1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-12-25 20:22:10 -05:00
sdrangel/plugins/samplesink/limesdroutput/limesdroutput.cpp

979 lines
35 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QMutexLocker>
#include <QDebug>
#include <cstddef>
#include <string.h>
#include "lime/LimeSuite.h"
#include "device/devicesourceapi.h"
#include "device/devicesinkapi.h"
#include "dsp/dspcommands.h"
#include "limesdroutputthread.h"
#include "limesdr/devicelimesdrparam.h"
#include "limesdr/devicelimesdr.h"
#include "limesdroutput.h"
MESSAGE_CLASS_DEFINITION(LimeSDROutput::MsgConfigureLimeSDR, Message)
MESSAGE_CLASS_DEFINITION(LimeSDROutput::MsgGetStreamInfo, Message)
MESSAGE_CLASS_DEFINITION(LimeSDROutput::MsgGetDeviceInfo, Message)
MESSAGE_CLASS_DEFINITION(LimeSDROutput::MsgSetReferenceConfig, Message)
MESSAGE_CLASS_DEFINITION(LimeSDROutput::MsgReportLimeSDRToGUI, Message)
MESSAGE_CLASS_DEFINITION(LimeSDROutput::MsgReportStreamInfo, Message)
LimeSDROutput::LimeSDROutput(DeviceSinkAPI *deviceAPI) :
m_deviceAPI(deviceAPI),
m_settings(),
m_limeSDROutputThread(0),
m_deviceDescription(),
m_running(false),
m_firstConfig(true),
m_channelAcquired(false)
{
m_streamId.handle = 0;
suspendBuddies();
openDevice();
resumeBuddies();
}
LimeSDROutput::~LimeSDROutput()
{
if (m_running) stop();
suspendBuddies();
closeDevice();
resumeBuddies();
}
bool LimeSDROutput::openDevice()
{
// look for Tx buddies and get reference to common parameters
// if there is a channel left take the first available
if (m_deviceAPI->getSinkBuddies().size() > 0) // look sink sibling first
{
qDebug("LimeSDROutput::openDevice: look in Ix buddies");
DeviceSinkAPI *sinkBuddy = m_deviceAPI->getSinkBuddies()[0];
m_deviceShared = *((DeviceLimeSDRShared *) sinkBuddy->getBuddySharedPtr()); // copy shared data
DeviceLimeSDRParams *deviceParams = m_deviceShared.m_deviceParams; // get device parameters
if (deviceParams == 0)
{
qCritical("LimeSDROutput::openDevice: cannot get device parameters from Tx buddy");
return false; // the device params should have been created by the buddy
}
else
{
qDebug("LimeSDROutput::openDevice: getting device parameters from Tx buddy");
}
if (m_deviceAPI->getSinkBuddies().size() == deviceParams->m_nbTxChannels)
{
qCritical("LimeSDROutput::openDevice: no more Tx channels available in device");
return false; // no more Tx channels available in device
}
else
{
qDebug("LimeSDROutput::openDevice: at least one more Tx channel is available in device");
}
// look for unused channel number
char *busyChannels = new char[deviceParams->m_nbTxChannels];
memset(busyChannels, 0, deviceParams->m_nbTxChannels);
for (unsigned int i = 0; i < m_deviceAPI->getSinkBuddies().size(); i++)
{
DeviceSinkAPI *buddy = m_deviceAPI->getSinkBuddies()[i];
DeviceLimeSDRShared *buddyShared = (DeviceLimeSDRShared *) buddy->getBuddySharedPtr();
if (buddyShared->m_channel >= 0) {
busyChannels[buddyShared->m_channel] = 1;
}
}
std::size_t ch = 0;
for (;ch < deviceParams->m_nbTxChannels; ch++)
{
if (busyChannels[ch] == 0) {
break; // first available is the good one
}
}
m_deviceShared.m_channel = ch;
delete[] busyChannels;
}
// look for Rx buddies and get reference to common parameters
// take the first Rx channel
else if (m_deviceAPI->getSourceBuddies().size() > 0) // then source
{
qDebug("LimeSDROutput::openDevice: look in Rx buddies");
DeviceSourceAPI *sourceBuddy = m_deviceAPI->getSourceBuddies()[0];
m_deviceShared = *((DeviceLimeSDRShared *) sourceBuddy->getBuddySharedPtr()); // copy parameters
