1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-22 08:04:49 -05:00
sdrangel/wdsp/firopt.cpp

212 lines
6.7 KiB
C++

/* firmin.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2016 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "fir.hpp"
#include "firopt.hpp"
namespace WDSP {
/********************************************************************************************************
* *
* Standalone Partitioned Overlap-Save Bandpass *
* *
********************************************************************************************************/
void FIROPT::plan_firopt (FIROPT *a)
{
// must call for change in 'nc', 'size', 'out'
int i;
a->nfor = a->nc / a->size;
a->buffidx = 0;
a->idxmask = a->nfor - 1;
a->fftin = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex));
a->fftout = new float*[a->nfor]; // (float **) malloc0 (a->nfor * sizeof (float *));
a->fmask = new float*[a->nfor]; // (float **) malloc0 (a->nfor * sizeof (float *));
a->maskgen = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex));
a->pcfor = new fftwf_plan[a->nfor]; // (fftwf_plan *) malloc0 (a->nfor * sizeof (fftwf_plan));
a->maskplan = new fftwf_plan[a->nfor]; // (fftwf_plan *) malloc0 (a->nfor * sizeof (fftwf_plan));
for (i = 0; i < a->nfor; i++)
{
a->fftout[i] = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex));
a->fmask[i] = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex));
a->pcfor[i] = fftwf_plan_dft_1d(
2 * a->size,
(fftwf_complex *)a->fftin,
(fftwf_complex *)a->fftout[i],
FFTW_FORWARD,
FFTW_PATIENT
);
a->maskplan[i] = fftwf_plan_dft_1d(
2 * a->size,
(fftwf_complex *)a->maskgen,
(fftwf_complex *)a->fmask[i],
FFTW_FORWARD,
FFTW_PATIENT
);
}
a->accum = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex));
a->crev = fftwf_plan_dft_1d(
2 * a->size,
(fftwf_complex *)a->accum,
(fftwf_complex *)a->out,
FFTW_BACKWARD,
FFTW_PATIENT
);
}
void FIROPT::calc_firopt (FIROPT *a)
{
// call for change in frequency, rate, wintype, gain
// must also call after a call to plan_firopt()
int i;
float* impulse = FIR::fir_bandpass (a->nc, a->f_low, a->f_high, a->samplerate, a->wintype, 1, a->gain);
a->buffidx = 0;
for (i = 0; i < a->nfor; i++)
{
// I right-justified the impulse response => take output from left side of output buff, discard right side
// Be careful about flipping an asymmetrical impulse response.
std::copy(&(impulse[2 * a->size * i]), &(impulse[2 * a->size * i]) + a->size * 2, &(a->maskgen[2 * a->size]));
fftwf_execute (a->maskplan[i]);
}
delete[] (impulse);
}
FIROPT* FIROPT::create_firopt (int run, int position, int size, float* in, float* out,
int nc, float f_low, float f_high, int samplerate, int wintype, float gain)
{
FIROPT *a = new FIROPT;
a->run = run;
a->position = position;
a->size = size;
a->in = in;
a->out = out;
a->nc = nc;
a->f_low = f_low;
a->f_high = f_high;
a->samplerate = samplerate;
a->wintype = wintype;
a->gain = gain;
plan_firopt (a);
calc_firopt (a);
return a;
}
void FIROPT::deplan_firopt (FIROPT *a)
{
int i;
fftwf_destroy_plan (a->crev);
delete[] (a->accum);
for (i = 0; i < a->nfor; i++)
{
delete[] (a->fftout[i]);
delete[] (a->fmask[i]);
fftwf_destroy_plan (a->pcfor[i]);
fftwf_destroy_plan (a->maskplan[i]);
}
delete[] (a->maskplan);
delete[] (a->pcfor);
delete[] (a->maskgen);
delete[] (a->fmask);
delete[] (a->fftout);
delete[] (a->fftin);
}
void FIROPT::destroy_firopt (FIROPT *a)
{
deplan_firopt (a);
delete (a);
}
void FIROPT::flush_firopt (FIROPT *a)
{
int i;
std::fill(a->fftin, a->fftin + 2 * a->size * 2, 0);
for (i = 0; i < a->nfor; i++)
std::fill(a->fftout[i], a->fftout[i] + 2 * a->size * 2, 0);
a->buffidx = 0;
}
void FIROPT::xfiropt (FIROPT *a, int pos)
{
if (a->run && (a->position == pos))
{
int i, j, k;
std::copy(a->in, a->in + a->size * 2, &(a->fftin[2 * a->size]));
fftwf_execute (a->pcfor[a->buffidx]);
k = a->buffidx;
std::fill(a->accum, a->accum + 2 * a->size * 2, 0);
for (j = 0; j < a->nfor; j++)
{
for (i = 0; i < 2 * a->size; i++)
{
a->accum[2 * i + 0] += a->fftout[k][2 * i + 0] * a->fmask[j][2 * i + 0] - a->fftout[k][2 * i + 1] * a->fmask[j][2 * i + 1];
a->accum[2 * i + 1] += a->fftout[k][2 * i + 0] * a->fmask[j][2 * i + 1] + a->fftout[k][2 * i + 1] * a->fmask[j][2 * i + 0];
}
k = (k + a->idxmask) & a->idxmask;
}
a->buffidx = (a->buffidx + 1) & a->idxmask;
fftwf_execute (a->crev);
std::copy(&(a->fftin[2 * a->size]), &(a->fftin[2 * a->size]) + a->size * 2, a->fftin);
}
else if (a->in != a->out)
std::copy( a->in, a->in + a->size * 2, a->out);
}
void FIROPT::setBuffers_firopt (FIROPT *a, float* in, float* out)
{
a->in = in;
a->out = out;
deplan_firopt (a);
plan_firopt (a);
calc_firopt (a);
}
void FIROPT::setSamplerate_firopt (FIROPT *a, int rate)
{
a->samplerate = rate;
calc_firopt (a);
}
void FIROPT::setSize_firopt (FIROPT *a, int size)
{
a->size = size;
deplan_firopt (a);
plan_firopt (a);
calc_firopt (a);
}
void FIROPT::setFreqs_firopt (FIROPT *a, float f_low, float f_high)
{
a->f_low = f_low;
a->f_high = f_high;
calc_firopt (a);
}
} // namespace WDSP