sdrangel/liblimesuite/srcmw/Connection_uLimeSDR/Connection_uLimeSDRing.cpp

595 lines
22 KiB
C++

/**
@file Connection_uLimeSDRing.cpp
@author Lime Microsystems
@brief Implementation of uLimeSDR board connection (streaming API)
*/
#include "Connection_uLimeSDR.h"
#include "fifo.h"
#include <LMS7002M.h>
#include <iostream>
#include <thread>
#include <chrono>
#include <algorithm>
#include <complex>
#include <ciso646>
#include <vector>
#include <FPGA_common.h>
#include "ErrorReporting.h"
using namespace lime;
using namespace std;
#define __unix__
/** @brief Configures FPGA PLLs to LimeLight interface frequency
*/
int Connection_uLimeSDR::UpdateExternalDataRate(const size_t channel, const double txRate, const double rxRate, const double txPhase, const double rxPhase)
{
const float txInterfaceClk = 2 * txRate;
const float rxInterfaceClk = 2 * rxRate;
int status = 0;
mExpectedSampleRate = rxRate;
lime::fpga::FPGA_PLL_clock clocks[4];
clocks[0].bypass = false;
clocks[0].index = 0;
clocks[0].outFrequency = txInterfaceClk;
clocks[0].phaseShift_deg = 0;
clocks[0].findPhase = false;
clocks[1].bypass = false;
clocks[1].index = 1;
clocks[1].outFrequency = txInterfaceClk;
clocks[1].findPhase = false;
clocks[1].phaseShift_deg = txPhase;
clocks[2].bypass = false;
clocks[2].index = 2;
clocks[2].outFrequency = rxInterfaceClk;
clocks[2].phaseShift_deg = 0;
clocks[2].findPhase = false;
clocks[3].bypass = false;
clocks[3].index = 3;
clocks[3].outFrequency = rxInterfaceClk;
clocks[3].findPhase = false;
clocks[3].phaseShift_deg = rxPhase;
status = lime::fpga::SetPllFrequency(this, 0, rxInterfaceClk, clocks, 4);
return status;
}
/** @brief Configures FPGA PLLs to LimeLight interface frequency
*/
int Connection_uLimeSDR::UpdateExternalDataRate(const size_t channel, const double txRate_Hz, const double rxRate_Hz)
{
const float txInterfaceClk = 2 * txRate_Hz;
const float rxInterfaceClk = 2 * rxRate_Hz;
int status = 0;
uint32_t reg20;
const double rxPhC1[] = { 91.08, 89.46 };
const double rxPhC2[] = { -1 / 6e6, 1.24e-6 };
const double txPhC1[] = { 89.75, 89.61 };
const double txPhC2[] = { -3.0e-7, 2.71e-7 };
const std::vector<uint32_t> spiAddr = { 0x0021, 0x0022, 0x0023, 0x0024,
0x0027, 0x002A, 0x0400, 0x040C,
0x040B, 0x0400, 0x040B, 0x0400 };
const int bakRegCnt = spiAddr.size() - 4;
auto info = GetDeviceInfo();
const int addrLMS7002M = info.addrsLMS7002M.at(0);
bool phaseSearch = false;
//if (this->chipVersion == 0x3841) //0x3840 LMS7002Mr2, 0x3841 LMS7002Mr3
/*if (rxInterfaceClk >= 5e6 || txInterfaceClk >= 5e6)
phaseSearch = true;*/
mExpectedSampleRate = rxRate_Hz;
std::vector<uint32_t> dataWr;
std::vector<uint32_t> dataRd;
if (phaseSearch)
{
dataWr.resize(spiAddr.size());
dataRd.resize(spiAddr.size());
//backup registers
dataWr[0] = (uint32_t(0x0020) << 16);
TransactSPI(addrLMS7002M, dataWr.data(), &reg20, 1);
dataWr[0] = (1 << 31) | (uint32_t(0x0020) << 16) | 0xFFFD; //msbit 1=SPI write
TransactSPI(addrLMS7002M, dataWr.data(), nullptr, 1);
