1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-23 08:28:36 -05:00
sdrangel/plugins/channelrx/demoddatv/datvdemod.cpp

1001 lines
31 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2018 F4HKW //
// for F4EXB / SDRAngel //
// using LeanSDR Framework (C) 2016 F4DAV //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include "datvdemod.h"
#include <QTime>
#include <QDebug>
#include <stdio.h>
#include <complex.h>
#include "audio/audiooutput.h"
#include "dsp/dspengine.h"
#include "dsp/downchannelizer.h"
#include "dsp/threadedbasebandsamplesink.h"
#include "device/devicesourceapi.h"
const QString DATVDemod::m_channelIdURI = "sdrangel.channel.demoddatv";
const QString DATVDemod::m_channelId = "DATVDemod";
MESSAGE_CLASS_DEFINITION(DATVDemod::MsgConfigureDATVDemod, Message)
MESSAGE_CLASS_DEFINITION(DATVDemod::MsgConfigureChannelizer, Message)
DATVDemod::DATVDemod(DeviceSourceAPI *deviceAPI) :
ChannelSinkAPI(m_channelIdURI),
m_blnNeedConfigUpdate(false),
m_deviceAPI(deviceAPI),
m_objRegisteredTVScreen(0),
m_objRegisteredVideoRender(0),
m_objVideoStream(NULL),
m_objRenderThread(NULL),
m_blnRenderingVideo(false),
m_blnStartStopVideo(false),
m_enmModulation(BPSK /*DATV_FM1*/),
m_objSettingsMutex(QMutex::NonRecursive)
{
setObjectName("DATVDemod");
//*************** DATV PARAMETERS ***************
m_blnInitialized=false;
CleanUpDATVFramework(false);
m_objVideoStream = new DATVideostream();
m_objRFFilter = new fftfilt(-256000.0 / 1024000.0, 256000.0 / 1024000.0, rfFilterFftLength);
m_channelizer = new DownChannelizer(this);
m_threadedChannelizer = new ThreadedBasebandSampleSink(m_channelizer, this);
m_deviceAPI->addThreadedSink(m_threadedChannelizer);
m_deviceAPI->addChannelAPI(this);
}
DATVDemod::~DATVDemod()
{
m_blnInitialized=false;
if(m_objVideoStream!=NULL)
{
//Immediately exit from DATVideoStream if waiting for data before killing thread
m_objVideoStream->ThreadTimeOut=0;
}
if(m_objRenderThread!=NULL)
{
if(m_objRenderThread->isRunning())
{
m_objRenderThread->stopRendering();
m_objRenderThread->quit();
}
m_objRenderThread->wait(2000);
}
CleanUpDATVFramework(true);
m_deviceAPI->removeChannelAPI(this);
m_deviceAPI->removeThreadedSink(m_threadedChannelizer);
delete m_threadedChannelizer;
delete m_channelizer;
delete m_objRFFilter;
}
bool DATVDemod::SetTVScreen(TVScreen *objScreen)
{
m_objRegisteredTVScreen = objScreen;
return true;
}
DATVideostream * DATVDemod::SetVideoRender(DATVideoRender *objScreen)
{
m_objRegisteredVideoRender = objScreen;
m_objRenderThread = new DATVideoRenderThread(m_objRegisteredVideoRender,m_objVideoStream);
return m_objVideoStream;
}
bool DATVDemod::PlayVideo(bool blnStartStop)
{
if(m_objVideoStream==NULL)
{
return false;
}
if(m_objRegisteredVideoRender==NULL)
{
return false;
}
if(m_objRenderThread==NULL)
{
return false;
}
if (m_blnStartStopVideo && !blnStartStop)
{
return true;
}
if(blnStartStop==true)
{
m_blnStartStopVideo=true;
}
if(m_objRenderThread->isRunning())
{
if(blnStartStop==true)
{
