1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-22 16:08:39 -05:00
sdrangel/sdrbase/device/deviceapi.cpp
2023-08-24 16:05:57 +01:00

955 lines
30 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include "plugin/plugininterface.h"
#include "dsp/dspdevicesourceengine.h"
#include "dsp/dspdevicesinkengine.h"
#include "dsp/dspdevicemimoengine.h"
#include "dsp/dspengine.h"
#include "dsp/devicesamplesource.h"
#include "dsp/devicesamplesink.h"
#include "dsp/devicesamplemimo.h"
#include "settings/preset.h"
#include "channel/channelapi.h"
#include "util/simpleserializer.h"
#include "deviceapi.h"
DeviceAPI::DeviceAPI(
StreamType streamType,
int deviceTabIndex,
DSPDeviceSourceEngine *deviceSourceEngine,
DSPDeviceSinkEngine *deviceSinkEngine,
DSPDeviceMIMOEngine *deviceMIMOEngine
) :
m_streamType(streamType),
m_deviceTabIndex(deviceTabIndex),
m_deviceNbItems(1),
m_deviceItemIndex(0),
m_nbSourceStreams(0),
m_nbSinkStreams(0),
m_pluginInterface(nullptr),
m_masterTimer(DSPEngine::instance()->getMasterTimer()),
m_samplingDeviceSequence(0),
m_workspaceIndex(0),
m_buddySharedPtr(nullptr),
m_isBuddyLeader(false),
m_deviceSourceEngine(deviceSourceEngine),
m_deviceSinkEngine(deviceSinkEngine),
m_deviceMIMOEngine(deviceMIMOEngine)
{
if (m_deviceSourceEngine) {
QObject::connect(m_deviceSourceEngine, &DSPDeviceSourceEngine::stateChanged, this, &DeviceAPI::engineStateChanged);
}
if (m_deviceSinkEngine) {
QObject::connect(m_deviceSinkEngine, &DSPDeviceSinkEngine::stateChanged, this, &DeviceAPI::engineStateChanged);
}
if (m_deviceMIMOEngine) {
QObject::connect(m_deviceMIMOEngine, &DSPDeviceMIMOEngine::stateChanged, this, &DeviceAPI::engineStateChanged);
}
}
DeviceAPI::~DeviceAPI()
{
}
void DeviceAPI::setSpectrumSinkInput(bool sourceElseSink, unsigned int index)
{
if (m_deviceMIMOEngine) { // In practice this is only used in the MIMO case
m_deviceMIMOEngine->setSpectrumSinkInput(sourceElseSink, index);
}
}
void DeviceAPI::addChannelSink(BasebandSampleSink* sink, int streamIndex)
{
if (m_deviceSourceEngine) {
m_deviceSourceEngine->addSink(sink);
} else if (m_deviceMIMOEngine) {
m_deviceMIMOEngine->addChannelSink(sink, streamIndex);
}
}
void DeviceAPI::removeChannelSink(BasebandSampleSink* sink, int streamIndex)
{
if (m_deviceSourceEngine) {
m_deviceSourceEngine->removeSink(sink);
} else if (m_deviceMIMOEngine) {
m_deviceMIMOEngine->removeChannelSink(sink, streamIndex);
}
}
void DeviceAPI::addChannelSource(BasebandSampleSource* source, int streamIndex)
{
if (m_deviceSinkEngine) {
m_deviceSinkEngine->addChannelSource(source);
} else if (m_deviceMIMOEngine) {
m_deviceMIMOEngine->addChannelSource(source, streamIndex);
}
}
void DeviceAPI::removeChannelSource(BasebandSampleSource* source, int streamIndex)
{
if (m_deviceSinkEngine) {
m_deviceSinkEngine->removeChannelSource(source);
} else if (m_deviceMIMOEngine) {
m_deviceMIMOEngine->removeChannelSource(source, streamIndex);
}
}
void DeviceAPI::addMIMOChannel(MIMOChannel* channel)
{
if (m_deviceMIMOEngine) {
m_deviceMIMOEngine->addMIMOChannel(channel);
}
}
void DeviceAPI::removeMIMOChannel(MIMOChannel* channel)
{
if (m_deviceMIMOEngine) {
m_deviceMIMOEngine->removeMIMOChannel(channel);
}
}
void DeviceAPI::addChannelSinkAPI(ChannelAPI* channelAPI)
{
m_channelSinkAPIs.append(channelAPI);
renumerateChannels();