for (int i = 0; i < bakRegCnt; ++i)
dataWr[i] = (spiAddr[i] << 16);
TransactSPI(addrLMS7002M, dataWr.data(), dataRd.data(), bakRegCnt);
//UpdateThreads(true);
}
if ((txInterfaceClk >= 5e6) && (rxInterfaceClk >= 5e6))
{
lime::fpga::FPGA_PLL_clock clocks[4];
clocks[0].bypass = false;
clocks[0].index = 0;
clocks[0].outFrequency = txInterfaceClk;
clocks[0].phaseShift_deg = 0;
clocks[0].findPhase = false;
clocks[1].bypass = false;
clocks[1].index = 1;
clocks[1].outFrequency = txInterfaceClk;
clocks[1].findPhase = false;
if (this->chipVersion == 0x3841)
clocks[1].phaseShift_deg = txPhC1[1] + txPhC2[1] * txInterfaceClk;
else
clocks[1].phaseShift_deg = txPhC1[0] + txPhC2[0] * txInterfaceClk;
clocks[2].bypass = false;
clocks[2].index = 2;
clocks[2].outFrequency = rxInterfaceClk;
clocks[2].phaseShift_deg = 0;
clocks[2].findPhase = false;
clocks[3].bypass = false;
clocks[3].index = 3;
clocks[3].outFrequency = rxInterfaceClk;
clocks[3].findPhase = false;
if (this->chipVersion == 0x3841)
clocks[3].phaseShift_deg = rxPhC1[1] + rxPhC2[1] * rxInterfaceClk;
else
clocks[3].phaseShift_deg = rxPhC1[0] + rxPhC2[0] * rxInterfaceClk;
if (phaseSearch)
{
{
#ifndef NDEBUG
printf("RX phase config:\n");
#endif
clocks[3].findPhase = true;
const std::vector<uint32_t> spiData = { 0x0E9F, 0x07FF, 0x5550, 0xE4E4,
0xE4E4, 0x0086, 0x028D, 0x00FF, 0x5555, 0x02CD, 0xAAAA, 0x02ED };
//Load test config
const int setRegCnt = spiData.size();
for (int i = 0; i < setRegCnt; ++i)
dataWr[i] = (1 << 31) | (uint32_t(spiAddr[i]) << 16) | spiData[i]; //msbit 1=SPI write
TransactSPI(addrLMS7002M, dataWr.data(), nullptr, setRegCnt);
status = lime::fpga::SetPllFrequency(this, 0, rxInterfaceClk, clocks, 4);
}
{
#ifndef NDEBUG
printf("TX phase config:\n");
#endif
clocks[3].findPhase = false;
const std::vector<uint32_t> spiData = { 0x0E9F, 0x07FF, 0x5550, 0xE4E4, 0xE4E4, 0x0484 };
WriteRegister(0x000A, 0x0000);
//Load test config
const int setRegCnt = spiData.size();
for (int i = 0; i < setRegCnt; ++i)
dataWr[i] = (1 << 31) | (uint32_t(spiAddr[i]) << 16) | spiData[i]; //msbit 1=SPI write
TransactSPI(addrLMS7002M, dataWr.data(), nullptr, setRegCnt);
clocks[1].findPhase = true;
WriteRegister(0x000A, 0x0200);
}
}
status = lime::fpga::SetPllFrequency(this, 0, rxInterfaceClk, clocks, 4);
}
else
{
status = lime::fpga::SetDirectClocking(this, 0, rxInterfaceClk, 90);
if (status == 0)
status = lime::fpga::SetDirectClocking(this, 1, rxInterfaceClk, 90);
}
if (phaseSearch)
{
//Restore registers
for (int i = 0; i < bakRegCnt; ++i)
dataWr[i] = (1 << 31) | (uint32_t(spiAddr[i]) << 16) | dataRd[i]; //msbit 1=SPI write
TransactSPI(addrLMS7002M, dataWr.data(), nullptr, bakRegCnt);
dataWr[0] = (1 << 31) | (uint32_t(0x0020) << 16) | reg20; //msbit 1=SPI write
TransactSPI(addrLMS7002M, dataWr.data(), nullptr, 1);
WriteRegister(0x000A, 0);
UpdateThreads();
}
return status;
}
int Connection_uLimeSDR::ReadRawStreamData(char* buffer, unsigned length, int timeout_ms)
{