if (m_deviceShared.m_deviceParams == 0)
{
qCritical("LimeSDROutput::openDevice: cannot get device parameters from Rx buddy");
return false; // the device params should have been created by the buddy
}
else
{
qDebug("LimeSDROutput::openDevice: getting device parameters from Rx buddy");
}
m_deviceShared.m_channel = 0; // take first channel
}
// There are no buddies then create the first LimeSDR common parameters
// open the device this will also populate common fields
// take the first Tx channel
else
{
qDebug("LimeSDROutput::openDevice: open device here");
m_deviceShared.m_deviceParams = new DeviceLimeSDRParams();
char serial[256];
strcpy(serial, qPrintable(m_deviceAPI->getSampleSinkSerial()));
m_deviceShared.m_deviceParams->open(serial);
m_deviceShared.m_channel = 0; // take first channel
}
m_deviceAPI->setBuddySharedPtr(&m_deviceShared); // propagate common parameters to API
return true;
}
void LimeSDROutput::suspendBuddies()
{
// suspend Tx buddy's threads
for (unsigned int i = 0; i < m_deviceAPI->getSinkBuddies().size(); i++)
{
DeviceSinkAPI *buddy = m_deviceAPI->getSinkBuddies()[i];
DeviceLimeSDRShared *buddyShared = (DeviceLimeSDRShared *) buddy->getBuddySharedPtr();
if (buddyShared->m_thread) {
buddyShared->m_thread->stopWork();
}
}
// suspend Rx buddy's threads
for (unsigned int i = 0; i < m_deviceAPI->getSourceBuddies().size(); i++)
{
DeviceSourceAPI *buddy = m_deviceAPI->getSourceBuddies()[i];
DeviceLimeSDRShared *buddyShared = (DeviceLimeSDRShared *) buddy->getBuddySharedPtr();
if (buddyShared->m_thread) {
buddyShared->m_thread->stopWork();
}
}
}
void LimeSDROutput::resumeBuddies()
{
// resume Tx buddy's threads
for (unsigned int i = 0; i < m_deviceAPI->getSinkBuddies().size(); i++)
{
DeviceSinkAPI *buddy = m_deviceAPI->getSinkBuddies()[i];
DeviceLimeSDRShared *buddyShared = (DeviceLimeSDRShared *) buddy->getBuddySharedPtr();
if (buddyShared->m_thread) {
buddyShared->m_thread->startWork();
}
}
// resume Rx buddy's threads
for (unsigned int i = 0; i < m_deviceAPI->getSourceBuddies().size(); i++)
{
DeviceSourceAPI *buddy = m_deviceAPI->getSourceBuddies()[i];
DeviceLimeSDRShared *buddyShared = (DeviceLimeSDRShared *) buddy->getBuddySharedPtr();
if (buddyShared->m_thread) {
buddyShared->m_thread->startWork();
}
}
}
void LimeSDROutput::closeDevice()
{
if (m_deviceShared.m_deviceParams->getDevice() == 0) { // was never open
return;
}
if (m_running) stop();
// No buddies so effectively close the device
if ((m_deviceAPI->getSourceBuddies().size() == 0) && (m_deviceAPI->getSinkBuddies().size() == 0))
{
m_deviceShared.m_deviceParams->close();
delete m_deviceShared.m_deviceParams;
m_deviceShared.m_deviceParams = 0;
}
m_deviceShared.m_channel = -1; // effectively release the channel for the possible buddies
}
bool LimeSDROutput::acquireChannel()
{
// acquire the channel
if (LMS_EnableChannel(m_deviceShared.m_deviceParams->getDevice(), LMS_CH_TX, m_deviceShared.m_channel, true) != 0)
{
qCritical("LimeSDROutput::acquireChannel: cannot enable Tx channel %d", m_deviceShared.m_channel);
return false;
}
else
{
qDebug("LimeSDROutput::acquireChannel: Tx channel %d enabled", m_deviceShared.m_channel);
}
// set up the stream
m_streamId.channel = m_deviceShared.m_channel; // channel number
m_streamId.fifoSize = 512 * 1024; // fifo size in samples (SR / 10 take ~5MS/s)
m_streamId.throughputVsLatency = 0.0; // optimize for min latency
m_streamId.isTx = true; // TX channel
m_streamId.dataFmt = lms_stream_t::LMS_FMT_I12; // 12-bit integers