m_objRenderThread->stopRendering();
}
return true;
}
if(m_objVideoStream->bytesAvailable()>0)
{
m_objRenderThread->setStreamAndRenderer(m_objRegisteredVideoRender,m_objVideoStream);
m_objVideoStream->MultiThreaded=true;
m_objVideoStream->ThreadTimeOut=5000; //5000 ms
m_objRenderThread->start();
}
return true;
}
void DATVDemod::configure(MessageQueue* objMessageQueue,
int intRFBandwidth,
int intCenterFrequency,
dvb_version enmStandard,
DATVModulation enmModulation,
leansdr::code_rate enmFEC,
int intSymbolRate,
int intNotchFilters,
bool blnAllowDrift,
bool blnFastLock,
dvb_sampler enmFilter,
bool blnHardMetric,
float fltRollOff,
bool blnViterbi,
int intExcursion)
{
Message* msgCmd = MsgConfigureDATVDemod::create(intRFBandwidth,intCenterFrequency,enmStandard, enmModulation, enmFEC, intSymbolRate, intNotchFilters, blnAllowDrift,blnFastLock,enmFilter,blnHardMetric,fltRollOff, blnViterbi,intExcursion);
objMessageQueue->push(msgCmd);
}
void DATVDemod::InitDATVParameters(int intMsps,
int intRFBandwidth,
int intCenterFrequency,
dvb_version enmStandard,
DATVModulation enmModulation,
leansdr::code_rate enmFEC,
int intSampleRate,
int intSymbolRate,
int intNotchFilters,
bool blnAllowDrift,
bool blnFastLock,
dvb_sampler enmFilter,
bool blnHardMetric,
float fltRollOff,
bool blnViterbi,
int intExcursion)
{
Real fltLowCut;
Real fltHiCut;
m_objSettingsMutex.lock();
m_blnInitialized=false;
//Bandpass filter shaping
fltLowCut = -((float)intRFBandwidth / 2.0) / (float)intMsps;
fltHiCut = ((float)intRFBandwidth / 2.0) / (float)intMsps;
m_objRFFilter->create_filter(fltLowCut, fltHiCut);
m_objNCO.setFreq(-(float)intCenterFrequency,(float)intMsps);
//Config update
m_objRunning.intMsps = intMsps;
m_objRunning.intCenterFrequency = intCenterFrequency;
m_objRunning.intRFBandwidth = intRFBandwidth;
m_objRunning.enmStandard = enmStandard;
m_objRunning.enmModulation = enmModulation;
m_objRunning.enmFEC = enmFEC;
m_objRunning.intSampleRate = intSampleRate;
m_objRunning.intSymbolRate = intSymbolRate;
m_objRunning.intNotchFilters = intNotchFilters;
m_objRunning.blnAllowDrift = blnAllowDrift;
m_objRunning.blnFastLock = blnFastLock;
m_objRunning.enmFilter = enmFilter;
m_objRunning.blnHardMetric = blnHardMetric;
m_objRunning.fltRollOff = fltRollOff;
m_objRunning.blnViterbi = blnViterbi;
m_objRunning.intExcursion = intExcursion;
m_blnInitialized=true;
m_objSettingsMutex.unlock();
m_blnNeedConfigUpdate=true;
}
void DATVDemod::CleanUpDATVFramework(bool blnRelease)
{
if(blnRelease==true)
{
if(m_objScheduler!=NULL)
{
m_objScheduler->shutdown();
delete m_objScheduler;
}
// NOTCH FILTER
if(r_auto_notch!=NULL) delete r_auto_notch;
if(p_autonotched!=NULL) delete p_autonotched;
// FREQUENCY CORRECTION : DEROTATOR
if(p_derot!=NULL) delete p_derot;
if(r_derot!=NULL) delete r_derot;
// CNR ESTIMATION
if(p_cnr!=NULL) delete p_cnr;
if(r_cnr!=NULL) delete r_cnr;
//FILTERING
if(r_resample!=NULL) delete r_resample;
if(p_resampled!=NULL) delete p_resampled;
if(coeffs!=NULL) delete coeffs;