int totalBytesReceived = 0;
fpga::StopStreaming(this);
//ResetStreamBuffers();
WriteRegister(0x0008, 0x0100 | 0x2);
WriteRegister(0x0007, 1);
fpga::StartStreaming(this);
int handle = BeginDataReading(buffer, length);
if (WaitForReading(handle, timeout_ms))
totalBytesReceived = FinishDataReading(buffer, length, handle);
AbortReading();
fpga::StopStreaming(this);
return totalBytesReceived;
}
int Connection_uLimeSDR::ResetStreamBuffers()
{
rxSize = 0;
txSize = 0;
#ifndef __unix__
if (FT_AbortPipe(mFTHandle, mStreamRdEndPtAddr)!=FT_OK)
return -1;
if (FT_AbortPipe(mFTHandle, mStreamWrEndPtAddr)!=FT_OK)
return -1;
if (FT_FlushPipe(mFTHandle, mStreamRdEndPtAddr)!=FT_OK)
return -1;
#else
return FT_FlushPipe(mStreamRdEndPtAddr);
#endif
return 0;
}
/** @brief Function dedicated for receiving data samples from board
@param rxFIFO FIFO to store received data
@param terminate periodically pooled flag to terminate thread
@param dataRate_Bps (optional) if not NULL periodically returns data rate in bytes per second
*/
void Connection_uLimeSDR::ReceivePacketsLoop(const Connection_uLimeSDR::ThreadData args)
{
//auto dataPort = args.dataPort;
auto terminate = args.terminate;
auto dataRate_Bps = args.dataRate_Bps;
auto generateData = args.generateData;
auto safeToConfigInterface = args.safeToConfigInterface;
//at this point FPGA has to be already configured to output samples
const uint8_t chCount = args.channels.size();
const auto link = args.channels[0]->config.linkFormat;
const uint32_t samplesInPacket = (link == StreamConfig::STREAM_12_BIT_COMPRESSED ? 1360 : 1020)/chCount;
double latency=0;
for (int i = 0; i < chCount; i++)
{
latency += args.channels[i]->config.performanceLatency/chCount;
}
const unsigned tmp_cnt = (latency * 4)+0.5;
const uint8_t packetsToBatch = (1<<tmp_cnt);
const uint32_t bufferSize = packetsToBatch*sizeof(FPGA_DataPacket);
const uint8_t buffersCount = 16; // must be power of 2
vector<int> handles(buffersCount, 0);
vector<char>buffers(buffersCount*bufferSize, 0);
vector<StreamChannel::Frame> chFrames;
try
{
chFrames.resize(chCount);
}
catch (const std::bad_alloc &ex)
{
ReportError("Error allocating Rx buffers, not enough memory");
return;
}
uint8_t activeTransfers = 0;
for (int i = 0; i<buffersCount; ++i)
{
handles[i] = this->BeginDataReading(&buffers[i*bufferSize], bufferSize);
++activeTransfers;
}
int bi = 0;
unsigned long totalBytesReceived = 0; //for data rate calculation
int m_bufferFailures = 0;
int32_t droppedSamples = 0;
int32_t packetLoss = 0;
vector<uint32_t> samplesCollected(chCount, 0);
vector<uint32_t> samplesReceived(chCount, 0);
auto t1 = chrono::high_resolution_clock::now();
auto t2 = chrono::high_resolution_clock::now();
std::mutex txFlagsLock;
condition_variable resetTxFlags;
//worker thread for reseting late Tx packet flags
std::thread txReset([](ILimeSDRStreaming* port,
atomic<bool> *terminate,
mutex *spiLock,
condition_variable *doWork)
{
uint32_t reg9;
port->ReadRegister(0x0009, reg9);