if (LMS_SetupStream(m_deviceShared.m_deviceParams->getDevice(), &m_streamId) != 0)
{
qCritical("LimeSDROutput::acquireChannel: cannot setup the stream on Tx channel %d", m_deviceShared.m_channel);
return false;
}
else
{
qDebug("LimeSDROutput::acquireChannel: stream set up on Tx channel %d", m_deviceShared.m_channel);
}
m_channelAcquired = true;
return true;
}
void LimeSDROutput::releaseChannel()
{
// destroy the stream
LMS_DestroyStream(m_deviceShared.m_deviceParams->getDevice(), &m_streamId);
m_streamId.handle = 0;
// release the channel
if (LMS_EnableChannel(m_deviceShared.m_deviceParams->getDevice(), LMS_CH_TX, m_deviceShared.m_channel, false) != 0)
{
qWarning("LimeSDROutput::releaseChannel: cannot disable Tx channel %d", m_deviceShared.m_channel);
}
m_channelAcquired = false;
}
bool LimeSDROutput::start()
{
if (!m_deviceShared.m_deviceParams->getDevice()) {
return false;
}
if (m_running) stop();
if (!acquireChannel())
{
return false;
}
applySettings(m_settings, true);
// start / stop streaming is done in the thread.
if ((m_limeSDROutputThread = new LimeSDROutputThread(&m_streamId, &m_sampleSourceFifo)) == 0)
{
qFatal("LimeSDROutput::start: cannot create thread");
stop();
return false;
}
else
{
qDebug("LimeSDROutput::start: thread created");
}
m_limeSDROutputThread->setLog2Interpolation(m_settings.m_log2SoftInterp);
m_limeSDROutputThread->startWork();
m_deviceShared.m_thread = m_limeSDROutputThread;
m_running = true;
return true;
}
void LimeSDROutput::stop()
{
if (m_limeSDROutputThread != 0)
{
m_limeSDROutputThread->stopWork();
delete m_limeSDROutputThread;
m_limeSDROutputThread = 0;
}
m_deviceShared.m_thread = 0;
m_running = false;
releaseChannel();
}
const QString& LimeSDROutput::getDeviceDescription() const
{
return m_deviceDescription;
}
int LimeSDROutput::getSampleRate() const
{
int rate = m_settings.m_devSampleRate;
return (rate / (1<<m_settings.m_log2SoftInterp));
}
quint64 LimeSDROutput::getCenterFrequency() const
{
return m_settings.m_centerFrequency;
}
std::size_t LimeSDROutput::getChannelIndex()
{
return m_deviceShared.m_channel;
}
void LimeSDROutput::getLORange(float& minF, float& maxF, float& stepF) const
{
lms_range_t range = m_deviceShared.m_deviceParams->m_loRangeTx;
minF = range.min;
maxF = range.max;
stepF = range.step;
qDebug("LimeSDROutput::getLORange: min: %f max: %f step: %f", range.min, range.max, range.step);
}
void LimeSDROutput::getSRRange(float& minF, float& maxF, float& stepF) const
{
lms_range_t range = m_deviceShared.m_deviceParams->m_srRangeTx;
minF = range.min;
maxF = range.max;
stepF = range.step;
qDebug("LimeSDROutput::getSRRange: min: %f max: %f step: %f", range.min, range.max, range.step);
}
void LimeSDROutput::getLPRange(float& minF, float& maxF, float& stepF) const
{
lms_range_t range = m_deviceShared.m_deviceParams->m_lpfRangeTx;
minF = range.min;
maxF = range.max;
stepF = range.step;
qDebug("LimeSDROutput::getLPRange: min: %f max: %f step: %f", range.min, range.max, range.step);
}
uint32_t LimeSDROutput::getHWLog2Interp() const
{
return m_deviceShared.m_deviceParams->m_log2OvSRTx;
}
bool LimeSDROutput::handleMessage(const Message& message)
{
if (MsgConfigureLimeSDR::match(message))
{
MsgConfigureLimeSDR& conf = (MsgConfigureLimeSDR&) message;
qDebug() << "LimeSDROutput::handleMessage: MsgConfigureLimeSDR";
if (!applySettings(conf.getSettings(), m_firstConfig))
{
qDebug("LimeSDROutput::handleMessage config error");
}
else
{
m_firstConfig = false;
}
return true;
}
