mirror of
https://github.com/f4exb/sdrangel.git
synced 2024-11-27 10:19:15 -05:00
392 lines
10 KiB
C++
392 lines
10 KiB
C++
#ifndef INCLUDE_KISSFFT_H
|
|
#define INCLUDE_KISSFFT_H
|
|
|
|
#include <complex>
|
|
#include <vector>
|
|
|
|
/*
|
|
Copyright (c) 2003-2010 Mark Borgerding
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
* Neither the author nor the names of any contributors may be used to
|
|
endorse or promote products derived from this software without
|
|
specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
namespace kissfft_utils {
|
|
|
|
template<typename T_scalar, typename T_complex>
|
|
struct traits {
|
|
typedef T_scalar scalar_type;
|
|
typedef T_complex cpx_type;
|
|
void fill_twiddles(std::complex<T_scalar>* dst, int nfft, bool inverse)
|
|
{
|
|
T_scalar phinc = (inverse ? 2 : -2) * acos((T_scalar)-1) / nfft;
|
|
for(int i = 0; i < nfft; ++i)
|
|
dst[i] = exp(std::complex<T_scalar>(0, i * phinc));
|
|
}
|
|
|
|
void prepare(std::vector<std::complex<T_scalar> >& dst, int nfft, bool inverse, std::vector<int>& stageRadix, std::vector<int>& stageRemainder)
|
|
{
|
|
_twiddles.resize(nfft);
|
|
fill_twiddles(&_twiddles[0], nfft, inverse);
|
|
dst = _twiddles;
|
|
|
|
//factorize
|
|
//start factoring out 4's, then 2's, then 3,5,7,9,...
|
|
int n = nfft;
|
|
int p = 4;
|
|
do {
|
|
while(n % p) {
|
|
switch(p) {
|
|
case 4:
|
|
p = 2;
|
|
break;
|
|
case 2:
|
|
p = 3;
|
|
break;
|
|
default:
|
|
p += 2;
|
|
break;
|
|
}
|
|
if(p * p > n)
|
|
p = n;// no more factors
|
|
}
|
|
n /= p;
|
|
stageRadix.push_back(p);
|
|
stageRemainder.push_back(n);
|
|
} while(n > 1);
|
|
}
|
|
std::vector<cpx_type> _twiddles;
|
|
|
|
const cpx_type twiddle(int i)
|
|
{
|
|
return _twiddles[i];
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
template<typename T_Scalar, typename T_Complex, typename T_traits = kissfft_utils::traits<T_Scalar, T_Complex> >
|
|
class kissfft {
|
|
public:
|
|
typedef T_traits traits_type;
|
|
typedef typename traits_type::scalar_type scalar_type;
|
|
typedef typename traits_type::cpx_type cpx_type;
|
|
|
|
kissfft()
|
|
{
|
|
}
|
|
|
|
kissfft(int nfft, bool inverse, const traits_type & traits = traits_type()) :
|
|
_nfft(nfft), _inverse(inverse), _traits(traits)
|
|
{
|
|
_traits.prepare(_twiddles, _nfft, _inverse, _stageRadix, _stageRemainder);
|
|
}
|
|
|
|
void configure(int nfft, bool inverse, const traits_type & traits = traits_type())
|
|
{
|
|
_twiddles.clear();
|
|
_stageRadix.clear();
|
|
_stageRemainder.clear();
|
|
|
|
_nfft = nfft;