// OUTPUT PREPROCESSED DATA
if(sampler!=NULL) delete sampler;
if(coeffs_sampler!=NULL) delete coeffs_sampler;
if(p_symbols!=NULL) delete p_symbols;
if(p_freq!=NULL) delete p_freq;
if(p_ss!=NULL) delete p_ss;
if(p_mer!=NULL) delete p_mer;
if(p_sampled!=NULL) delete p_sampled;
//DECIMATION
if(p_decimated!=NULL) delete p_decimated;
if(p_decim!=NULL) delete p_decim;
if(r_ppout!=NULL) delete r_ppout;
//GENERIC CONSTELLATION RECEIVER
if(m_objDemodulator!=NULL) delete m_objDemodulator;
//DECONVOLUTION AND SYNCHRONIZATION
if(p_bytes!=NULL) delete p_bytes;
if(r_deconv!=NULL) delete r_deconv;
if(r!=NULL) delete r;
if(p_descrambled!=NULL) delete p_descrambled;
if(p_frames!=NULL) delete p_frames;
if(r_etr192_descrambler!=NULL) delete r_etr192_descrambler;
if(r_sync!=NULL) delete r_sync;
if(p_mpegbytes!=NULL) delete p_mpegbytes;
if(p_lock!=NULL) delete p_lock;
if(p_locktime!=NULL) delete p_locktime;
if(r_sync_mpeg!=NULL) delete r_sync_mpeg;
// DEINTERLEAVING
if(p_rspackets!=NULL) delete p_rspackets;
if(r_deinter!=NULL) delete r_deinter;
if(p_vbitcount!=NULL) delete p_vbitcount;
if(p_verrcount!=NULL) delete p_verrcount;
if(p_rtspackets!=NULL) delete p_rtspackets;
if(r_rsdec!=NULL) delete r_rsdec;
//BER ESTIMATION
if(p_vber!=NULL) delete p_vber;
if(r_vber!=NULL) delete r_vber;
// DERANDOMIZATION
if(p_tspackets!=NULL) delete p_tspackets;
if(r_derand!=NULL) delete r_derand;
//OUTPUT : To remove
if(r_stdout!=NULL) delete r_stdout;
if(r_videoplayer!=NULL) delete r_videoplayer;
//CONSTELLATION
if(r_scope_symbols!=NULL) delete r_scope_symbols;
// INPUT
//if(p_rawiq!=NULL) delete p_rawiq;
//if(p_rawiq_writer!=NULL) delete p_rawiq_writer;
//if(p_preprocessed!=NULL) delete p_preprocessed;
}
m_objScheduler=NULL;
// INPUT
p_rawiq = NULL;
p_rawiq_writer = NULL;
p_preprocessed = NULL;
// NOTCH FILTER
r_auto_notch = NULL;
p_autonotched = NULL;
// FREQUENCY CORRECTION : DEROTATOR
p_derot = NULL;
r_derot=NULL;
// CNR ESTIMATION
p_cnr = NULL;
r_cnr = NULL;
//FILTERING
r_resample = NULL;
p_resampled = NULL;
coeffs = NULL;
ncoeffs=0;
// OUTPUT PREPROCESSED DATA
sampler = NULL;
coeffs_sampler=NULL;
ncoeffs_sampler=0;
p_symbols = NULL;
p_freq = NULL;
p_ss = NULL;
p_mer = NULL;
p_sampled = NULL;
//DECIMATION
p_decimated = NULL;
p_decim = NULL;
r_ppout = NULL;
//GENERIC CONSTELLATION RECEIVER
m_objDemodulator = NULL;
//DECONVOLUTION AND SYNCHRONIZATION
p_bytes=NULL;
r_deconv=NULL;
r = NULL;
p_descrambled = NULL;
p_frames = NULL;
r_etr192_descrambler = NULL;
r_sync = NULL;
p_mpegbytes = NULL;
p_lock = NULL;
p_locktime = NULL;
r_sync_mpeg = NULL;
// DEINTERLEAVING
p_rspackets = NULL;
r_deinter = NULL;
p_vbitcount = NULL;
p_verrcount = NULL;
p_rtspackets = NULL;
r_rsdec = NULL;
//BER ESTIMATION
p_vber = NULL;
r_vber = NULL;
// DERANDOMIZATION
p_tspackets = NULL;
r_derand = NULL;
//OUTPUT : To remove
r_stdout = NULL;
r_videoplayer = NULL;
//CONSTELLATION
r_scope_symbols = NULL;
}
void DATVDemod::InitDATVFramework()
{
m_blnDVBInitialized=false;
m_lngReadIQ=0;
