mirror of
https://github.com/f4exb/sdrangel.git
synced 2024-11-13 20:01:46 -05:00
702 lines
22 KiB
C++
702 lines
22 KiB
C++
///////////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany //
|
|
// written by Christian Daniel //
|
|
// Copyright (C) 2015-2019, 2023 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
|
|
// Copyright (C) 2015 John Greb <hexameron@spam.no> //
|
|
// //
|
|
// This is the code from ft8mon: https://github.com/rtmrtmrtmrtm/ft8mon //
|
|
// reformatted and adapted to Qt and SDRangel context //
|
|
// //
|
|
// This program is free software; you can redistribute it and/or modify //
|
|
// it under the terms of the GNU General Public License as published by //
|
|
// the Free Software Foundation as version 3 of the License, or //
|
|
// (at your option) any later version. //
|
|
// //
|
|
// This program is distributed in the hope that it will be useful, //
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
|
// GNU General Public License V3 for more details. //
|
|
// //
|
|
// You should have received a copy of the GNU General Public License //
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
#ifndef ft8_h
|
|
#define ft8_h
|
|
|
|
#include <vector>
|
|
|
|
#include <QObject>
|
|
#include <QMutex>
|
|
#include <QString>
|
|
|
|
#include "fft.h"
|
|
#include "export.h"
|
|
|
|
class QThread;
|
|
|
|
namespace FT8 {
|
|
// Callback interface to get the results
|
|
class FT8_API CallbackInterface
|
|
{
|
|
public:
|
|
virtual int hcb(
|
|
int *a91,
|
|
float hz0,
|
|
float off,
|
|
const char *,
|
|
float snr,
|
|
int pass,
|
|
int correct_bits
|
|
) = 0; //!< virtual nathod called each time there is a result
|
|
virtual QString get_name() = 0;
|
|
};
|
|
|
|
//
|
|
// manage statistics for soft decoding, to help
|
|
// decide how likely each symbol is to be correct,
|
|
// to drive LDPC decoding.
|
|
//
|
|
// meaning of the how (problt_how) parameter:
|
|
// 0: gaussian
|
|
// 1: index into the actual distribution
|
|
// 2: do something complex for the tails.
|
|
// 3: index into the actual distribution plus gaussian for tails.
|
|
// 4: similar to 3.
|
|
// 5: laplace
|
|
//
|
|
class FT8_API Stats
|
|
{
|
|
public:
|
|
std::vector<float> a_;
|
|
float sum_;
|
|
bool finalized_;
|
|
float mean_; // cached
|
|
float stddev_; // cached
|
|
float b_; // cached
|
|
int how_;
|
|
|
|
public:
|
|
Stats(int how, float log_tail, float log_rate);
|
|
void add(float x);
|
|
void finalize();
|
|
float mean();
|
|
float stddev();
|
|
|
|
// fraction of distribution that's less than x.
|
|
// assumes normal distribution.
|
|
// this is PHI(x), or the CDF at x,
|
|
// or the integral from -infinity
|
|
// to x of the PDF.
|
|
float gaussian_problt(float x);
|
|
// https://en.wikipedia.org/wiki/Laplace_distribution
|
|
// m and b from page 116 of Mark Owen's Practical Signal Processing.
|
|
float laplace_problt(float x);
|
|
// look into the actual distribution.
|
|
float problt(float x);
|
|
|
|
private:
|
|
float log_tail_;
|
|
float log_rate_;
|
|
};
|
|
|
|
class FT8_API Strength
|
|
{
|
|
public:
|
|
float hz_;
|
|
int off_;
|
|
float strength_; // higher is better
|
|
};
|
|
|
|
// same as Python class CDECODE
|
|
//
|
|
struct FT8_API cdecode
|
|
{
|
|
float hz0;
|
|
float hz1;
|
|
float off;
|
|
int *bits; // 174
|
|
};
|
|
|
|
// 1920-point FFT at 12000 samples/second
|
|
// 6.25 Hz spacing, 0.16 seconds/symbol
|
|
// encode chain:
|
|
// 77 bits
|
|
// append 14 bits CRC (for 91 bits)
|
|
// LDPC(174,91) yields 174 bits
|
|
// that's 58 3-bit FSK-8 symbols
|
|
// gray code each 3 bits
|
|
// insert three 7-symbol Costas sync arrays
|
|
// at symbol #s 0, 36, 72 of final signal
|
|
// thus: 79 FSK-8 symbols
|
|
// total transmission time is 12.64 seconds
|
|
|
|
// tunable parameters
|
|
struct FT8_API FT8Params
|
|
{
|
|
int nthreads; // number of parallel threads, for multi-core
|
|
int npasses_one; // number of spectral subtraction passes
|
|
int npasses_two; // number of spectral subtraction passes
|
|
int ldpc_iters; // how hard LDPC decoding should work
|
|
int snr_win; // averaging window, in symbols, for SNR conversion
|
|
int snr_how; // technique to measure "N" for SNR. 0 means median of the 8 tones.