|
|
_inverse = inverse;
|
|
_traits = traits;
|
|
_traits.prepare(_twiddles, _nfft, _inverse, _stageRadix, _stageRemainder);
|
|
}
|
|
|
|
void transform(const cpx_type* src, cpx_type* dst)
|
|
{
|
|
kf_work(0, dst, src, 1, 1);
|
|
}
|
|
|
|
private:
|
|
void kf_work(int stage, cpx_type* Fout, const cpx_type* f, size_t fstride, size_t in_stride)
|
|
{
|
|
int p = _stageRadix[stage];
|
|
int m = _stageRemainder[stage];
|
|
cpx_type * Fout_beg = Fout;
|
|
cpx_type * Fout_end = Fout + p * m;
|
|
|
|
if(m == 1) {
|
|
do {
|
|
*Fout = *f;
|
|
f += fstride * in_stride;
|
|
} while(++Fout != Fout_end);
|
|
} else {
|
|
do {
|
|
// recursive call:
|
|
// DFT of size m*p performed by doing
|
|
// p instances of smaller DFTs of size m,
|
|
// each one takes a decimated version of the input
|
|
kf_work(stage + 1, Fout, f, fstride * p, in_stride);
|
|
f += fstride * in_stride;
|
|
} while((Fout += m) != Fout_end);
|
|
}
|
|
|
|
Fout = Fout_beg;
|
|
|
|
// recombine the p smaller DFTs
|
|
switch(p) {
|
|
case 2:
|
|
kf_bfly2(Fout, fstride, m);
|
|
break;
|
|
case 3:
|
|
kf_bfly3(Fout, fstride, m);
|
|
break;
|
|
case 4:
|
|
kf_bfly4(Fout, fstride, m);
|
|
break;
|
|
case 5:
|
|
kf_bfly5(Fout, fstride, m);
|
|
break;
|
|
default:
|
|
kf_bfly_generic(Fout, fstride, m, p);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// these were #define macros in the original kiss_fft
|
|
void C_ADD(cpx_type& c, const cpx_type& a, const cpx_type& b)
|
|
{
|
|
c = a + b;
|
|
}
|
|
void C_MUL(cpx_type& c, const cpx_type& a, const cpx_type& b)
|
|
{
|
|
//c = a * b;
|
|
c = cpx_type(a.real() * b.real() - a.imag() * b.imag(), a.real() * b.imag() + a.imag() * b.real());
|
|
}
|
|
void C_SUB(cpx_type& c, const cpx_type& a, const cpx_type& b)
|
|
{
|
|
c = a - b;
|
|
}
|
|
void C_ADDTO(cpx_type& c, const cpx_type& a)
|
|
{
|
|
c += a;
|
|
}
|
|
void C_FIXDIV(cpx_type&, int)
|
|
{
|
|
} // NO-OP for float types
|
|
scalar_type S_MUL(const scalar_type& a, const scalar_type& b)
|
|
{
|
|
return a * b;
|
|
}
|
|
scalar_type HALF_OF(const scalar_type& a)
|
|
{
|
|
return a * .5;
|
|
}
|
|
void C_MULBYSCALAR(cpx_type& c, const scalar_type& a)
|
|
{
|
|
c *= a;
|
|
}
|
|
|
|
void kf_bfly2(cpx_type* Fout, const size_t fstride, int m)
|
|
{
|
|
for(int k = 0; k < m; ++k) {
|
|
//cpx_type t = Fout[m + k] * _traits.twiddle(k * fstride);
|
|
cpx_type t;
|
|
C_MUL(t, Fout[m + k], _traits.twiddle(k * fstride));
|
|
Fout[m + k] = Fout[k] - t;
|
|
Fout[k] += t;
|
|
}
|
|
}
|
|
|
|
void kf_bfly4(cpx_type* Fout, const size_t fstride, const size_t m)