CleanUpDATVFramework(false);
qDebug() << "DATVDemod::InitDATVParameters:"
<< " Msps: " << m_objRunning.intMsps
<< " Sample Rate: " << m_objRunning.intSampleRate
<< " Symbol Rate: " << m_objRunning.intSymbolRate
<< " Modulation: " << m_objRunning.enmModulation
<< " Notch Filters: " << m_objRunning.intNotchFilters
<< " Allow Drift: " << m_objRunning.blnAllowDrift
<< " Fast Lock: " << m_objRunning.blnFastLock
<< " Filter: " << m_objRunning.enmFilter
<< " HARD METRIC: " << m_objRunning.blnHardMetric
<< " RollOff: " << m_objRunning.fltRollOff
<< " Viterbi: " << m_objRunning.blnViterbi
<< " Excursion: " << m_objRunning.intExcursion;
m_objCfg.standard = m_objRunning.enmStandard;
m_objCfg.fec = m_objRunning.enmFEC;
m_objCfg.Fs = (float) m_objRunning.intSampleRate;
m_objCfg.Fm = (float) m_objRunning.intSymbolRate;
m_objCfg.fastlock = m_objRunning.blnFastLock;
m_objCfg.sampler = m_objRunning.enmFilter;
m_objCfg.rolloff=m_objRunning.fltRollOff; //0...1
m_objCfg.rrc_rej=(float) m_objRunning.intExcursion; //dB
m_objCfg.rrc_steps=0; //auto
switch(m_objRunning.enmModulation)
{
case BPSK:
m_objCfg.constellation = leansdr::cstln_lut<256>::BPSK;
break;
case QPSK:
m_objCfg.constellation = leansdr::cstln_lut<256>::QPSK;
break;
case PSK8:
m_objCfg.constellation = leansdr::cstln_lut<256>::PSK8;
break;
case APSK16:
m_objCfg.constellation = leansdr::cstln_lut<256>::APSK16;
break;
case APSK32:
m_objCfg.constellation = leansdr::cstln_lut<256>::APSK32;
break;
case APSK64E:
m_objCfg.constellation = leansdr::cstln_lut<256>::APSK64E;
break;
case QAM16:
m_objCfg.constellation = leansdr::cstln_lut<256>::QAM16;
break;
case QAM64:
m_objCfg.constellation = leansdr::cstln_lut<256>::QAM64;
break;
case QAM256:
m_objCfg.constellation = leansdr::cstln_lut<256>::QAM256;
break;
default:
m_objCfg.constellation = leansdr::cstln_lut<256>::BPSK;
break;
}
m_objCfg.allow_drift = m_objRunning.blnAllowDrift;
m_objCfg.anf = m_objRunning.intNotchFilters;
m_objCfg.hard_metric = m_objRunning.blnHardMetric;
m_objCfg.sampler = m_objRunning.enmFilter;
m_objCfg.viterbi = m_objRunning.blnViterbi;
// Min buffer size for baseband data
// scopes: 1024
// ss_estimator: 1024
// anf: 4096
// cstln_receiver: reads in chunks of 128+1
BUF_BASEBAND = 4096 * m_objCfg.buf_factor;
// Min buffer size for IQ symbols
// cstln_receiver: writes in chunks of 128/omega symbols (margin 128)
// deconv_sync: reads at least 64+32
// A larger buffer improves performance significantly.
BUF_SYMBOLS = 1024 * m_objCfg.buf_factor;
// Min buffer size for unsynchronized bytes
// deconv_sync: writes 32 bytes
// mpeg_sync: reads up to 204*scan_syncs = 1632 bytes
BUF_BYTES = 2048 * m_objCfg.buf_factor;
// Min buffer size for synchronized (but interleaved) bytes
// mpeg_sync: writes 1 rspacket
// deinterleaver: reads 17*11*12+204 = 2448 bytes
BUF_MPEGBYTES = 2448 * m_objCfg.buf_factor;
// Min buffer size for packets: 1
BUF_PACKETS = m_objCfg.buf_factor;
// Min buffer size for misc measurements: 1