const uint32_t addr[] = {0x0009, 0x0009};
const uint32_t data[] = {reg9 | (1 << 1), reg9 & ~(1 << 1)};
while (not terminate->load())
{
std::unique_lock<std::mutex> lck(*spiLock);
doWork->wait(lck);
port->WriteRegisters(addr, data, 2);
}
}, this, terminate, &txFlagsLock, &resetTxFlags);
int resetFlagsDelay = 128;
uint64_t prevTs = 0;
while (terminate->load() == false)
{
if(generateData->load())
{
if(activeTransfers == 0) //stop FPGA when last transfer completes
fpga::StopStreaming(this);
safeToConfigInterface->notify_all(); //notify that it's safe to change chip config
const int batchSize = (this->mExpectedSampleRate/chFrames[0].samplesCount)/10;
IStreamChannel::Metadata meta;
for(int i=0; i<batchSize; ++i)
{
for(int ch=0; ch<chCount; ++ch)
{
meta.timestamp = chFrames[ch].timestamp;
for(int j=0; j<chFrames[ch].samplesCount; ++j)
{
chFrames[ch].samples[j].i = 0;
chFrames[ch].samples[j].q = 0;
}
uint32_t samplesPushed = args.channels[ch]->Write((const void*)chFrames[ch].samples, chFrames[ch].samplesCount, &meta);
samplesReceived[ch] += chFrames[ch].samplesCount;
if(samplesPushed != chFrames[ch].samplesCount)
printf("Rx samples pushed %i/%i\n", samplesPushed, chFrames[ch].samplesCount);
}
}
this_thread::sleep_for(chrono::milliseconds(100));
}
int32_t bytesReceived = 0;
if(handles[bi] >= 0)
{
if (this->WaitForReading(handles[bi], 1000) == false)
++m_bufferFailures;
bytesReceived = this->FinishDataReading(&buffers[bi*bufferSize], bufferSize, handles[bi]);
--activeTransfers;
totalBytesReceived += bytesReceived;
if (bytesReceived != int32_t(bufferSize)) //data should come in full sized packets
++m_bufferFailures;
}
bool txLate=false;
for (uint8_t pktIndex = 0; pktIndex < bytesReceived / sizeof(FPGA_DataPacket); ++pktIndex)
{
const FPGA_DataPacket* pkt = (FPGA_DataPacket*)&buffers[bi*bufferSize];
const uint8_t byte0 = pkt[pktIndex].reserved[0];
if ((byte0 & (1 << 3)) != 0 && !txLate) //report only once per batch
{
txLate = true;
if(resetFlagsDelay > 0)
--resetFlagsDelay;
else
{
printf("L");
resetTxFlags.notify_one();
resetFlagsDelay = packetsToBatch*buffersCount;
if (args.reportLateTx) args.reportLateTx(pkt[pktIndex].counter);
}
}
uint8_t* pktStart = (uint8_t*)pkt[pktIndex].data;
if(pkt[pktIndex].counter - prevTs != samplesInPacket && pkt[pktIndex].counter != prevTs)
{
#ifndef NDEBUG
printf("\tRx pktLoss ts diff %lli\n", (long long)pkt[pktIndex].counter - prevTs);
#endif
packetLoss += (pkt[pktIndex].counter - prevTs)/samplesInPacket;
}
prevTs = pkt[pktIndex].counter;
if(args.lastTimestamp)
args.lastTimestamp->store(pkt[pktIndex].counter);
//parse samples
vector<complex16_t*> dest(chCount);
for(uint8_t c=0; c<chCount; ++c)
dest[c] = (chFrames[c].samples);
size_t samplesCount = 0;
fpga::FPGAPacketPayload2Samples(pktStart, 4080, chCount, link, dest.data(), &samplesCount);
for(int ch=0; ch<chCount; ++ch)
{
IStreamChannel::Metadata meta;
meta.timestamp = pkt[pktIndex].counter;
meta.flags = RingFIFO::OVERWRITE_OLD;
