sdrangel/sdrbase/dsp/downchannelizer.cpp

319 lines
11 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016 F4EXB //
// written by Edouard Griffiths //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <dsp/downchannelizer.h>
#include "dsp/inthalfbandfilter.h"
#include "dsp/dspcommands.h"
#include <QString>
#include <QDebug>
MESSAGE_CLASS_DEFINITION(DownChannelizer::MsgChannelizerNotification, Message)
DownChannelizer::DownChannelizer(BasebandSampleSink* sampleSink) :
m_sampleSink(sampleSink),
m_inputSampleRate(0),
m_requestedOutputSampleRate(0),
m_requestedCenterFrequency(0),
m_currentOutputSampleRate(0),
m_currentCenterFrequency(0)
{
QString name = "DownChannelizer(" + m_sampleSink->objectName() + ")";
setObjectName(name);
}
DownChannelizer::~DownChannelizer()
{
freeFilterChain();
}
void DownChannelizer::configure(MessageQueue* messageQueue, int sampleRate, int centerFrequency)
{
Message* cmd = new DSPConfigureChannelizer(sampleRate, centerFrequency);
messageQueue->push(cmd);
}
void DownChannelizer::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool positiveOnly)
{
if(m_sampleSink == 0) {
m_sampleBuffer.clear();
return;
}
if (m_filterStages.size() == 0) // optimization when no downsampling is done anyway
{
m_sampleSink->feed(begin, end, positiveOnly);
}
else
{
m_mutex.lock();
for(SampleVector::const_iterator sample = begin; sample != end; ++sample)
{
Sample s(*sample);
FilterStages::iterator stage = m_filterStages.begin();
for (; stage != m_filterStages.end(); ++stage)
{
if(!(*stage)->work(&s))
{
break;
}
}
if(stage == m_filterStages.end())
{
s.m_real /= (1<<(m_filterStages.size()));
s.m_imag /= (1<<(m_filterStages.size()));
m_sampleBuffer.push_back(s);
}
}
m_mutex.unlock();
m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), positiveOnly);
m_sampleBuffer.clear();
}
}
void DownChannelizer::start()
{
if (m_sampleSink != 0)
{
qDebug() << "DownChannelizer::start: thread: " << thread()
<< " m_inputSampleRate: " << m_inputSampleRate
<< " m_requestedOutputSampleRate: " << m_requestedOutputSampleRate
<< " m_requestedCenterFrequency: " << m_requestedCenterFrequency;
m_sampleSink->start();
}
}
void DownChannelizer::stop()
{
if(m_sampleSink != 0)
m_sampleSink->stop();
}
bool DownChannelizer::handleMessage(const Message& cmd)
{
// TODO: apply changes only if input sample rate or requested output sample rate change. Change of center frequency has no impact.
if (DSPSignalNotification::match(cmd))
{
DSPSignalNotification& notif = (DSPSignalNotification&) cmd;
m_inputSampleRate = notif.getSampleRate();
qDebug() << "DownChannelizer::handleMessage: DSPSignalNotification: m_inputSampleRate: " << m_inputSampleRate;
applyConfiguration();
if (m_sampleSink != 0)
{
DSPSignalNotification* rep = new DSPSignalNotification(notif); // make a copy
m_sampleSink->getInputMessageQueue()->push(rep);
}
emit inputSampleRateChanged();
return true;
}
else if (DSPConfigureChannelizer::match(cmd))
{
DSPConfigureChannelizer& chan = (DSPConfigureChannelizer&) cmd;
m_requestedOutputSampleRate = chan.getSampleRate();
m_requestedCenterFrequency = chan.getCenterFrequency();
qDebug() << "DownChannelizer::handleMessage: DSPConfigureChannelizer:"
<< " m_requestedOutputSampleRate: " << m_requestedOutputSampleRate
<< " m_requestedCenterFrequency: " << m_requestedCenterFrequency;
applyConfiguration();
return true;
}
else if (BasebandSampleSink::MsgThreadedSink::match(cmd))
{
qDebug() << "DownChannelizer::handleMessage: MsgThreadedSink: forwarded to demod";
return m_sampleSink->handleMessage(cmd); // this message is passed to the demod
}
else
{
qDebug() << "DownChannelizer::handleMessage: " << cmd.getIdentifier() << " unhandled";
return false;
}
}
void DownChannelizer::applyConfiguration()
{
if (m_inputSampleRate == 0)
{
qDebug() << "DownChannelizer::applyConfiguration: m_inputSampleRate=0 aborting";
return;
}
m_mutex.lock();
freeFilterChain();
m_currentCenterFrequency = createFilterChain(
m_inputSampleRate / -2, m_inputSampleRate / 2,
m_requestedCenterFrequency - m_requestedOutputSampleRate / 2, m_requestedCenterFrequency + m_requestedOutputSampleRate / 2);
m_mutex.unlock();
//debugFilterChain();
m_currentOutputSampleRate = m_inputSampleRate / (1 << m_filterStages.size());
qDebug() << "DownChannelizer::applyConfiguration in=" << m_inputSampleRate
<< ", req=" << m_requestedOutputSampleRate
<< ", out=" << m_currentOutputSampleRate
<< ", fc=" << m_currentCenterFrequency;
if (m_sampleSink != 0)
{
MsgChannelizerNotification *notif = MsgChannelizerNotification::create(m_currentOutputSampleRate, m_currentCenterFrequency);