BUF_SLOW = m_objCfg.buf_factor;
m_lngExpectedReadIQ = BUF_BASEBAND;
m_objScheduler = new leansdr::scheduler();
//***************
p_rawiq = new leansdr::pipebuf<leansdr::cf32>(m_objScheduler, "rawiq", BUF_BASEBAND);
p_rawiq_writer = new leansdr::pipewriter<leansdr::cf32>(*p_rawiq);
p_preprocessed = p_rawiq;
// NOTCH FILTER
if ( m_objCfg.anf>0 )
{
p_autonotched = new leansdr::pipebuf<leansdr::cf32>(m_objScheduler, "autonotched", BUF_BASEBAND);
r_auto_notch = new leansdr::auto_notch<leansdr::f32>(m_objScheduler, *p_preprocessed, *p_autonotched, m_objCfg.anf, 0);
p_preprocessed = p_autonotched;
}
// FREQUENCY CORRECTION
//******** -> if ( m_objCfg.Fderot>0 )
// CNR ESTIMATION
p_cnr = new leansdr::pipebuf<leansdr::f32>(m_objScheduler, "cnr", BUF_SLOW);
if ( m_objCfg.cnr==true )
{
r_cnr = new leansdr::cnr_fft<leansdr::f32>(m_objScheduler, *p_preprocessed, *p_cnr, m_objCfg.Fm/m_objCfg.Fs);
r_cnr->decimation = decimation(m_objCfg.Fs, 1); // 1 Hz
}
// FILTERING
int decim = 1;
//******** -> if ( m_objCfg.resample )
// DECIMATION
// (Unless already done in resampler)
//******** -> if ( !m_objCfg.resample && m_objCfg.decim>1 )
//Resampling FS
// Generic constellation receiver
p_symbols = new leansdr::pipebuf<leansdr::softsymbol>(m_objScheduler, "PSK soft-symbols", BUF_SYMBOLS);
p_freq = new leansdr::pipebuf<leansdr::f32> (m_objScheduler, "freq", BUF_SLOW);
p_ss = new leansdr::pipebuf<leansdr::f32> (m_objScheduler, "SS", BUF_SLOW);
p_mer = new leansdr::pipebuf<leansdr::f32> (m_objScheduler, "MER", BUF_SLOW);
p_sampled = new leansdr::pipebuf<leansdr::cf32> (m_objScheduler, "PSK symbols", BUF_BASEBAND);
switch ( m_objCfg.sampler )
{
case SAMP_NEAREST:
sampler = new leansdr::nearest_sampler<float>();
break;
case SAMP_LINEAR:
sampler = new leansdr::linear_sampler<float>();
break;
case SAMP_RRC:
{
if ( m_objCfg.rrc_steps == 0 )
{
// At least 64 discrete sampling points between symbols
m_objCfg.rrc_steps = std::max(1, (int)(64*m_objCfg.Fm / m_objCfg.Fs));
}
float Frrc = m_objCfg.Fs * m_objCfg.rrc_steps; // Sample freq of the RRC filter
float transition = (m_objCfg.Fm/2) * m_objCfg.rolloff;
int order = m_objCfg.rrc_rej * Frrc / (22*transition);
ncoeffs_sampler = leansdr::filtergen::root_raised_cosine(order, m_objCfg.Fm/Frrc, m_objCfg.rolloff, &coeffs_sampler);
sampler = new leansdr::fir_sampler<float,float>(ncoeffs_sampler, coeffs_sampler, m_objCfg.rrc_steps);
break;
}
default:
qCritical("DATVDemod::InitDATVFramework: Interpolator not implemented");
return;
}
m_objDemodulator = new leansdr::cstln_receiver<leansdr::f32>(m_objScheduler, sampler, *p_preprocessed, *p_symbols, p_freq, p_ss, p_mer, p_sampled);
if ( m_objCfg.standard == DVB_S )
{
if ( m_objCfg.constellation != leansdr::cstln_lut<256>::QPSK && m_objCfg.constellation != leansdr::cstln_lut<256>::BPSK )
{
fprintf(stderr, "Warning: non-standard constellation for DVB-S\n");
}
}
if ( m_objCfg.standard == DVB_S2 )
{
// For DVB-S2 testing only.
// Constellation should be determined from PL signalling.