|
|
{
|
|
cpx_type scratch[7];
|
|
int negative_if_inverse = _inverse * -2 + 1;
|
|
for(size_t k = 0; k < m; ++k) {
|
|
//scratch[0] = Fout[k + m] * _traits.twiddle(k * fstride);
|
|
C_MUL(scratch[0], Fout[k + m], _traits.twiddle(k * fstride));
|
|
C_MUL(scratch[1], Fout[k + 2 * m], _traits.twiddle(k * fstride * 2));
|
|
C_MUL(scratch[2], Fout[k + 3 * m], _traits.twiddle(k * fstride * 3));
|
|
scratch[5] = Fout[k] - scratch[1];
|
|
|
|
Fout[k] += scratch[1];
|
|
scratch[3] = scratch[0] + scratch[2];
|
|
scratch[4] = scratch[0] - scratch[2];
|
|
scratch[4] = cpx_type(scratch[4].imag() * negative_if_inverse, -scratch[4].real() * negative_if_inverse);
|
|
|
|
Fout[k + 2 * m] = Fout[k] - scratch[3];
|
|
Fout[k] += scratch[3];
|
|
Fout[k + m] = scratch[5] + scratch[4];
|
|
Fout[k + 3 * m] = scratch[5] - scratch[4];
|
|
}
|
|
}
|
|
|
|
void kf_bfly3(cpx_type* Fout, const size_t fstride, const size_t m)
|
|
{
|
|
size_t k = m;
|
|
const size_t m2 = 2 * m;
|
|
cpx_type* tw1;
|
|
cpx_type* tw2;
|
|
cpx_type scratch[5];
|
|
cpx_type epi3;
|
|
epi3 = _twiddles[fstride * m];
|
|
tw1 = tw2 = &_twiddles[0];
|
|
|
|
do {
|
|
C_FIXDIV(*Fout, 3);
|
|
C_FIXDIV(Fout[m], 3);
|
|
C_FIXDIV(Fout[m2], 3);
|
|
|
|
C_MUL(scratch[1], Fout[m], *tw1);
|
|
C_MUL(scratch[2], Fout[m2], *tw2);
|
|
|
|
C_ADD(scratch[3], scratch[1], scratch[2]);
|
|
C_SUB(scratch[0], scratch[1], scratch[2]);
|
|
tw1 += fstride;
|
|
tw2 += fstride * 2;
|
|
|
|
Fout[m] = cpx_type(Fout->real() - HALF_OF(scratch[3].real()), Fout->imag() - HALF_OF(scratch[3].imag()));
|
|
|
|
C_MULBYSCALAR(scratch[0], epi3.imag());
|
|
|
|
C_ADDTO(*Fout, scratch[3]);
|
|
|
|
Fout[m2] = cpx_type(Fout[m].real() + scratch[0].imag(), Fout[m].imag() - scratch[0].real());
|
|
|
|
C_ADDTO(Fout[m], cpx_type(-scratch[0].imag(), scratch[0].real()));
|
|
++Fout;
|
|
} while(--k);
|
|
}
|
|
|
|
void kf_bfly5(cpx_type* Fout, const size_t fstride, const size_t m)
|
|
{
|
|
cpx_type* Fout0;
|
|
cpx_type* Fout1;
|
|
cpx_type* Fout2;
|
|
cpx_type* Fout3;
|
|
cpx_type* Fout4;
|
|
size_t u;
|
|
cpx_type scratch[13];
|
|
cpx_type* twiddles = &_twiddles[0];
|
|
cpx_type* tw;
|
|
cpx_type ya, yb;
|
|
ya = twiddles[fstride * m];
|
|
yb = twiddles[fstride * 2 * m];
|
|
|
|
Fout0 = Fout;
|
|
Fout1 = Fout0 + m;
|
|
Fout2 = Fout0 + 2 * m;
|
|
Fout3 = Fout0 + 3 * m;
|
|
Fout4 = Fout0 + 4 * m;
|
|
|
|
tw = twiddles;
|
|
for(u = 0; u < m; ++u) {
|
|
C_FIXDIV(*Fout0, 5);
|
|
C_FIXDIV(*Fout1, 5);
|
|
C_FIXDIV(*Fout2, 5);
|
|
C_FIXDIV(*Fout3, 5);
|
|
C_FIXDIV(*Fout4, 5);
|
|