else if (MsgSetReferenceConfig::match(message))
{
MsgSetReferenceConfig& conf = (MsgSetReferenceConfig&) message;
qDebug() << "LimeSDROutput::handleMessage: MsgSetReferenceConfig";
m_settings = conf.getSettings();
m_deviceShared.m_ncoFrequency = m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0; // for buddies
m_deviceShared.m_centerFrequency = m_settings.m_centerFrequency; // for buddies
return true;
}
else if (MsgGetStreamInfo::match(message))
{
// qDebug() << "LimeSDROutput::handleMessage: MsgGetStreamInfo";
lms_stream_status_t status;
if (m_streamId.handle && (LMS_GetStreamStatus(&m_streamId, &status) == 0))
{
MsgReportStreamInfo *report = MsgReportStreamInfo::create(
true, // Success
status.active,
status.fifoFilledCount,
status.fifoSize,
status.underrun,
status.overrun,
status.droppedPackets,
status.sampleRate,
status.linkRate,
status.timestamp);
m_deviceAPI->getDeviceOutputMessageQueue()->push(report);
}
else
{
MsgReportStreamInfo *report = MsgReportStreamInfo::create(
false, // Success
false, // status.active,
0, // status.fifoFilledCount,
16384, // status.fifoSize,
0, // status.underrun,
0, // status.overrun,
0, // status.droppedPackets,
0, // status.sampleRate,
0, // status.linkRate,
0); // status.timestamp);
m_deviceAPI->getDeviceOutputMessageQueue()->push(report);
}
return true;
}
else if (MsgGetDeviceInfo::match(message))
{
double temp = 0.0;
if (m_deviceShared.m_deviceParams->getDevice() && (LMS_GetChipTemperature(m_deviceShared.m_deviceParams->getDevice(), 0, &temp) == 0))
{
//qDebug("LimeSDROutput::handleMessage: MsgGetDeviceInfo: temperature: %f", temp);
}
else
{
qDebug("LimeSDROutput::handleMessage: MsgGetDeviceInfo: cannot get temperature");
}
// send to oneself
DeviceLimeSDRShared::MsgReportDeviceInfo *report = DeviceLimeSDRShared::MsgReportDeviceInfo::create(temp);
m_deviceAPI->getDeviceOutputMessageQueue()->push(report);
// send to source buddies
const std::vector<DeviceSourceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceSourceAPI*>::const_iterator itSource = sourceBuddies.begin();
for (; itSource != sourceBuddies.end(); ++itSource)
{
DeviceLimeSDRShared::MsgReportDeviceInfo *report = DeviceLimeSDRShared::MsgReportDeviceInfo::create(temp);
(*itSource)->getDeviceOutputMessageQueue()->push(report);
}
// send to sink buddies
const std::vector<DeviceSinkAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceSinkAPI*>::const_iterator itSink = sinkBuddies.begin();
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceLimeSDRShared::MsgReportDeviceInfo *report = DeviceLimeSDRShared::MsgReportDeviceInfo::create(temp);
(*itSink)->getDeviceOutputMessageQueue()->push(report);
}
return true;
}
else
{
return false;
}
}
bool LimeSDROutput::applySettings(const LimeSDROutputSettings& settings, bool force)
{
bool forwardChangeOwnDSP = false;
bool forwardChangeTxDSP = false;
bool forwardChangeAllDSP = false;
bool suspendOwnThread = false;
bool ownThreadWasRunning = false;
bool suspendTxThread = false;
bool suspendAllThread = false;
bool doCalibration = false;
bool forceNCOFrequency = false;
// QMutexLocker mutexLocker(&m_mutex);
// determine if buddies threads or own thread need to be suspended
if ((m_settings.m_devSampleRate != settings.m_devSampleRate) || force)
{
suspendAllThread = true;
}
if ((m_settings.m_log2HardInterp != settings.m_log2HardInterp) ||
(m_settings.m_centerFrequency != settings.m_centerFrequency) || force)
{
suspendTxThread = true;
}
if ((m_settings.m_gain != settings.m_gain) ||
(m_settings.m_lpfBW != settings.m_lpfBW) ||