fprintf(stderr, "DVB-S2: Testing symbol sampler only.\n");
}
m_objDemodulator->cstln = make_dvbs2_constellation(m_objCfg.constellation, m_objCfg.fec);
if ( m_objCfg.hard_metric )
{
m_objDemodulator->cstln->harden();
}
m_objDemodulator->set_omega(m_objCfg.Fs/m_objCfg.Fm);
//******** if ( m_objCfg.Ftune )
//{
// m_objDemodulator->set_freq(m_objCfg.Ftune/m_objCfg.Fs);
//}
if ( m_objCfg.allow_drift )
{
m_objDemodulator->set_allow_drift(true);
}
//******** -> if ( m_objCfg.viterbi )
if ( m_objCfg.viterbi )
{
m_objDemodulator->pll_adjustment /= 6;
}
m_objDemodulator->meas_decimation = decimation(m_objCfg.Fs, m_objCfg.Finfo);
// TRACKING FILTERS
if ( r_cnr )
{
r_cnr->freq_tap = &m_objDemodulator->freq_tap;
r_cnr->tap_multiplier = 1.0 / decim;
}
//constellation
if (m_objRegisteredTVScreen)
{
m_objRegisteredTVScreen->resizeTVScreen(256,256);
r_scope_symbols = new leansdr::datvconstellation<leansdr::f32>(m_objScheduler, *p_sampled, -128,128, NULL, m_objRegisteredTVScreen);
r_scope_symbols->decimation = 1;
r_scope_symbols->cstln = &m_objDemodulator->cstln;
r_scope_symbols->calculate_cstln_points();
}
// DECONVOLUTION AND SYNCHRONIZATION
p_bytes = new leansdr::pipebuf<leansdr::u8>(m_objScheduler, "bytes", BUF_BYTES);
r_deconv = NULL;
//******** -> if ( m_objCfg.viterbi )
if ( m_objCfg.viterbi )
{
if ( m_objCfg.fec == leansdr::FEC23 && (m_objDemodulator->cstln->nsymbols == 4 || m_objDemodulator->cstln->nsymbols == 64) )
{
m_objCfg.fec = leansdr::FEC46;
}
//To uncomment -> Linking Problem : undefined symbol: _ZN7leansdr21viterbi_dec_interfaceIhhiiE6updateEPiS2_
r = new leansdr::viterbi_sync(m_objScheduler, (*p_symbols), (*p_bytes), m_objDemodulator->cstln, m_objCfg.fec);
if ( m_objCfg.fastlock )
{
r->resync_period = 1;
}
}
else
{
r_deconv = make_deconvol_sync_simple(m_objScheduler, (*p_symbols), (*p_bytes), m_objCfg.fec);
r_deconv->fastlock = m_objCfg.fastlock;
}
//******* -> if ( m_objCfg.hdlc )
p_mpegbytes = new leansdr::pipebuf<leansdr::u8> (m_objScheduler, "mpegbytes", BUF_MPEGBYTES);
p_lock = new leansdr::pipebuf<int> (m_objScheduler, "lock", BUF_SLOW);
p_locktime = new leansdr::pipebuf<leansdr::u32> (m_objScheduler, "locktime", BUF_PACKETS);
r_sync_mpeg = new leansdr::mpeg_sync<leansdr::u8, 0>(m_objScheduler, *p_bytes, *p_mpegbytes, r_deconv, p_lock, p_locktime);
r_sync_mpeg->fastlock = m_objCfg.fastlock;
// DEINTERLEAVING
p_rspackets = new leansdr::pipebuf< leansdr::rspacket<leansdr::u8> >(m_objScheduler, "RS-enc packets", BUF_PACKETS);
r_deinter = new leansdr::deinterleaver<leansdr::u8>(m_objScheduler, *p_mpegbytes, *p_rspackets);
// REED-SOLOMON
p_vbitcount = new leansdr::pipebuf<int>(m_objScheduler, "Bits processed", BUF_PACKETS);
p_verrcount = new leansdr::pipebuf<int>(m_objScheduler, "Bits corrected", BUF_PACKETS);
p_rtspackets = new leansdr::pipebuf<leansdr::tspacket>(m_objScheduler, "rand TS packets", BUF_PACKETS);
r_rsdec = new leansdr::rs_decoder<leansdr::u8, 0> (m_objScheduler, *p_rspackets, *p_rtspackets, p_vbitcount, p_verrcount);
// BER ESTIMATION
/*
p_vber = new pipebuf<float> (m_objScheduler, "VBER", BUF_SLOW);
r_vber = new rate_estimator<float> (m_objScheduler, *p_verrcount, *p_vbitcount, *p_vber);
r_vber->sample_size = m_objCfg.Fm/2; // About twice per second, depending on CR
// Require resolution better than 2E-5
if ( r_vber->sample_size < 50000 )
{
r_vber->sample_size = 50000;