m_sampleSink->getInputMessageQueue()->push(notif);
}
}
#ifdef SDR_RX_SAMPLE_24BIT
DownChannelizer::FilterStage::FilterStage(Mode mode) :
m_filter(new IntHalfbandFilterEO<qint64, qint64, DOWNCHANNELIZER_HB_FILTER_ORDER>),
m_workFunction(0),
m_mode(mode),
m_sse(true)
{
switch(mode) {
case ModeCenter:
m_workFunction = &IntHalfbandFilterEO<qint64, qint64, DOWNCHANNELIZER_HB_FILTER_ORDER>::workDecimateCenter;
break;
case ModeLowerHalf:
m_workFunction = &IntHalfbandFilterEO<qint64, qint64, DOWNCHANNELIZER_HB_FILTER_ORDER>::workDecimateLowerHalf;
break;
case ModeUpperHalf:
m_workFunction = &IntHalfbandFilterEO<qint64, qint64, DOWNCHANNELIZER_HB_FILTER_ORDER>::workDecimateUpperHalf;
break;
}
}
#else
DownChannelizer::FilterStage::FilterStage(Mode mode) :
m_filter(new IntHalfbandFilterEO<qint32, qint32, DOWNCHANNELIZER_HB_FILTER_ORDER>),
m_workFunction(0),
m_mode(mode),
m_sse(true)
{
switch(mode) {
case ModeCenter:
m_workFunction = &IntHalfbandFilterEO<qint32, qint32, DOWNCHANNELIZER_HB_FILTER_ORDER>::workDecimateCenter;
break;
case ModeLowerHalf:
m_workFunction = &IntHalfbandFilterEO<qint32, qint32, DOWNCHANNELIZER_HB_FILTER_ORDER>::workDecimateLowerHalf;
break;
case ModeUpperHalf:
m_workFunction = &IntHalfbandFilterEO<qint32, qint32, DOWNCHANNELIZER_HB_FILTER_ORDER>::workDecimateUpperHalf;
break;
}
}
#endif
DownChannelizer::FilterStage::~FilterStage()
{
delete m_filter;
}
bool DownChannelizer::signalContainsChannel(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) const
{
//qDebug(" testing signal [%f, %f], channel [%f, %f]", sigStart, sigEnd, chanStart, chanEnd);
if(sigEnd <= sigStart)
return false;
if(chanEnd <= chanStart)
return false;
return (sigStart <= chanStart) && (sigEnd >= chanEnd);
}
Real DownChannelizer::createFilterChain(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd)
{
Real sigBw = sigEnd - sigStart;
Real safetyMargin = sigBw / 20;
Real rot = sigBw / 4;
safetyMargin = 0;
//fprintf(stderr, "Channelizer::createFilterChain: ");
//fprintf(stderr, "Signal [%.1f, %.1f] (BW %.1f), Channel [%.1f, %.1f], Rot %.1f, Safety %.1f\n", sigStart, sigEnd, sigBw, chanStart, chanEnd, rot, safetyMargin);
#if 1
// check if it fits into the left half
if(signalContainsChannel(sigStart + safetyMargin, sigStart + sigBw / 2.0 - safetyMargin, chanStart, chanEnd)) {
//fprintf(stderr, "-> take left half (rotate by +1/4 and decimate by 2)\n");
m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf));
return createFilterChain(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd);
}
// check if it fits into the right half
if(signalContainsChannel(sigEnd - sigBw / 2.0f + safetyMargin, sigEnd - safetyMargin, chanStart, chanEnd)) {
//fprintf(stderr, "-> take right half (rotate by -1/4 and decimate by 2)\n");
m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf));
return createFilterChain(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd);
}
// check if it fits into the center
// Was: if(signalContainsChannel(sigStart + rot + safetyMargin, sigStart + rot + sigBw / 2.0f - safetyMargin, chanStart, chanEnd)) {
if(signalContainsChannel(sigStart + rot + safetyMargin, sigEnd - rot - safetyMargin, chanStart, chanEnd)) {
//fprintf(stderr, "-> take center half (decimate by 2)\n");
m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter));
// Was: return createFilterChain(sigStart + rot, sigStart + sigBw / 2.0f + rot, chanStart, chanEnd);
return createFilterChain(sigStart + rot, sigEnd - rot, chanStart, chanEnd);
}
#endif
Real ofs = ((chanEnd - chanStart) / 2.0 + chanStart) - ((sigEnd - sigStart) / 2.0 + sigStart);
//fprintf(stderr, "-> complete (final BW %.1f, frequency offset %.1f)\n", sigBw, ofs);
return ofs;
}
void DownChannelizer::freeFilterChain()
{
for(FilterStages::iterator it = m_filterStages.begin(); it != m_filterStages.end(); ++it)
delete *it;
m_filterStages.clear();
}
void DownChannelizer::debugFilterChain()
{
qDebug("DownChannelizer::debugFilterChain: %lu stages", m_filterStages.size());
for(FilterStages::iterator it = m_filterStages.begin(); it != m_filterStages.end(); ++it)
{
switch ((*it)->m_mode)
{
case FilterStage::ModeCenter:
qDebug("DownChannelizer::debugFilterChain: center %s", (*it)->m_sse ? "sse" : "no_sse");
break;
case FilterStage::ModeLowerHalf:
qDebug("DownChannelizer::debugFilterChain: lower %s", (*it)->m_sse ? "sse" : "no_sse");
break;
case FilterStage::ModeUpperHalf:
qDebug("DownChannelizer::debugFilterChain: upper %s", (*it)->m_sse ? "sse" : "no_sse");
break;
default:
qDebug("DownChannelizer::debugFilterChain: none %s", (*it)->m_sse ? "sse" : "no_sse");
break;
}
}
}