(m_settings.m_lpfFIRBW != settings.m_lpfFIRBW) ||
(m_settings.m_lpfFIREnable != settings.m_lpfFIREnable) ||
(m_settings.m_ncoEnable != settings.m_ncoEnable) ||
(m_settings.m_ncoFrequency != settings.m_ncoFrequency) ||
(m_settings.m_log2SoftInterp != settings.m_log2SoftInterp) || force)
{
suspendOwnThread = true;
}
// suspend buddies threads or own thread
if (suspendAllThread)
{
const std::vector<DeviceSourceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceSourceAPI*>::const_iterator itSource = sourceBuddies.begin();
for (; itSource != sourceBuddies.end(); ++itSource)
{
DeviceLimeSDRShared *buddySharedPtr = (DeviceLimeSDRShared *) (*itSource)->getBuddySharedPtr();
if (buddySharedPtr->m_thread && buddySharedPtr->m_thread->isRunning())
{
buddySharedPtr->m_thread->stopWork();
buddySharedPtr->m_threadWasRunning = true;
}
else
{
buddySharedPtr->m_threadWasRunning = false;
}
}
const std::vector<DeviceSinkAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceSinkAPI*>::const_iterator itSink = sinkBuddies.begin();
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceLimeSDRShared *buddySharedPtr = (DeviceLimeSDRShared *) (*itSink)->getBuddySharedPtr();
if (buddySharedPtr->m_thread && buddySharedPtr->m_thread->isRunning())
{
buddySharedPtr->m_thread->stopWork();
buddySharedPtr->m_threadWasRunning = true;
}
else
{
buddySharedPtr->m_threadWasRunning = false;
}
}
if (m_limeSDROutputThread && m_limeSDROutputThread->isRunning())
{
m_limeSDROutputThread->stopWork();
ownThreadWasRunning = true;
}
}
else if (suspendTxThread)
{
const std::vector<DeviceSinkAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceSinkAPI*>::const_iterator itSink = sinkBuddies.begin();
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceLimeSDRShared *buddySharedPtr = (DeviceLimeSDRShared *) (*itSink)->getBuddySharedPtr();
if (buddySharedPtr->m_thread) {
buddySharedPtr->m_thread->stopWork();
}
}
if (m_limeSDROutputThread && m_limeSDROutputThread->isRunning())
{
m_limeSDROutputThread->stopWork();
ownThreadWasRunning = true;
}
}
else if (suspendOwnThread)
{
if (m_limeSDROutputThread && m_limeSDROutputThread->isRunning())
{
m_limeSDROutputThread->stopWork();
ownThreadWasRunning = true;
}
}
// apply settings
if ((m_settings.m_gain != settings.m_gain) || force)
{
if (m_deviceShared.m_deviceParams->getDevice() != 0 && m_channelAcquired)
{
if (LMS_SetGaindB(m_deviceShared.m_deviceParams->getDevice(),
LMS_CH_TX,
m_deviceShared.m_channel,
settings.m_gain) < 0)
{
qDebug("LimeSDROutput::applySettings: LMS_SetGaindB() failed");
}
else
{
//doCalibration = true;
qDebug() << "LimeSDROutput::applySettings: Gain set to " << settings.m_gain;
}
}
}
if ((m_settings.m_devSampleRate != settings.m_devSampleRate)
|| (m_settings.m_log2HardInterp != settings.m_log2HardInterp) || force)
{
forwardChangeTxDSP = m_settings.m_log2HardInterp != settings.m_log2HardInterp;
forwardChangeAllDSP = m_settings.m_devSampleRate != settings.m_devSampleRate;
if (m_deviceShared.m_deviceParams->getDevice() != 0)
{
if (LMS_SetSampleRateDir(m_deviceShared.m_deviceParams->getDevice(),
LMS_CH_TX,
settings.m_devSampleRate,
1<<settings.m_log2HardInterp) < 0)
{
qCritical("LimeSDROutput::applySettings: could not set sample rate to %d with oversampling of %d",
settings.m_devSampleRate,
1<<settings.m_log2HardInterp);
}
else
{
m_deviceShared.m_deviceParams->m_log2OvSRTx = settings.m_log2HardInterp;
m_deviceShared.m_deviceParams->m_sampleRate = settings.m_devSampleRate;
doCalibration = true;