}
*/
// DERANDOMIZATION
p_tspackets = new leansdr::pipebuf<leansdr::tspacket>(m_objScheduler, "TS packets", BUF_PACKETS);
r_derand = new leansdr::derandomizer(m_objScheduler, *p_rtspackets, *p_tspackets);
// OUTPUT
r_videoplayer = new leansdr::datvvideoplayer<leansdr::tspacket>(m_objScheduler, *p_tspackets,m_objVideoStream);
m_blnDVBInitialized=true;
}
void DATVDemod::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool firstOfBurst __attribute__((unused)))
{
float fltI;
float fltQ;
leansdr::cf32 objIQ;
//Complex objC;
fftfilt::cmplx *objRF;
int intRFOut;
double magSq;
//********** Bis repetita : Let's rock and roll buddy ! **********
#ifdef EXTENDED_DIRECT_SAMPLE
qint16 * ptrBuffer;
qint32 intLen;
//********** Reading direct samples **********
SampleVector::const_iterator it = begin;
intLen = it->intLen;
ptrBuffer = it->ptrBuffer;
ptrBufferToRelease = ptrBuffer;
++it;
for(qint32 intInd=0; intInd<intLen-1; intInd +=2)
{
fltI= ((qint32) (*ptrBuffer)) << 4;
ptrBuffer ++;
fltQ= ((qint32) (*ptrBuffer)) << 4;
ptrBuffer ++;
#else
for (SampleVector::const_iterator it = begin; it != end; ++it /* ++it **/)
{
fltI = it->real();
fltQ = it->imag();
#endif
//********** demodulation **********
if (m_blnNeedConfigUpdate)
{
m_objSettingsMutex.lock();
m_blnNeedConfigUpdate=false;
InitDATVFramework();
m_objSettingsMutex.unlock();
}
//********** iq stream ****************
Complex objC(fltI,fltQ);
objC *= m_objNCO.nextIQ();
intRFOut = m_objRFFilter->runFilt(objC, &objRF); // filter RF before demod
for (int intI = 0 ; intI < intRFOut; intI++)
{
objIQ.re = objRF->real();
objIQ.im = objRF->imag();
magSq = objIQ.re*objIQ.re + objIQ.im*objIQ.im;
m_objMagSqAverage(magSq);
objRF ++;
if (m_blnDVBInitialized
&& (p_rawiq_writer!=NULL)
&& (m_objScheduler!=NULL))
{
p_rawiq_writer->write(objIQ);
m_lngReadIQ++;
//Leave +1 by safety
if((m_lngReadIQ+1)>=p_rawiq_writer->writable())
{
m_objScheduler->step();
m_lngReadIQ=0;
delete p_rawiq_writer;
p_rawiq_writer = new leansdr::pipewriter<leansdr::cf32>(*p_rawiq);
}
}
}
}
}
void DATVDemod::start()
{
}
void DATVDemod::stop()
{
}
bool DATVDemod::handleMessage(const Message& cmd)
{
if (DownChannelizer::MsgChannelizerNotification::match(cmd))
{
DownChannelizer::MsgChannelizerNotification& objNotif = (DownChannelizer::MsgChannelizerNotification&) cmd;
qDebug() << "DATVDemod::handleMessage: MsgChannelizerNotification:"
<< " m_intSampleRate: " << objNotif.getSampleRate()
<< " m_intFrequencyOffset: " << objNotif.getFrequencyOffset();
if (m_objRunning.intMsps != objNotif.getSampleRate())
{
m_objRunning.intMsps = objNotif.getSampleRate();
m_objRunning.intSampleRate = m_objRunning.intMsps;
ApplySettings();
}
return true;
}
else if (MsgConfigureChannelizer::match(cmd))
{
MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd;
m_channelizer->configure(m_channelizer->getInputMessageQueue(),
m_channelizer->getInputSampleRate(),
cfg.getCenterFrequency());
qDebug() << "DATVDemod::handleMessage: MsgConfigureChannelizer: sampleRate: " << m_channelizer->getInputSampleRate()
<< " centerFrequency: " << cfg.getCenterFrequency();
return true;
}
else if (MsgConfigureDATVDemod::match(cmd))
{
MsgConfigureDATVDemod& objCfg = (MsgConfigureDATVDemod&) cmd;
if((objCfg.m_objMsgConfig.blnAllowDrift != m_objRunning.blnAllowDrift)
|| (objCfg.m_objMsgConfig.intRFBandwidth != m_objRunning.intRFBandwidth)