uint32_t samplesPushed = args.channels[ch]->Write((const void*)chFrames[ch].samples, samplesCount, &meta, 100);
if(samplesPushed != samplesCount)
droppedSamples += samplesCount-samplesPushed;
}
}
// Re-submit this request to keep the queue full
if(not generateData->load())
{
if(activeTransfers == 0) //reactivate FPGA and USB transfers
fpga::StartStreaming(this);
for(int i=0; i<buffersCount-activeTransfers; ++i)
{
handles[bi] = this->BeginDataReading(&buffers[bi*bufferSize], bufferSize);
bi = (bi + 1) & (buffersCount-1);
++activeTransfers;
}
}
else
{
handles[bi] = -1;
bi = (bi + 1) & (buffersCount-1);
}
t2 = chrono::high_resolution_clock::now();
auto timePeriod = std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1).count();
if (timePeriod >= 1000)
{
t1 = t2;
//total number of bytes sent per second
double dataRate = 1000.0*totalBytesReceived / timePeriod;
#ifndef NDEBUG
//each channel sample rate
float samplingRate = 1000.0*samplesReceived[0] / timePeriod;
printf("Rx: %.3f MB/s, Fs: %.3f MHz, overrun: %i, loss: %i \n", dataRate / 1000000.0, samplingRate / 1000000.0, droppedSamples, packetLoss);
#endif
samplesReceived[0] = 0;
totalBytesReceived = 0;
m_bufferFailures = 0;
droppedSamples = 0;
packetLoss = 0;
if (dataRate_Bps)
dataRate_Bps->store((uint32_t)dataRate);
}
}
this->AbortReading();
for (int j = 0; j<buffersCount; j++)
{
if(handles[bi] >= 0)
{
this->WaitForReading(handles[bi], 1000);
this->FinishDataReading(&buffers[bi*bufferSize], bufferSize, handles[bi]);
}
bi = (bi + 1) & (buffersCount-1);
}
resetTxFlags.notify_one();
txReset.join();
if (dataRate_Bps)
dataRate_Bps->store(0);
}
/** @brief Functions dedicated for transmitting packets to board
@param txFIFO data source FIFO
@param terminate periodically pooled flag to terminate thread
@param dataRate_Bps (optional) if not NULL periodically returns data rate in bytes per second
*/
void Connection_uLimeSDR::TransmitPacketsLoop(const Connection_uLimeSDR::ThreadData args)
{
//auto dataPort = args.dataPort;
auto terminate = args.terminate;
auto dataRate_Bps = args.dataRate_Bps;
//at this point FPGA has to be already configured to output samples
const uint8_t maxChannelCount = 2;
const uint8_t chCount = args.channels.size();
const auto link = args.channels[0]->config.linkFormat;
double latency=0;
for (int i = 0; i < chCount; i++)
{
latency += args.channels[i]->config.performanceLatency/chCount;
}
const unsigned tmp_cnt = (latency * 4)+0.5;
const uint8_t buffersCount = 16; // must be power of 2
assert(buffersCount % 2 == 0);
const uint8_t packetsToBatch = (1<<tmp_cnt); //packets in single USB transfer
const uint32_t bufferSize = packetsToBatch*4096;
const uint32_t popTimeout_ms = 100;
const int maxSamplesBatch = (link==StreamConfig::STREAM_12_BIT_COMPRESSED?1360:1020)/chCount;
vector<int> handles(buffersCount, 0);
vector<bool> bufferUsed(buffersCount, 0);
vector<uint32_t> bytesToSend(buffersCount, 0);
vector<complex16_t> samples[maxChannelCount];
vector<char> buffers;
try
{