forceNCOFrequency = true;
qDebug("LimeSDROutput::applySettings: set sample rate set to %d with oversampling of %d",
settings.m_devSampleRate,
1<<settings.m_log2HardInterp);
}
}
}
if ((m_settings.m_devSampleRate != settings.m_devSampleRate)
|| (m_settings.m_log2SoftInterp != settings.m_log2SoftInterp) || force)
{
int fifoSize = std::max(
(int) ((settings.m_devSampleRate/(1<<settings.m_log2SoftInterp)) * DeviceLimeSDRShared::m_sampleFifoLengthInSeconds),
DeviceLimeSDRShared::m_sampleFifoMinSize);
m_sampleSourceFifo.resize(fifoSize);
}
if ((m_settings.m_lpfBW != settings.m_lpfBW) || force)
{
if (m_deviceShared.m_deviceParams->getDevice() != 0 && m_channelAcquired)
{
if (LMS_SetLPFBW(m_deviceShared.m_deviceParams->getDevice(),
LMS_CH_TX,
m_deviceShared.m_channel,
settings.m_lpfBW) < 0)
{
qCritical("LimeSDROutput::applySettings: could not set LPF to %f Hz", settings.m_lpfBW);
}
else
{
doCalibration = true;
qDebug("LimeSDROutput::applySettings: LPF set to %f Hz", settings.m_lpfBW);
}
}
}
if ((m_settings.m_lpfFIRBW != settings.m_lpfFIRBW) ||
(m_settings.m_lpfFIREnable != settings.m_lpfFIREnable) || force)
{
if (m_deviceShared.m_deviceParams->getDevice() != 0 && m_channelAcquired)
{
if (LMS_SetGFIRLPF(m_deviceShared.m_deviceParams->getDevice(),
LMS_CH_TX,
m_deviceShared.m_channel,
settings.m_lpfFIREnable,
settings.m_lpfFIRBW) < 0)
{
qCritical("LimeSDROutput::applySettings: could %s and set LPF FIR to %f Hz",
settings.m_lpfFIREnable ? "enable" : "disable",
settings.m_lpfFIRBW);
}
else
{
doCalibration = true;
qDebug("LimeSDROutput::applySettings: %sd and set LPF FIR to %f Hz",
settings.m_lpfFIREnable ? "enable" : "disable",
settings.m_lpfFIRBW);
}
}
}
if ((m_settings.m_ncoFrequency != settings.m_ncoFrequency) ||
(m_settings.m_ncoEnable != settings.m_ncoEnable) || force || forceNCOFrequency)
{
if (m_deviceShared.m_deviceParams->getDevice() != 0 && m_channelAcquired)
{
if (DeviceLimeSDR::setNCOFrequency(m_deviceShared.m_deviceParams->getDevice(),
LMS_CH_TX,
m_deviceShared.m_channel,
settings.m_ncoEnable,
settings.m_ncoFrequency))
{
//doCalibration = true;
forwardChangeOwnDSP = true;
m_deviceShared.m_ncoFrequency = settings.m_ncoEnable ? settings.m_ncoFrequency : 0; // for buddies
qDebug("LimeSDROutput::applySettings: %sd and set NCO to %d Hz",
settings.m_ncoEnable ? "enable" : "disable",
settings.m_ncoFrequency);
}
else
{
qCritical("LimeSDROutput::applySettings: could not %s and set NCO to %d Hz",
settings.m_ncoEnable ? "enable" : "disable",
settings.m_ncoFrequency);
}
}
}
if ((m_settings.m_log2SoftInterp != settings.m_log2SoftInterp) || force)
{
forwardChangeOwnDSP = true;
m_deviceShared.m_log2Soft = settings.m_log2SoftInterp; // for buddies
if (m_limeSDROutputThread != 0)
{
m_limeSDROutputThread->setLog2Interpolation(settings.m_log2SoftInterp);
qDebug() << "LimeSDROutput::applySettings: set soft decimation to " << (1<<settings.m_log2SoftInterp);
}
}
if ((m_settings.m_antennaPath != settings.m_antennaPath) || force)
{
if (m_deviceShared.m_deviceParams->getDevice() != 0 && m_channelAcquired)
{
if (DeviceLimeSDR::setTxAntennaPath(m_deviceShared.m_deviceParams->getDevice(),
m_deviceShared.m_channel,
settings.m_antennaPath))
{
doCalibration = true;
qDebug("LimeSDRInput::applySettings: set antenna path to %d",
(int) settings.m_antennaPath);
}
else
{
qCritical("LimeSDRInput::applySettings: could not set antenna path to %d",
(int) settings.m_antennaPath);
}
}
}
if ((m_settings.m_centerFrequency != settings.m_centerFrequency) || force)
{