}
void DeviceAPI::removeChannelSinkAPI(ChannelAPI* channelAPI)
{
if (m_channelSinkAPIs.removeOne(channelAPI)) {
renumerateChannels();
}
channelAPI->setIndexInDeviceSet(-1);
}
void DeviceAPI::addChannelSourceAPI(ChannelAPI* channelAPI)
{
m_channelSourceAPIs.append(channelAPI);
renumerateChannels();
}
void DeviceAPI::removeChannelSourceAPI(ChannelAPI* channelAPI)
{
if (m_channelSourceAPIs.removeOne(channelAPI)) {
renumerateChannels();
}
channelAPI->setIndexInDeviceSet(-1);
}
void DeviceAPI::addMIMOChannelAPI(ChannelAPI* channelAPI)
{
m_mimoChannelAPIs.append(channelAPI);
renumerateChannels();
}
void DeviceAPI::removeMIMOChannelAPI(ChannelAPI *channelAPI)
{
if (m_mimoChannelAPIs.removeOne(channelAPI)) {
renumerateChannels();
}
channelAPI->setIndexInDeviceSet(-1);
}
void DeviceAPI::setSampleSource(DeviceSampleSource* source)
{
if (m_deviceSourceEngine) {
m_deviceSourceEngine->setSource(source);
}
}
void DeviceAPI::setSampleSink(DeviceSampleSink* sink)
{
if (m_deviceSinkEngine) {
m_deviceSinkEngine->setSink(sink);
}
}
void DeviceAPI::setSampleMIMO(DeviceSampleMIMO* mimo)
{
if (m_deviceMIMOEngine) {
m_deviceMIMOEngine->setMIMO(mimo);
}
}
DeviceSampleSource *DeviceAPI::getSampleSource()
{
if (m_deviceSourceEngine) {
return m_deviceSourceEngine->getSource();
} else {
return nullptr;
}
}
DeviceSampleSink *DeviceAPI::getSampleSink()
{
if (m_deviceSinkEngine) {
return m_deviceSinkEngine->getSink();
} else {
return nullptr;
}
}
DeviceSampleMIMO *DeviceAPI::getSampleMIMO()
{
if (m_deviceMIMOEngine) {
return m_deviceMIMOEngine->getMIMO();
} else {
return nullptr;
}
}
bool DeviceAPI::initDeviceEngine(int subsystemIndex)
{
if (m_deviceSourceEngine) {
return m_deviceSourceEngine->initAcquisition();
} else if (m_deviceSinkEngine) {
return m_deviceSinkEngine->initGeneration();
} else if (m_deviceMIMOEngine) {
return m_deviceMIMOEngine->initProcess(subsystemIndex);
} else {
return false;
}
}
bool DeviceAPI::startDeviceEngine(int subsystemIndex)
{
if (m_deviceSourceEngine) {
return m_deviceSourceEngine->startAcquisition();
} else if (m_deviceSinkEngine) {
return m_deviceSinkEngine->startGeneration();
} else if (m_deviceMIMOEngine) {
return m_deviceMIMOEngine->startProcess(subsystemIndex);
} else {
return false;
}
}
void DeviceAPI::stopDeviceEngine(int subsystemIndex)
{
if (m_deviceSourceEngine) {
m_deviceSourceEngine->stopAcquistion();
} else if (m_deviceSinkEngine) {
m_deviceSinkEngine->stopGeneration();
} else if (m_deviceMIMOEngine) {
m_deviceMIMOEngine->stopProcess(subsystemIndex);
}
}
DeviceAPI::EngineState DeviceAPI::state(int subsystemIndex) const
{
if (m_deviceSourceEngine) {
return (DeviceAPI::EngineState) m_deviceSourceEngine->state();
} else if (m_deviceSinkEngine) {
return (DeviceAPI::EngineState) m_deviceSinkEngine->state();
} else if (m_deviceMIMOEngine) {
return (DeviceAPI::EngineState) m_deviceMIMOEngine->state(subsystemIndex);
} else {
return StError;
}
}
QString DeviceAPI::errorMessage(int subsystemIndex)
{
if (m_deviceSourceEngine) {
return m_deviceSourceEngine->errorMessage();
} else if (m_deviceSinkEngine) {
return m_deviceSinkEngine->errorMessage();
} else if (m_deviceMIMOEngine) {
return m_deviceMIMOEngine->errorMessage(subsystemIndex);
} else {
return "Not implemented";
}
}
uint DeviceAPI::getDeviceUID() const
{
if (m_deviceSourceEngine) {