|
|
float shoulder200; // for 200 sps bandpass filter
|
|
float shoulder200_extra; // for bandpass filter
|
|
float second_hz_win; // +/- hz
|
|
int second_hz_n; // divide total window into this many pieces
|
|
float second_off_win; // +/- search window in symbol-times
|
|
int second_off_n;
|
|
int third_hz_n;
|
|
float third_hz_win;
|
|
int third_off_n;
|
|
float third_off_win;
|
|
float log_tail;
|
|
float log_rate;
|
|
int problt_how_noise;
|
|
int problt_how_sig;
|
|
int use_apriori;
|
|
int use_hints; // 1 means use all hints, 2 means just CQ hints
|
|
int win_type;
|
|
int use_osd;
|
|
int osd_depth; // 6; // don't increase beyond 6, produces too much garbage
|
|
int osd_ldpc_thresh; // demand this many correct LDPC parity bits before OSD
|
|
int ncoarse; // number of offsets per hz produced by coarse()
|
|
int ncoarse_blocks;
|
|
float tminus; // start looking at 0.5 - tminus seconds
|
|
float tplus;
|
|
int coarse_off_n;
|
|
int coarse_hz_n;
|
|
float already_hz;
|
|
float overlap;
|
|
int overlap_edges;
|
|
float nyquist;
|
|
int oddrate;
|
|
float pass0_frac;
|
|
int reduce_how;
|
|
float go_extra;
|
|
int do_reduce;
|
|
int pass_threshold;
|
|
int strength_how;
|
|
int known_strength_how;
|
|
int coarse_strength_how;
|
|
float reduce_shoulder;
|
|
float reduce_factor;
|
|
float reduce_extra;
|
|
float coarse_all;
|
|
int second_count;
|
|
int soft_phase_win;
|
|
float subtract_ramp;
|
|
int soft_ones;
|
|
int soft_pairs;
|
|
int soft_triples;
|
|
int do_second;
|
|
int do_fine_hz;
|
|
int do_fine_off;
|
|
int do_third;
|
|
float fine_thresh;
|
|
int fine_max_off;
|
|
int fine_max_tone;
|
|
int known_sparse;
|
|
float c_soft_weight;
|
|
int c_soft_win;
|
|
int bayes_how;
|
|
|
|
FT8Params()
|
|
{
|
|
nthreads = 8; // number of parallel threads, for multi-core
|
|
npasses_one = 3; // number of spectral subtraction passes
|
|
npasses_two = 3; // number of spectral subtraction passes
|
|
ldpc_iters = 25; // how hard LDPC decoding should work
|
|
snr_win = 7; // averaging window, in symbols, for SNR conversion
|
|
snr_how = 3; // technique to measure "N" for SNR. 0 means median of the 8 tones.