|| (objCfg.m_objMsgConfig.intCenterFrequency != m_objRunning.intCenterFrequency)
|| (objCfg.m_objMsgConfig.blnFastLock != m_objRunning.blnFastLock)
|| (objCfg.m_objMsgConfig.blnHardMetric != m_objRunning.blnHardMetric)
|| (objCfg.m_objMsgConfig.enmFilter != m_objRunning.enmFilter)
|| (objCfg.m_objMsgConfig.fltRollOff != m_objRunning.fltRollOff)
|| (objCfg.m_objMsgConfig.blnViterbi != m_objRunning.blnViterbi)
|| (objCfg.m_objMsgConfig.enmFEC != m_objRunning.enmFEC)
|| (objCfg.m_objMsgConfig.enmModulation != m_objRunning.enmModulation)
|| (objCfg.m_objMsgConfig.enmStandard != m_objRunning.enmStandard)
|| (objCfg.m_objMsgConfig.intNotchFilters != m_objRunning.intNotchFilters)
|| (objCfg.m_objMsgConfig.intSymbolRate != m_objRunning.intSymbolRate)
|| (objCfg.m_objMsgConfig.intExcursion != m_objRunning.intExcursion))
{
m_objRunning.blnAllowDrift = objCfg.m_objMsgConfig.blnAllowDrift;
m_objRunning.blnFastLock = objCfg.m_objMsgConfig.blnFastLock;
m_objRunning.blnHardMetric = objCfg.m_objMsgConfig.blnHardMetric;
m_objRunning.enmFilter = objCfg.m_objMsgConfig.enmFilter;
m_objRunning.fltRollOff = objCfg.m_objMsgConfig.fltRollOff;
m_objRunning.blnViterbi = objCfg.m_objMsgConfig.blnViterbi;
m_objRunning.enmFEC = objCfg.m_objMsgConfig.enmFEC;
m_objRunning.enmModulation = objCfg.m_objMsgConfig.enmModulation;
m_objRunning.enmStandard = objCfg.m_objMsgConfig.enmStandard;
m_objRunning.intNotchFilters = objCfg.m_objMsgConfig.intNotchFilters;
m_objRunning.intSymbolRate = objCfg.m_objMsgConfig.intSymbolRate;
m_objRunning.intRFBandwidth = objCfg.m_objMsgConfig.intRFBandwidth;
m_objRunning.intCenterFrequency = objCfg.m_objMsgConfig.intCenterFrequency;
m_objRunning.intExcursion = objCfg.m_objMsgConfig.intExcursion;
qDebug() << "ATVDemod::handleMessage: MsgConfigureDATVDemod:"
<< " blnAllowDrift: " << objCfg.m_objMsgConfig.blnAllowDrift
<< " intRFBandwidth: " << objCfg.m_objMsgConfig.intRFBandwidth
<< " intCenterFrequency: " << objCfg.m_objMsgConfig.intCenterFrequency
<< " blnFastLock: " << objCfg.m_objMsgConfig.blnFastLock
<< " enmFilter: " << objCfg.m_objMsgConfig.enmFilter
<< " fltRollOff: " << objCfg.m_objMsgConfig.fltRollOff
<< " blnViterbi: " << objCfg.m_objMsgConfig.blnViterbi
<< " enmFEC: " << objCfg.m_objMsgConfig.enmFEC
<< " enmModulation: " << objCfg.m_objMsgConfig.enmModulation
<< " enmStandard: " << objCfg.m_objMsgConfig.enmStandard
<< " intNotchFilters: " << objCfg.m_objMsgConfig.intNotchFilters
<< " intSymbolRate: " << objCfg.m_objMsgConfig.intSymbolRate
<< " intRFBandwidth: " << objCfg.m_objMsgConfig.intRFBandwidth
<< " intCenterFrequency: " << objCfg.m_objMsgConfig.intCenterFrequency
<< " intExcursion: " << objCfg.m_objMsgConfig.intExcursion;
ApplySettings();
}
return true;
}
else
{
return false;
}
}
void DATVDemod::ApplySettings()
{
if(m_objRunning.intMsps==0)
{
return;
}
InitDATVParameters(m_objRunning.intMsps,
m_objRunning.intRFBandwidth,
m_objRunning.intCenterFrequency,
m_objRunning.enmStandard,
m_objRunning.enmModulation,
m_objRunning.enmFEC,
m_objRunning.intSampleRate,
m_objRunning.intSymbolRate,
m_objRunning.intNotchFilters,
m_objRunning.blnAllowDrift,
m_objRunning.blnFastLock,
m_objRunning.enmFilter,
m_objRunning.blnHardMetric,
m_objRunning.fltRollOff,
m_objRunning.blnViterbi,
m_objRunning.intExcursion);
}
int DATVDemod::GetSampleRate()
{
return m_objRunning.intMsps;
}