scratch[0] = *Fout0;
|
|
|
|
C_MUL(scratch[1], *Fout1, tw[u * fstride]);
|
|
C_MUL(scratch[2], *Fout2, tw[2 * u * fstride]);
|
|
C_MUL(scratch[3], *Fout3, tw[3 * u * fstride]);
|
|
C_MUL(scratch[4], *Fout4, tw[4 * u * fstride]);
|
|
|
|
C_ADD(scratch[7], scratch[1], scratch[4]);
|
|
C_SUB(scratch[10], scratch[1], scratch[4]);
|
|
C_ADD(scratch[8], scratch[2], scratch[3]);
|
|
C_SUB(scratch[9], scratch[2], scratch[3]);
|
|
|
|
C_ADDTO(*Fout0, scratch[7]);
|
|
C_ADDTO(*Fout0, scratch[8]);
|
|
|
|
scratch[5] = scratch[0] + cpx_type(S_MUL(scratch[7].real(), ya.real()) + S_MUL(scratch[8].real(), yb.real()), S_MUL(scratch[7].imag(), ya.real())
|
|
+ S_MUL(scratch[8].imag(), yb.real()));
|
|
|
|
scratch[6] = cpx_type(S_MUL(scratch[10].imag(), ya.imag()) + S_MUL(scratch[9].imag(), yb.imag()), -S_MUL(scratch[10].real(), ya.imag()) - S_MUL(
|
|
scratch[9].real(), yb.imag()));
|
|
|
|
C_SUB(*Fout1, scratch[5], scratch[6]);
|
|
C_ADD(*Fout4, scratch[5], scratch[6]);
|
|
|
|
scratch[11] = scratch[0] + cpx_type(S_MUL(scratch[7].real(), yb.real()) + S_MUL(scratch[8].real(), ya.real()), S_MUL(scratch[7].imag(), yb.real())
|
|
+ S_MUL(scratch[8].imag(), ya.real()));
|
|
|
|
scratch[12] = cpx_type(-S_MUL(scratch[10].imag(), yb.imag()) + S_MUL(scratch[9].imag(), ya.imag()), S_MUL(scratch[10].real(), yb.imag()) - S_MUL(
|
|
scratch[9].real(), ya.imag()));
|
|
|
|
C_ADD(*Fout2, scratch[11], scratch[12]);
|
|
C_SUB(*Fout3, scratch[11], scratch[12]);
|
|
|
|
++Fout0;
|
|
++Fout1;
|
|
++Fout2;
|
|
++Fout3;
|
|
++Fout4;
|
|
}
|
|
}
|
|
|
|
/* perform the butterfly for one stage of a mixed radix FFT */
|
|
void kf_bfly_generic(cpx_type* Fout, const size_t fstride, int m, int p)
|
|
{
|
|
int u;
|
|
int k;
|
|
int q1;
|
|
int q;
|
|
cpx_type* twiddles = &_twiddles[0];
|
|
cpx_type t;
|
|
int Norig = _nfft;
|
|
cpx_type* scratchbuf = new cpx_type[p];
|
|
|
|
for(u = 0; u < m; ++u) {
|
|
k = u;
|
|
for(q1 = 0; q1 < p; ++q1) {
|
|
scratchbuf[q1] = Fout[k];
|
|
C_FIXDIV(scratchbuf[q1], p);
|
|
k += m;
|
|
}
|
|
|
|
k = u;
|
|
for(q1 = 0; q1 < p; ++q1) {
|
|
int twidx = 0;
|
|
Fout[k] = scratchbuf[0];
|
|
for(q = 1; q < p; ++q) {
|
|
twidx += fstride * k;
|
|
if(twidx >= Norig)
|
|
twidx -= Norig;
|
|
C_MUL(t, scratchbuf[q], twiddles[twidx]);
|
|
C_ADDTO(Fout[k], t);
|
|
}
|
|
k += m;
|
|
}
|
|
}
|
|
|
|
delete[] scratchbuf;
|
|
}
|
|
|
|
int _nfft;
|
|
bool _inverse;
|
|
std::vector<cpx_type> _twiddles;
|
|
std::vector<int> _stageRadix;
|
|
std::vector<int> _stageRemainder;
|
|
traits_type _traits;
|
|
};
|
|
#endif
|