|
|
shoulder200 = 10; // for 200 sps bandpass filter
|
|
shoulder200_extra = 0.0; // for bandpass filter
|
|
second_hz_win = 3.5; // +/- hz
|
|
second_hz_n = 8; // divide total window into this many pieces
|
|
second_off_win = 0.5; // +/- search window in symbol-times
|
|
second_off_n = 10;
|
|
third_hz_n = 3;
|
|
third_hz_win = 0.25;
|
|
third_off_n = 4;
|
|
third_off_win = 0.075;
|
|
log_tail = 0.1;
|
|
log_rate = 8.0;
|
|
problt_how_noise = 0;
|
|
problt_how_sig = 0;
|
|
use_apriori = 1;
|
|
use_hints = 2; // 1 means use all hints, 2 means just CQ hints
|
|
win_type = 1;
|
|
use_osd = 1;
|
|
osd_depth = 0; // 6; // don't increase beyond 6, produces too much garbage
|
|
osd_ldpc_thresh = 70; // demand this many correct LDPC parity bits before OSD
|
|
ncoarse = 1; // number of offsets per hz produced by coarse()
|
|
ncoarse_blocks = 1;
|
|
tminus = 2.2; // start looking at 0.5 - tminus seconds
|
|
tplus = 2.4;
|
|
coarse_off_n = 4;
|
|
coarse_hz_n = 4;
|
|
already_hz = 27;
|
|
overlap = 20;
|
|
overlap_edges = 0;
|
|
nyquist = 0.925;
|
|
oddrate = 1;
|
|
pass0_frac = 1.0;
|
|
reduce_how = 2;
|
|
go_extra = 3.5;
|
|
do_reduce = 1;
|
|
pass_threshold = 1;
|
|
strength_how = 4;
|
|
known_strength_how = 7;
|
|
coarse_strength_how = 6;
|
|
reduce_shoulder = -1;
|
|
reduce_factor = 0.25;
|
|
reduce_extra = 0;
|
|
coarse_all = -1;
|
|
second_count = 3;
|
|
soft_phase_win = 2;
|
|
subtract_ramp = 0.11;
|
|
soft_ones = 2;
|
|
soft_pairs = 1;
|
|
soft_triples = 1;
|
|
do_second = 1;
|
|
do_fine_hz = 1;
|
|
do_fine_off = 1;
|
|
do_third = 2;
|
|
fine_thresh = 0.19;
|
|
fine_max_off = 2;
|
|
fine_max_tone = 4;
|
|
known_sparse = 1;
|
|
c_soft_weight = 7;
|
|
c_soft_win = 2;
|
|
bayes_how = 1;
|
|
}
|
|
}; // class FT8Params
|
|
|
|
// The FT8 worker
|
|
class FT8_API FT8 : public QObject
|
|
{
|
|
Q_OBJECT
|
|
public:
|
|
FT8(
|
|
const std::vector<float> &samples,
|
|
float min_hz,
|
|
float max_hz,
|
|
int start,
|
|
int rate,
|
|
int hints1[],
|
|
int hints2[],
|
|
double deadline,
|
|
double final_deadline,
|
|
CallbackInterface *cb,
|
|
std::vector<cdecode> prevdecs,
|
|
FFTEngine *fftEngine
|
|
);
|
|
~FT8();
|
|
// Number of passes
|
|
void set_npasses(int npasses) { npasses_ = npasses; }
|
|
// Start the worker
|
|
void start_work();
|
|
// strength of costas block of signal with tone 0 at bi0,
|
|
// and symbol zero at si0.
|
|
float one_coarse_strength(const FFTEngine::ffts_t &bins, int bi0, int si0);
|
|
// return symbol length in samples at the given rate.
|
|
// insist on integer symbol lengths so that we can
|
|
// use whole FFT bins.
|
|
int blocksize(int rate);
|
|
//
|
|
// look for potential signals by searching FFT bins for Costas symbol
|
|
// blocks. returns a vector of candidate positions.
|
|
//
|
|
std::vector<Strength> coarse(const FFTEngine::ffts_t &bins, int si0, int si1);
|
|
|
|
FT8Params& getParams() { return params; }
|
|
|
|
private:
|
|
//
|
|
// reduce the sample rate from arate to brate.
|
|
// center hz0..hz1 in the new nyquist range.
|
|
// but first filter to that range.
|
|
// sets delta_hz to hz moved down.
|
|
//
|
|
std::vector<float> reduce_rate(
|
|
const std::vector<float> &a,
|
|
float hz0,
|
|
float hz1,
|
|
int arate,
|
|
int brate,
|
|
float &delta_hz
|
|
);
|
|
// The actual main process
|
|
void go(int npasses);
|
|
//
|
|
// what's the strength of the Costas sync blocks of
|
|
// the signal starting at hz and off?
|
|
//
|
|
float one_strength(const std::vector<float> &samples200, float hz, int off);
|
|
//
|
|
// given a complete known signal's symbols in syms,
|
|
// how strong is it? used to look for the best
|
|
// offset and frequency at which to subtract a
|
|
// decoded signal.
|
|
//
|
|
float one_strength_known(
|
|
const std::vector<float> &samples,
|
|
int rate,
|
|
const std::vector<int> &syms,
|
|
float hz,
|
|
int off
|
|
);
|
|
int search_time_fine(
|
|
const std::vector<float> &samples200,
|
|
int off0,
|
|
int offN,
|
|
float hz,
|
|
int gran,
|
|
float &str
|
|
);
|
|
int search_time_fine_known(
|
|
const std::vector<std::complex<float>> &bins,
|
|
int rate,
|
|
const std::vector<int> &syms,
|
|
int off0,
|
|
int offN,
|
|
float hz,
|
|
int gran,
|
|
float &str
|
|
);
|
|
//
|
|
// search for costas blocks in an MxN time/frequency grid.