forwardChangeTxDSP = true;
if (m_deviceShared.m_deviceParams->getDevice() != 0 && m_channelAcquired)
{
if (LMS_SetLOFrequency(m_deviceShared.m_deviceParams->getDevice(),
LMS_CH_TX,
m_deviceShared.m_channel, // same for both channels anyway but switches antenna port automatically
settings.m_centerFrequency) < 0)
{
qCritical("LimeSDROutput::applySettings: could not set frequency to %lu", settings.m_centerFrequency);
}
else
{
doCalibration = true;
m_deviceShared.m_centerFrequency = settings.m_centerFrequency; // for buddies
qDebug("LimeSDROutput::applySettings: frequency set to %lu", settings.m_centerFrequency);
}
}
}
m_settings = settings;
if (doCalibration && m_channelAcquired)
{
if (LMS_Calibrate(m_deviceShared.m_deviceParams->getDevice(),
LMS_CH_TX,
m_deviceShared.m_channel,
m_settings.m_lpfBW,
0) < 0)
{
qCritical("LimeSDROutput::applySettings: calibration failed on Tx channel %d", m_deviceShared.m_channel);
}
else
{
qDebug("LimeSDROutput::applySettings: calibration successful on Tx channel %d", m_deviceShared.m_channel);
}
}
// resume buddies threads or own thread
if (suspendAllThread)
{
const std::vector<DeviceSourceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceSourceAPI*>::const_iterator itSource = sourceBuddies.begin();
for (; itSource != sourceBuddies.end(); ++itSource)
{
DeviceLimeSDRShared *buddySharedPtr = (DeviceLimeSDRShared *) (*itSource)->getBuddySharedPtr();
if (buddySharedPtr->m_threadWasRunning) {
buddySharedPtr->m_thread->startWork();
}
}
const std::vector<DeviceSinkAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceSinkAPI*>::const_iterator itSink = sinkBuddies.begin();
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceLimeSDRShared *buddySharedPtr = (DeviceLimeSDRShared *) (*itSink)->getBuddySharedPtr();
if (buddySharedPtr->m_threadWasRunning) {
buddySharedPtr->m_thread->startWork();
}
}
if (ownThreadWasRunning) {
m_limeSDROutputThread->startWork();
}
}
else if (suspendTxThread)
{
const std::vector<DeviceSinkAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceSinkAPI*>::const_iterator itSink = sinkBuddies.begin();
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceLimeSDRShared *buddySharedPtr = (DeviceLimeSDRShared *) (*itSink)->getBuddySharedPtr();
if (buddySharedPtr->m_threadWasRunning) {
buddySharedPtr->m_thread->startWork();
}
}
if (ownThreadWasRunning) {
m_limeSDROutputThread->startWork();
}
}
else if (ownThreadWasRunning)
{
if (m_limeSDROutputThread) {
m_limeSDROutputThread->startWork();
}
}
// forward changes to buddies or oneself
if (forwardChangeAllDSP)
{
qDebug("LimeSDROutput::applySettings: forward change to all buddies");
int ncoShift = m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0;
// send to self first
DSPSignalNotification *notif = new DSPSignalNotification(
m_settings.m_devSampleRate/(1<<m_settings.m_log2SoftInterp),
m_settings.m_centerFrequency + ncoShift);
m_deviceAPI->getDeviceInputMessageQueue()->push(notif);
// send to sink buddies
const std::vector<DeviceSinkAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceSinkAPI*>::const_iterator itSink = sinkBuddies.begin();
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceLimeSDRShared *buddySharedPtr = (DeviceLimeSDRShared *) (*itSink)->getBuddySharedPtr();
int buddyNCOFreq = buddySharedPtr->m_ncoFrequency;
uint32_t buddyLog2SoftInterp = buddySharedPtr->m_log2Soft;
DSPSignalNotification *notif = new DSPSignalNotification(
m_settings.m_devSampleRate/(1<<buddyLog2SoftInterp),