return m_deviceSourceEngine->getUID();
} else if (m_deviceSinkEngine) {
return m_deviceSinkEngine->getUID();
} else if (m_deviceMIMOEngine) {
return m_deviceMIMOEngine->getUID();
} else {
return 0;
}
}
MessageQueue *DeviceAPI::getDeviceEngineInputMessageQueue()
{
if (m_deviceSourceEngine) {
return m_deviceSourceEngine->getInputMessageQueue();
} else if (m_deviceSinkEngine) {
return m_deviceSinkEngine->getInputMessageQueue();
} else if (m_deviceMIMOEngine) {
return m_deviceMIMOEngine->getInputMessageQueue();
} else {
return nullptr;
}
}
MessageQueue *DeviceAPI::getSamplingDeviceInputMessageQueue()
{
if (m_deviceSourceEngine) {
return m_deviceSourceEngine->getSource()->getInputMessageQueue();
} else if (m_deviceSinkEngine) {
return m_deviceSinkEngine->getSink()->getInputMessageQueue();
} else if (m_deviceMIMOEngine) {
return m_deviceMIMOEngine->getMIMO()->getInputMessageQueue();
} else {
return nullptr;
}
}
MessageQueue *DeviceAPI::getSamplingDeviceGUIMessageQueue()
{
if (m_deviceSourceEngine) {
return m_deviceSourceEngine->getSource()->getMessageQueueToGUI();
} else if (m_deviceSinkEngine) {
return m_deviceSinkEngine->getSink()->getMessageQueueToGUI();
} else if (m_deviceMIMOEngine) {
return m_deviceMIMOEngine->getMIMO()->getMessageQueueToGUI();
} else {
return nullptr;
}
}
void DeviceAPI::configureCorrections(bool dcOffsetCorrection, bool iqImbalanceCorrection, int streamIndex)
{
if (m_deviceSourceEngine) {
m_deviceSourceEngine->configureCorrections(dcOffsetCorrection, iqImbalanceCorrection);
} else if (m_deviceMIMOEngine) {
m_deviceMIMOEngine->configureCorrections(dcOffsetCorrection, iqImbalanceCorrection, streamIndex);
}
}
void DeviceAPI::setHardwareId(const QString& id)
{
m_hardwareId = id;
}
void DeviceAPI::setDeviceNbItems(uint32_t nbItems)
{
m_deviceNbItems = nbItems;
}
void DeviceAPI::setDeviceItemIndex(uint32_t index)
{
m_deviceItemIndex = index;
}
void DeviceAPI::setSamplingDevicePluginInterface(PluginInterface *iface)
{
m_pluginInterface = iface;
}
void DeviceAPI::getDeviceEngineStateStr(QString& state, int subsystemIndex)
{
if (m_deviceSourceEngine)
{
switch(m_deviceSourceEngine->state())
{
case DSPDeviceSourceEngine::StNotStarted:
state = "notStarted";
break;
case DSPDeviceSourceEngine::StIdle:
state = "idle";
break;
case DSPDeviceSourceEngine::StReady:
state = "ready";
break;
case DSPDeviceSourceEngine::StRunning:
state = "running";
break;
case DSPDeviceSourceEngine::StError:
state = "error";
break;
default:
state = "notStarted";
break;
}
}
else if (m_deviceSinkEngine)
{
switch(m_deviceSinkEngine->state())
{
case DSPDeviceSinkEngine::StNotStarted:
state = "notStarted";
break;
case DSPDeviceSinkEngine::StIdle:
state = "idle";
break;
case DSPDeviceSinkEngine::StReady:
state = "ready";
break;
case DSPDeviceSinkEngine::StRunning:
state = "running";
break;
case DSPDeviceSinkEngine::StError:
state = "error";
break;
default:
state = "notStarted";
break;
}
}
else if (m_deviceMIMOEngine)
{
switch(m_deviceMIMOEngine->state(subsystemIndex))
{
case DSPDeviceMIMOEngine::StNotStarted:
state = "notStarted";
break;
case DSPDeviceMIMOEngine::StIdle:
state = "idle";
break;
case DSPDeviceMIMOEngine::StReady:
state = "ready";
break;
case DSPDeviceMIMOEngine::StRunning:
state = "running";
break;
case DSPDeviceMIMOEngine::StError:
