex].m_originalBlocks[blockIndex];
m_frames[slotIndex].m_blocks[blockIndex - 1] = protectedBlock;
return &m_frames[slotIndex].m_blocks[blockIndex - 1];
}
}
inline ProtectedBlock& getOriginalBlock(int slotIndex, int blockIndex)
{
if (blockIndex == 0) {
// return m_decoderSlots[slotIndex].m_originalBlocks[0];
return m_decoderSlots[slotIndex].m_blockZero;
} else {
// return m_decoderSlots[slotIndex].m_originalBlocks[blockIndex];
return m_frames[slotIndex].m_blocks[blockIndex - 1];
}
}
inline MetaDataFEC *getMetaData(int slotIndex)
{
// return (MetaDataFEC *) &m_decoderSlots[slotIndex].m_originalBlocks[0];
return (MetaDataFEC *) &m_decoderSlots[slotIndex].m_blockZero;
}
inline void resetOriginalBlocks(int slotIndex)
{
// memset((void *) m_decoderSlots[slotIndex].m_originalBlocks, 0, m_nbOriginalBlocks * sizeof(ProtectedBlock));
memset((void *) &m_decoderSlots[slotIndex].m_blockZero, 0, sizeof(ProtectedBlock));
memset((void *) m_frames[slotIndex].m_blocks, 0, (m_nbOriginalBlocks - 1) * sizeof(ProtectedBlock));
}
void initDecodeAllSlots();
void initReadIndex();
void rwCorrectionEstimate(int slotIndex);
void checkSlotData(int slotIndex);
void initDecodeSlot(int slotIndex);
static void printMeta(const QString& header, MetaDataFEC *metaData);
};
#endif /* DEVICES_SDRDAEMON_SDRDAEMONFECBUFFER_H_ */