1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-12-23 18:15:45 -05:00
sdrangel/plugins/channelrx/demoddatv/leansdr/math.h

187 lines
4.8 KiB
C++

///////////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2018-2021 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// Copyright (C) 2019 Davide Gerhard <rainbow@irh.it> //
// Copyright (C) 2020 Kacper Michajłow <kasper93@gmail.com> //
// //
// This file is part of LeanSDR Copyright (C) 2016-2019 <pabr@pabr.org>. //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////////
#ifndef LEANSDR_MATH_H
#define LEANSDR_MATH_H
#include <cmath>
#include <complex>
#include <stdint.h>
namespace leansdr
{
template <typename T>
T dotprod(const T *u, const T *v, int n)
{
T acc = 0;
while (n--) {
acc += (*u++) * (*v++);
}
return acc;
}
template <typename T>
inline T cnorm2(const std::complex<T> &u)
{
return u.real() * u.real() + u.imag() * u.imag();
}
template <typename T>
T cnorm2(const std::complex<T> *p, int n)
{
T res = 0;
for (; n--; ++p) {
res += cnorm2(*p);
}
return res;
}
// Return conj(u)*v
template <typename T>
inline std::complex<T> conjprod(const std::complex<T> &u, const std::complex<T> &v)
{
return std::complex<T>(
u.real() * v.real() + u.imag() * v.imag(),
u.real() * v.imag() - u.imag() * v.real()
);
}
// Return sum(conj(u[i])*v[i])
template <typename T>
std::complex<T> conjprod(const std::complex<T> *u, const std::complex<T> *v, int n)
{
std::complex<T> acc = 0;
while (n--) {
acc += conjprod(*u++, *v++);
}
return acc;
}
// TBD Optimize with dedicated instructions
int hamming_weight(uint8_t x);
int hamming_weight(uint16_t x);
int hamming_weight(uint32_t x);
int hamming_weight(uint64_t x);
unsigned char parity(uint8_t x);
unsigned char parity(uint16_t x);
unsigned char parity(uint32_t x);
unsigned char parity(uint64_t x);
int log2i(uint64_t x);
// Pre-computed sin/cos for 16-bit angles
struct trig16
{
std::complex<float> lut[65536]; // TBD static and shared
trig16()
{
for (int a = 0; a < 65536; ++a)
{
float af = a * 2 * M_PI / 65536;
lut[a] = {cosf(af), sinf(af)};
}
}
inline const std::complex<float> &expi(uint16_t a) const
{
return lut[a];
}
// a must fit in a int32_t, otherwise behaviour is undefined
inline const std::complex<float> &expi(float a) const
{
return expi((uint16_t)(int16_t)(int32_t)a);
}
};
// Modulo with signed result in [-m/2..m/2[
inline float fmodfs(float v, float m)
{
v = fmodf(v, m);
return (v>=m/2) ? v-m : (v<-m/2) ? v+m : v;
}
inline double rand_compat()
{
#ifdef WIN32
return double(rand())/RAND_MAX;
#else
return drand48();
#endif
}
// Simple statistics
template<typename T>
struct statistics
{
statistics() {
reset();
}
void reset()
{
vm1 = vm2 = 0;
count = 0;
vmin = vmax = 99;/*comp warning*/
}
void add(const T &v)
{
vm1 += v;
vm2 += v*v;
if ( count == 0 ) {
vmin = vmax = v;
} else if (
v < vmin ) { vmin = v;
} else if ( v > vmax ) {
vmax = v;
}
++count;
}
T average() { return vm1 / count; }
T variance() { return vm2/count - (vm1/count)*(vm1/count); }
T stddev() { return gen_sqrt(variance()); }
T min() { return vmin; }
T max() { return vmax; }
private:
T vm1, vm2; // Moments
T vmin, vmax; // Range
int count; // Number of samples in vm1, vm2
}; // statistics
} // namespace leansdr
#endif // LEANSDR_MATH_H