m_settings.m_centerFrequency + buddyNCOFreq); // do not change center frequency
(*itSink)->getDeviceInputMessageQueue()->push(notif);
MsgReportLimeSDRToGUI *report = MsgReportLimeSDRToGUI::create(
m_settings.m_centerFrequency,
m_settings.m_devSampleRate,
m_settings.m_log2HardInterp);
(*itSink)->getDeviceOutputMessageQueue()->push(report);
}
// send to source buddies
const std::vector<DeviceSourceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceSourceAPI*>::const_iterator itSource = sourceBuddies.begin();
for (; itSource != sourceBuddies.end(); ++itSource)
{
DeviceLimeSDRShared *buddySharedPtr = (DeviceLimeSDRShared *) (*itSource)->getBuddySharedPtr();
uint64_t buddyCenterFreq = buddySharedPtr->m_centerFrequency;
int buddyNCOFreq = buddySharedPtr->m_ncoFrequency;
uint32_t buddyLog2SoftDecim = buddySharedPtr->m_log2Soft;
DSPSignalNotification *notif = new DSPSignalNotification(
m_settings.m_devSampleRate/(1<<buddyLog2SoftDecim),
buddyCenterFreq + buddyNCOFreq);
(*itSource)->getDeviceInputMessageQueue()->push(notif);
DeviceLimeSDRShared::MsgCrossReportToGUI *report = DeviceLimeSDRShared::MsgCrossReportToGUI::create(m_settings.m_devSampleRate);
(*itSource)->getDeviceOutputMessageQueue()->push(report);
}
}
else if (forwardChangeTxDSP)
{
qDebug("LimeSDROutput::applySettings: forward change to Tx buddies");
int sampleRate = m_settings.m_devSampleRate/(1<<m_settings.m_log2SoftInterp);
int ncoShift = m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0;
// send to self first
DSPSignalNotification *notif = new DSPSignalNotification(sampleRate, m_settings.m_centerFrequency + ncoShift);
m_deviceAPI->getDeviceInputMessageQueue()->push(notif);
// send to sink buddies
const std::vector<DeviceSinkAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceSinkAPI*>::const_iterator itSink = sinkBuddies.begin();
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceLimeSDRShared *buddySharedPtr = (DeviceLimeSDRShared *) (*itSink)->getBuddySharedPtr();
uint64_t buddyCenterFreq = buddySharedPtr->m_centerFrequency;
int buddyNCOFreq = buddySharedPtr->m_ncoFrequency;
DSPSignalNotification *notif = new DSPSignalNotification(sampleRate, buddyCenterFreq + buddyNCOFreq); // do not change center frequency
(*itSink)->getDeviceInputMessageQueue()->push(notif);
MsgReportLimeSDRToGUI *report = MsgReportLimeSDRToGUI::create(
m_settings.m_centerFrequency,
m_settings.m_devSampleRate,
m_settings.m_log2HardInterp);
(*itSink)->getDeviceOutputMessageQueue()->push(report);
}
}
else if (forwardChangeOwnDSP)
{
qDebug("LimeSDROutput::applySettings: forward change to self only");
int sampleRate = m_settings.m_devSampleRate/(1<<m_settings.m_log2SoftInterp);
int ncoShift = m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0;
DSPSignalNotification *notif = new DSPSignalNotification(sampleRate, m_settings.m_centerFrequency + ncoShift);
m_deviceAPI->getDeviceInputMessageQueue()->push(notif);
}
qDebug() << "LimeSDROutput::applySettings: center freq: " << m_settings.m_centerFrequency << " Hz"
<< " device stream sample rate: " << m_settings.m_devSampleRate << "S/s"
<< " sample rate with soft decimation: " << m_settings.m_devSampleRate/(1<<m_settings.m_log2SoftInterp) << "S/s"
<< " m_gain: " << m_settings.m_gain
<< " m_lpfBW: " << m_settings.m_lpfBW
<< " m_lpfFIRBW: " << m_settings.m_lpfFIRBW
<< " m_lpfFIREnable: " << m_settings.m_lpfFIREnable
<< " m_ncoEnable: " << m_settings.m_ncoEnable
<< " m_ncoFrequency: " << m_settings.m_ncoFrequency
<< " m_antennaPath: " << m_settings.m_antennaPath;
return true;
}