|
|
// hz0 +/- hz_win in hz_inc increments. hz0 should be near 25.
|
|
// off0 +/- off_win in off_inc incremenents.
|
|
//
|
|
std::vector<Strength> search_both(
|
|
const std::vector<float> &samples200,
|
|
float hz0,
|
|
int hz_n,
|
|
float hz_win,
|
|
int off0,
|
|
int off_n,
|
|
int off_win
|
|
);
|
|
void search_both_known(
|
|
const std::vector<float> &samples,
|
|
int rate,
|
|
const std::vector<int> &syms,
|
|
float hz0,
|
|
float off_secs0, // seconds
|
|
float &hz_out,
|
|
float &off_out
|
|
);
|
|
//
|
|
// shift frequency by shifting the bins of one giant FFT.
|
|
// so no problem with phase mismatch &c at block boundaries.
|
|
// surprisingly fast at 200 samples/second.
|
|
// shifts *down* by hz.
|
|
//
|
|
std::vector<float> fft_shift(
|
|
const std::vector<float> &samples,
|
|
int off,
|
|
int len,
|
|
int rate,
|
|
float hz
|
|
);
|
|
//
|
|
// shift down by hz.
|
|
//
|
|
std::vector<float> fft_shift_f(
|
|
const std::vector<std::complex<float>> &bins,
|
|
int rate,
|
|
float hz
|
|
);
|
|
// shift the frequency by a fraction of 6.25,
|
|
// to center hz on bin 4 (25 hz).
|
|
std::vector<float> shift200(
|
|
const std::vector<float> &samples200,
|
|
int off,
|
|
int len,
|
|
float hz
|
|
);
|
|
// returns a mini-FFT of 79 8-tone symbols.
|
|
FFTEngine::ffts_t extract(const std::vector<float> &samples200, float, int off);
|
|
//
|
|
// m79 is a 79x8 array of complex.
|
|
//
|
|
FFTEngine::ffts_t un_gray_code_c(const FFTEngine::ffts_t &m79);
|
|
//
|
|
// m79 is a 79x8 array of float.
|
|
//
|
|
std::vector<std::vector<float>> un_gray_code_r(const std::vector<std::vector<float>> &m79);
|
|
//
|
|
// normalize levels by windowed median.
|
|
// this helps, but why?
|
|
//
|
|
std::vector<std::vector<float>> convert_to_snr(const std::vector<std::vector<float>> &m79);
|
|
//
|
|
// normalize levels by windowed median.
|
|
// this helps, but why?
|
|
//
|
|
std::vector<std::vector<std::complex<float>>> c_convert_to_snr(
|
|
const std::vector<std::vector<std::complex<float>>> &m79
|
|
);
|
|
//
|
|
// statistics to decide soft probabilities,
|
|
// to drive LDPC decoder.
|
|
// distribution of strongest tones, and
|
|
// distribution of noise.
|
|
//
|
|
void make_stats(
|
|
const std::vector<std::vector<float>> &m79,
|
|
Stats &bests,
|
|
Stats &all
|
|
);
|
|
//
|
|
// convert 79x8 complex FFT bins to magnitudes.
|
|
//
|
|
// exploits local phase coherence by decreasing magnitudes of bins
|
|
// whose phase is far from the phases of nearby strongest tones.
|
|
//
|
|
// relies on each tone being reasonably well centered in its FFT bin
|
|
// (in time and frequency) so that each tone completes an integer
|
|
// number of cycles and thus preserves phase from one symbol to the
|
|
// next.
|
|
//
|
|
std::vector<std::vector<float>> soft_c2m(const FFTEngine::ffts_t &c79);
|
|
//
|
|
// guess the probability that a bit is zero vs one,
|
|
// based on strengths of strongest tones that would
|
|
// give it those values. for soft LDPC decoding.
|
|
//
|
|
// returns log-likelihood, zero is positive, one is negative.
|
|
//
|
|
float bayes(
|
|
float best_zero,
|
|
float best_one,
|
|
int lli,
|
|
Stats &bests,
|
|
Stats &all
|
|
);
|
|
//
|
|
// c79 is 79x8 complex tones, before un-gray-coding.