for(int i=0; i<chCount; ++i)
samples[i].resize(maxSamplesBatch);
buffers.resize(buffersCount*bufferSize, 0);
}
catch (const std::bad_alloc& ex) //not enough memory for buffers
{
printf("Error allocating Tx buffers, not enough memory\n");
return;
}
int m_bufferFailures = 0;
long totalBytesSent = 0;
uint32_t samplesSent = 0;
auto t1 = chrono::high_resolution_clock::now();
auto t2 = chrono::high_resolution_clock::now();
uint8_t bi = 0; //buffer index
while (terminate->load() != true)
{
if (bufferUsed[bi])
{
if (this->WaitForSending(handles[bi], 1000) == false)
++m_bufferFailures;
uint32_t bytesSent = this->FinishDataSending(&buffers[bi*bufferSize], bytesToSend[bi], handles[bi]);
totalBytesSent += bytesSent;
if (bytesSent != bytesToSend[bi])
++m_bufferFailures;
bufferUsed[bi] = false;
}
int i=0;
while(i<packetsToBatch && terminate->load() != true)
{
IStreamChannel::Metadata meta;
FPGA_DataPacket* pkt = reinterpret_cast<FPGA_DataPacket*>(&buffers[bi*bufferSize]);
for(int ch=0; ch<chCount; ++ch)
{
int samplesPopped = args.channels[ch]->Read(samples[ch].data(), maxSamplesBatch, &meta, popTimeout_ms);
if (samplesPopped != maxSamplesBatch)
{
#ifndef NDEBUG
printf("Warning popping from TX, samples popped %i/%i\n", samplesPopped, maxSamplesBatch);
#endif
}
}
if(terminate->load() == true) //early termination
break;
pkt[i].counter = meta.timestamp;
pkt[i].reserved[0] = 0;
//by default ignore timestamps
const int ignoreTimestamp = !(meta.flags & IStreamChannel::Metadata::SYNC_TIMESTAMP);
pkt[i].reserved[0] |= ((int)ignoreTimestamp << 4); //ignore timestamp
vector<complex16_t*> src(chCount);
for(uint8_t c=0; c<chCount; ++c)
src[c] = (samples[c].data());
uint8_t* const dataStart = (uint8_t*)pkt[i].data;
fpga::Samples2FPGAPacketPayload(src.data(), maxSamplesBatch, chCount, link, dataStart, nullptr);
samplesSent += maxSamplesBatch;
++i;
}
bytesToSend[bi] = bufferSize;
handles[bi] = this->BeginDataSending(&buffers[bi*bufferSize], bytesToSend[bi]);
bufferUsed[bi] = true;
t2 = chrono::high_resolution_clock::now();
auto timePeriod = std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1).count();
if (timePeriod >= 1000)
{
//total number of bytes sent per second
float dataRate = 1000.0*totalBytesSent / timePeriod;
if(dataRate_Bps)
dataRate_Bps->store(dataRate);
m_bufferFailures = 0;
samplesSent = 0;
totalBytesSent = 0;
t1 = t2;
#ifndef NDEBUG
//total number of samples from all channels per second
float sampleRate = 1000.0*samplesSent / timePeriod;
printf("Tx: %.3f MB/s, Fs: %.3f MHz, failures: %i\n", dataRate / 1000000.0, sampleRate / 1000000.0, m_bufferFailures);
#endif
}
bi = (bi + 1) & (buffersCount-1);
}
// Wait for all the queued requests to be cancelled
this->AbortSending();
for (int j = 0; j<buffersCount; j++)
{
if (bufferUsed[bi])
{
this->WaitForSending(handles[bi], 1000);
this->FinishDataSending(&buffers[bi*bufferSize], bufferSize, handles[bi]);
}
bi = (bi + 1) & (buffersCount-1);
}
if (dataRate_Bps)
dataRate_Bps->store(0);
}