1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-12-23 10:05:46 -05:00
sdrangel/plugins/samplemimo/limesdrmimo/limesdrmothread.cpp
2024-04-20 19:10:18 +02:00

237 lines
7.4 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2020 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include "dsp/samplemofifo.h"
#include "limesdr/devicelimesdr.h"
#include "limesdrmothread.h"
LimeSDRMOThread::LimeSDRMOThread(lms_stream_t* stream0, lms_stream_t* stream1, QObject* parent) :
QThread(parent),
m_running(false),
m_stream0(stream0),
m_stream1(stream1),
m_sampleFifo(nullptr)
{
qDebug("LimeSDRMOThread::LimeSDRMOThread");
m_buf = new qint16[2*DeviceLimeSDR::blockSize*2];
std::fill(m_buf, m_buf + 2*DeviceLimeSDR::blockSize*2, 0);
}
LimeSDRMOThread::~LimeSDRMOThread()
{
qDebug("LimeSDRMOThread::~LimeSDRMOThread");
if (m_running) {
stopWork();
}
delete[] m_buf;
}
void LimeSDRMOThread::startWork()
{
if (m_running) {
return; // return if running already
}
int ret[2];
ret[0] = LMS_StartStream(m_stream0);
ret[1] = LMS_StartStream(m_stream1);
if (ret[0] < 0)
{
qCritical("LimeSDROutputThread::startWork: could not start stream 0");
return;
}
else
{
qDebug("LimeSDROutputThread::startWork: stream 0 started");
}
if (m_stream1)
{
if (ret[1] < 0)
{
qCritical("LimeSDROutputThread::startWork: could not start stream 1");
LMS_StopStream(m_stream0);
return;
}
else
{
qDebug("LimeSDROutputThread::startWork: stream 1 started");
}
}
usleep(50000);
m_startWaitMutex.lock();
start();
while(!m_running) {
m_startWaiter.wait(&m_startWaitMutex, 100);
}
m_startWaitMutex.unlock();
}
void LimeSDRMOThread::stopWork()
{
if (!m_running) {
return; // return if not running
}
m_running = false;
wait();
int ret[2];
ret[0] = LMS_StopStream(m_stream0);
ret[1] = LMS_StopStream(m_stream1);
if (ret[0] < 0)
{
qCritical("LimeSDROutputThread::stopWork: could not stop stream 0");
} else {
qDebug("LimeSDROutputThread::stopWork: stream 0 stopped");
}
if (m_stream1)
{
if (ret[1] < 0)
{
qCritical("LimeSDROutputThread::stopWork: could not stop stream 1");
} else {
qDebug("LimeSDROutputThread::stopWork: stream 1 stopped");
}
}
usleep(50000);
}
void LimeSDRMOThread::setLog2Interpolation(unsigned int log2Interp)
{
qDebug("LimeSDRMOThread::setLog2Interpolation: %u", log2Interp);
m_log2Interp = log2Interp;
}
unsigned int LimeSDRMOThread::getLog2Interpolation() const
{
return m_log2Interp;
}
void LimeSDRMOThread::run()
{
lms_stream_meta_t metadata; //Use metadata for additional control over sample receive function behaviour
metadata.flushPartialPacket = false; //Do not discard data remainder when read size differs from packet size
metadata.waitForTimestamp = false; //Do not wait for specific timestamps
m_running = true;
m_startWaiter.wakeAll();
int res[2];
while (m_running)
{
callback(m_buf, DeviceLimeSDR::blockSize);
res[0] = LMS_SendStream(m_stream0, (void *) &m_buf[0], DeviceLimeSDR::blockSize, &metadata, 1000000);
if (res[0] < 0)
{
qCritical("LimeSDROutputThread::run stream 0 write error: %s", strerror(errno));
break;
}
else if (res[0] != DeviceLimeSDR::blockSize)
{
qDebug("LimeSDROutputThread::run stream 0 written %d/%u samples", res[0], DeviceLimeSDR::blockSize);
}
if (m_stream1)
{
res[1] = LMS_SendStream(m_stream1, (void *) &m_buf[2*DeviceLimeSDR::blockSize], DeviceLimeSDR::blockSize, &metadata, 1000000);
if (res[1] < 0)
{
qCritical("LimeSDROutputThread::run stream 1 write error: %s", strerror(errno));
break;
}
else if (res[1] != DeviceLimeSDR::blockSize)
{
qDebug("LimeSDROutputThread::run stream 1 written %d/%u samples", res[1], DeviceLimeSDR::blockSize);
}
}
}
m_running = false;
}
void LimeSDRMOThread::callback(qint16* buf, qint32 samplesPerChannel)
{
unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End;
m_sampleFifo->readSync(samplesPerChannel/(1<<m_log2Interp), iPart1Begin, iPart1End, iPart2Begin, iPart2End);
if (iPart1Begin != iPart1End)
{
callbackPart(buf, (iPart1End - iPart1Begin)*(1<<m_log2Interp), iPart1Begin);
}
if (iPart2Begin != iPart2End)
{
unsigned int shift = (iPart1End - iPart1Begin)*(1<<m_log2Interp);
callbackPart(buf + 2*shift, (iPart2End - iPart2Begin)*(1<<m_log2Interp), iPart2Begin);
}
}
// Interpolate according to specified log2 (ex: log2=4 => decim=16). len is a number of samples (not a number of I or Q)
void LimeSDRMOThread::callbackPart(qint16* buf, qint32 nSamples, int iBegin)
{
for (unsigned int channel = 0; channel < 2; channel++)
{
SampleVector::iterator begin = m_sampleFifo->getData(channel).begin() + iBegin;
if (m_log2Interp == 0)
{
m_interpolators[channel].interpolate1(&begin, &buf[channel*2*nSamples], 2*nSamples);
}
else
{
switch (m_log2Interp)
{
case 1:
m_interpolators[channel].interpolate2_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 2:
m_interpolators[channel].interpolate4_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 3:
m_interpolators[channel].interpolate8_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 4:
m_interpolators[channel].interpolate16_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 5:
m_interpolators[channel].interpolate32_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
case 6:
m_interpolators[channel].interpolate64_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
break;
default:
break;
}
}
}
}