|
|
//
|
|
void soft_decode(const FFTEngine::ffts_t &c79, float ll174[]);
|
|
//
|
|
// c79 is 79x8 complex tones, before un-gray-coding.
|
|
//
|
|
void c_soft_decode(const FFTEngine::ffts_t &c79x, float ll174[]);
|
|
//
|
|
// turn 79 symbol numbers into 174 bits.
|
|
// strip out the three Costas sync blocks,
|
|
// leaving 58 symbol numbers.
|
|
// each represents three bits.
|
|
// (all post-un-gray-code).
|
|
// str is per-symbol strength; must be positive.
|
|
// each returned element is < 0 for 1, > 0 for zero,
|
|
// scaled by str.
|
|
//
|
|
std::vector<float> extract_bits(const std::vector<int> &syms, const std::vector<float> str);
|
|
// decode successive pairs of symbols. exploits the likelyhood
|
|
// that they have the same phase, by summing the complex
|
|
// correlations for each possible pair and using the max.
|
|
void soft_decode_pairs(
|
|
const FFTEngine::ffts_t &m79x,
|
|
float ll174[]
|
|
);
|
|
void soft_decode_triples(
|
|
const FFTEngine::ffts_t &m79x,
|
|
float ll174[]
|
|
);
|
|
//
|
|
// given log likelyhood for each bit, try LDPC and OSD decoders.
|
|
// on success, puts corrected 174 bits into a174[].
|
|
//
|
|
int decode(const float ll174[], int a174[], int use_osd, std::string &comment);
|
|
//
|
|
// bandpass filter some FFT bins.
|
|
// smooth transition from stop-band to pass-band,
|
|
// so that it's not a brick-wall filter, so that it
|
|
// doesn't ring.
|
|
//
|
|
std::vector<std::complex<float>> fbandpass(
|
|
const std::vector<std::complex<float>> &bins0,
|
|
float bin_hz,
|
|
float low_outer, // start of transition
|
|
float low_inner, // start of flat area
|
|
float high_inner, // end of flat area
|
|
float high_outer // end of transition
|
|
);
|
|
//
|
|
// move hz down to 25, filter+convert to 200 samples/second.
|
|
//
|
|
// like fft_shift(). one big FFT, move bins down and
|
|
// zero out those outside the band, then IFFT,
|
|
// then re-sample.
|
|
//
|
|
// XXX maybe merge w/ fft_shift() / shift200().
|
|
//
|
|
std::vector<float> down_v7(const std::vector<float> &samples, float hz);
|
|
std::vector<float> down_v7_f(const std::vector<std::complex<float>> &bins, int len, float hz);
|
|
//
|
|
// putative start of signal is at hz and symbol si0.
|
|
//
|
|
// return 2 if it decodes to a brand-new message.
|
|
// return 1 if it decodes but we've already seen it,
|
|
// perhaps in a different pass.
|
|
// return 0 if we could not decode.
|
|
//
|
|
// XXX merge with one_iter().
|
|
//
|
|
int one_merge(const std::vector<std::complex<float>> &bins, int len, float hz, int off);
|
|
// return 2 if it decodes to a brand-new message.
|
|
// return 1 if it decodes but we've already seen it,
|
|
// perhaps in a different pass.
|
|
// return 0 if we could not decode.
|
|
int one_iter(const std::vector<float> &samples200, int best_off, float hz_for_cb);
|
|
//
|
|
// estimate SNR, yielding numbers vaguely similar to WSJT-X.
|
|
// m79 is a 79x8 complex FFT output.
|
|
//
|
|
float guess_snr(const FFTEngine::ffts_t &m79);
|
|
//
|
|
// compare phases of successive symbols to guess whether
|
|
// the starting offset is a little too high or low.
|
|
// we expect each symbol to have the same phase.
|
|
// an error in causes the phase to advance at a steady rate.
|
|
// so if hz is wrong, we expect the phase to advance
|
|
// or retard at a steady pace.
|
|
// an error in offset causes each symbol to start at
|
|
// a phase that depends on the symbol's frequency;
|
|
// a particular offset error causes a phase error
|
|
// that depends on frequency.
|
|
// hz0 is actual FFT bin number of m79[...][0] (always 4).
|
|
//
|
|
// the output adj_hz is relative to the FFT bin center;
|
|
// a positive number means the real signal seems to be
|
|
// a bit higher in frequency that the bin center.
