1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-12-23 10:05:46 -05:00
sdrangel/wdsp/fircore.cpp
2024-08-10 12:21:04 +02:00

248 lines
6.3 KiB
C++

/* firmin.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2016 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "fir.hpp"
#include "fircore.hpp"
namespace WDSP {
/********************************************************************************************************
* *
* Partitioned Overlap-Save Filter Kernel *
* *
********************************************************************************************************/
void FIRCORE::plan()
{
// must call for change in 'nc', 'size', 'out'
nfor = nc / size;
cset = 0;
buffidx = 0;
idxmask = nfor - 1;
fftin.resize(2 * size * 2);
fftout.resize(nfor);
fmask[0].resize(nfor);
fmask[1].resize(nfor);
maskgen.resize(2 * size * 2);
pcfor.resize(nfor);
maskplan[0].resize(nfor);
maskplan[1].resize(nfor);
for (int i = 0; i < nfor; i++)
{
fftout[i].resize(2 * size * 2);
fmask[0][i].resize(2 * size * 2);
fmask[1][i].resize(2 * size * 2);
pcfor[i] = fftwf_plan_dft_1d(
2 * size,
(fftwf_complex *)fftin.data(),
(fftwf_complex *)fftout[i].data(),
FFTW_FORWARD,
FFTW_PATIENT
);
maskplan[0][i] = fftwf_plan_dft_1d(
2 * size,
(fftwf_complex *)maskgen.data(),
(fftwf_complex *)fmask[0][i].data(),
FFTW_FORWARD,
FFTW_PATIENT
);
maskplan[1][i] = fftwf_plan_dft_1d(
2 * size,
(fftwf_complex *)maskgen.data(),
(fftwf_complex *)fmask[1][i].data(),
FFTW_FORWARD,
FFTW_PATIENT
);
}
accum.resize(2 * size * 2);
crev = fftwf_plan_dft_1d(
2 * size,
(fftwf_complex *)accum.data(),
(fftwf_complex *)out,
FFTW_BACKWARD,
FFTW_PATIENT
);
masks_ready = 0;
}
void FIRCORE::calc(int _flip)
{
// call for change in frequency, rate, wintype, gain
// must also call after a call to plan_firopt()
if (mp)
FIR::mp_imp (nc, impulse, imp, 16, 0);
else
std::copy(impulse.begin(), impulse.end(), imp.begin());
for (int i = 0; i < nfor; i++)
{
// I right-justified the impulse response => take output from left side of output buff, discard right side
// Be careful about flipping an asymmetrical impulse response.
std::copy(&(imp[2 * size * i]), &(imp[2 * size * i]) + size * 2, &(maskgen[2 * size]));
fftwf_execute (maskplan[1 - cset][i]);
}
masks_ready = 1;
if (_flip)
{
cset = 1 - cset;
masks_ready = 0;
}
}
FIRCORE::FIRCORE(
int _size,
float* _in,
float* _out,
int _mp,
const std::vector<float>& _impulse
)
{
size = _size;
in = _in;
out = _out;
nc = (int) (_impulse.size() / 2);
mp = _mp;
plan();
impulse.resize(_impulse.size());
imp.resize(_impulse.size());
std::copy(_impulse.begin(), _impulse.end(), impulse.begin());
calc(1);
}
void FIRCORE::deplan()
{
fftwf_destroy_plan (crev);
for (int i = 0; i < nfor; i++)
{
fftwf_destroy_plan (pcfor[i]);
fftwf_destroy_plan (maskplan[0][i]);
fftwf_destroy_plan (maskplan[1][i]);
}
}
FIRCORE::~FIRCORE()
{
deplan();
}
void FIRCORE::flush()
{
std::fill(fftin.begin(), fftin.end(), 0);
for (int i = 0; i < nfor; i++)
std::fill(fftout[i].begin(), fftout[i].end(), 0);
buffidx = 0;
}
void FIRCORE::execute()
{
int k;
std::copy(in, in + size * 2, &(fftin[2 * size]));
fftwf_execute (pcfor[buffidx]);
k = buffidx;
std::fill(accum.begin(), accum.end(), 0);
for (int j = 0; j < nfor; j++)
{
for (int i = 0; i < 2 * size; i++)
{
accum[2 * i + 0] += fftout[k][2 * i + 0] * fmask[cset][j][2 * i + 0] - fftout[k][2 * i + 1] * fmask[cset][j][2 * i + 1];
accum[2 * i + 1] += fftout[k][2 * i + 0] * fmask[cset][j][2 * i + 1] + fftout[k][2 * i + 1] * fmask[cset][j][2 * i + 0];
}
k = (k + idxmask) & idxmask;
}
buffidx = (buffidx + 1) & idxmask;
fftwf_execute (crev);
std::copy(&(fftin[2 * size]), &(fftin[2 * size]) + size * 2, fftin.begin());
}
void FIRCORE::setBuffers(float* _in, float* _out)
{
in = _in;
out = _out;
deplan();
plan();
calc(1);
}
void FIRCORE::setSize(int _size)
{
size = _size;
deplan();
plan();
calc(1);
}
void FIRCORE::setImpulse(const std::vector<float>& _impulse, int _update)
{
auto imp_nc = (int) (_impulse.size() / 2);
if (imp_nc == nc) // to be on the safe side but setNc would be called if impulse size changes
{
std::copy(_impulse.begin(), _impulse.end(), impulse.begin());
calc(_update);
}
else{
setNc(_impulse);
}
}
void FIRCORE::setNc(const std::vector<float>& _impulse)
{
// because of FFT planning, this will probably cause a glitch in audio if done during dataflow
deplan();
nc = (int) (_impulse.size() / 2);
plan();
imp.resize(nc * 2);
impulse.resize(nc * 2);
std::copy(_impulse.begin(), _impulse.end(), impulse.begin());
calc(1);
}
void FIRCORE::setMp(int _mp)
{
mp = _mp;
calc(1);
}
void FIRCORE::setUpdate()
{
if (masks_ready)
{
cset = 1 - cset;
masks_ready = 0;
}
}
} // namespace WDSP