|
|
//
|
|
// adj_off is the amount to change the offset, in samples.
|
|
// should be subtracted from offset.
|
|
//
|
|
void fine(const FFTEngine::ffts_t &m79, int, float &adj_hz, float &adj_off);
|
|
//
|
|
// subtract a corrected decoded signal from nsamples_,
|
|
// perhaps revealing a weaker signal underneath,
|
|
// to be decoded in a subsequent pass.
|
|
//
|
|
// re79[] holds the error-corrected symbol numbers.
|
|
//
|
|
void subtract(
|
|
const std::vector<int> re79,
|
|
float hz0,
|
|
float hz1,
|
|
float off_sec
|
|
);
|
|
//
|
|
// decode, give to callback, and subtract.
|
|
//
|
|
// return 2 if it decodes to a brand-new message.
|
|
// return 1 if it decodes but we've already seen it,
|
|
// perhaps in a different pass.
|
|
// return 0 if we could not decode.
|
|
//
|
|
int try_decode(
|
|
const std::vector<float> &samples200,
|
|
float ll174[174],
|
|
float best_hz,
|
|
int best_off_samples,
|
|
float hz0_for_cb,
|
|
float,
|
|
int use_osd,
|
|
const char *comment1,
|
|
const FFTEngine::ffts_t &m79
|
|
);
|
|
//
|
|
// given 174 bits corrected by LDPC, work
|
|
// backwards to the symbols that must have
|
|
// been sent.
|
|
// used to help ensure that subtraction subtracts
|
|
// at the right place.
|
|
//
|
|
std::vector<int> recode(int a174[]);
|
|
//
|
|
// the signal is at roughly 25 hz in samples200.
|
|
//
|
|
// return 2 if it decodes to a brand-new message.
|
|
// return 1 if it decodes but we've already seen it,
|
|
// perhaps in a different pass.
|
|
// return 0 if we could not decode.
|
|
//
|
|
int one_iter1(
|
|
const std::vector<float> &samples200x,
|
|
int best_off,
|
|
float best_hz,
|
|
float hz0_for_cb,
|
|
float hz1_for_cb
|
|
);
|
|
|
|
signals:
|
|
void finished();
|
|
private:
|
|
FT8Params params;
|
|
FFTEngine *fftEngine_;
|
|
int npasses_;
|
|
static const double apriori174[];
|
|
|
|
float min_hz_;
|
|
float max_hz_;
|
|
std::vector<float> samples_; // input to each pass
|
|
std::vector<float> nsamples_; // subtract from here
|
|
|
|
int start_; // sample number of 0.5 seconds into samples[]
|
|
int rate_; // samples/second
|
|
double deadline_; // start time + budget
|
|
double final_deadline_; // keep going this long if no decodes
|
|
std::vector<int> hints1_;
|
|
std::vector<int> hints2_;
|
|
int pass_;
|
|
float down_hz_;
|
|
|
|
QMutex cb_mu_;
|
|
CallbackInterface *cb_; // call-back interface
|
|
|
|
QMutex hack_mu_;
|
|
int hack_size_;
|
|
int hack_off_;
|
|
int hack_len_;
|
|
float hack_0_;
|
|
float hack_1_;
|
|
const float *hack_data_;
|
|
std::vector<std::complex<float>> hack_bins_;
|
|
std::vector<cdecode> prevdecs_;
|
|
}; // class FT8
|
|
|
|
class FT8_API FT8Decoder : public QObject {
|
|
Q_OBJECT
|
|
public:
|
|
~FT8Decoder();
|
|
void entry(
|
|
float xsamples[],
|
|
int nsamples,
|
|
int start,
|
|
int rate,
|
|
float min_hz,
|
|
float max_hz,
|
|
int hints1[],
|
|
int hints2[],
|
|
double time_left,
|
|
double total_time_left,
|
|
CallbackInterface *cb,
|
|
int,
|
|
struct cdecode *
|
|
);
|
|
void wait(double time_left); //!< wait for all threads to finish
|
|
void forceQuit(); //!< force quit all threads
|
|
FT8Params& getParams() { return params; }
|
|
private:
|
|
FT8Params params;
|
|
std::vector<QThread*> threads;
|
|
std::vector<FFTEngine*> fftEngines;
|
|
}; // FT8Decoder
|
|
|
|
} // namespace FT8
|
|
|
|
#endif
|