state = "error";
break;
default:
state = "notStarted";
break;
}
}
else
{
state = "notStarted";
}
}
ChannelAPI *DeviceAPI::getChanelSinkAPIAt(int index)
{
if (index < m_channelSinkAPIs.size()) {
return m_channelSinkAPIs.at(index);
} else {
return nullptr;
}
}
ChannelAPI *DeviceAPI::getChanelSourceAPIAt(int index)
{
if (index < m_channelSourceAPIs.size()) {
return m_channelSourceAPIs.at(index);
} else {
return nullptr;
}
}
ChannelAPI *DeviceAPI::getMIMOChannelAPIAt(int index)
{
if (index < m_mimoChannelAPIs.size()) {
return m_mimoChannelAPIs.at(index);
} else {
return nullptr;
}
}
QList<quint64> DeviceAPI::getCenterFrequency() const
{
QList<quint64> frequencies;
if (m_deviceSourceEngine && m_deviceSourceEngine->getSource())
{
frequencies.append(m_deviceSourceEngine->getSource()->getCenterFrequency());
}
else if (m_deviceSinkEngine && m_deviceSinkEngine->getSink())
{
frequencies.append(m_deviceSinkEngine->getSink()->getCenterFrequency());
}
else if (m_deviceMIMOEngine && m_deviceMIMOEngine->getMIMO())
{
for (uint32_t i = 0; i < m_deviceMIMOEngine->getMIMO()->getNbSourceStreams(); i++) {
frequencies.append(m_deviceMIMOEngine->getMIMO()->getSourceCenterFrequency(i));
}
for (uint32_t i = 0; i < m_deviceMIMOEngine->getMIMO()->getNbSinkStreams(); i++) {
frequencies.append(m_deviceMIMOEngine->getMIMO()->getSinkCenterFrequency(i));
}
}
return frequencies;
}
void DeviceAPI::setCenterFrequency(QList<quint64> centerFrequency)
{
if (m_deviceSourceEngine && m_deviceSourceEngine->getSource())
{
m_deviceSourceEngine->getSource()->setCenterFrequency(centerFrequency[0]);
}
else if (m_deviceSinkEngine && m_deviceSinkEngine->getSink())
{
m_deviceSinkEngine->getSink()->setCenterFrequency(centerFrequency[0]);
}
else if (m_deviceMIMOEngine && m_deviceMIMOEngine->getMIMO())
{
int idx = 0;
for (uint32_t i = 0; i < m_deviceMIMOEngine->getMIMO()->getNbSourceStreams(); i++, idx++) {
m_deviceMIMOEngine->getMIMO()->setSourceCenterFrequency(centerFrequency[idx], i);
}
for (uint32_t i = 0; i < m_deviceMIMOEngine->getMIMO()->getNbSinkStreams(); i++, idx++) {
m_deviceMIMOEngine->getMIMO()->setSinkCenterFrequency(centerFrequency[idx], i);
}
}
}
// Serialization is only currently used for saving device settings as part of a Device preset
// loadSamplingDeviceSettings/saveSamplingDeviceSettings is used for Device Set presets (which includes channel settings)
QByteArray DeviceAPI::serialize() const
{
SimpleSerializer s(1);
if (m_deviceSourceEngine && m_deviceSourceEngine->getSource()) {
s.writeBlob(1, m_deviceSourceEngine->getSource()->serialize());
}
if (m_deviceSinkEngine && m_deviceSinkEngine->getSink()) {
s.writeBlob(2, m_deviceSinkEngine->getSink()->serialize());
}
if (m_deviceMIMOEngine && m_deviceMIMOEngine->getMIMO()) {
s.writeBlob(3, m_deviceMIMOEngine->getMIMO()->serialize());
}
s.writeList<quint64>(4, getCenterFrequency());
return s.final();
}
bool DeviceAPI::deserialize(const QByteArray& data)
{
SimpleDeserializer d(data);
if (!d.isValid()) {
return false;
}
if (d.getVersion() == 1)
{
QByteArray data;
QList<quint64> centerFrequency;
if (m_deviceSourceEngine && m_deviceSourceEngine->getSource())
{
d.readBlob(1, &data);
if (data.size() > 0) {
m_deviceSourceEngine->getSource()->deserialize(data);
}
}
if (m_deviceSinkEngine && m_deviceSinkEngine->getSink())
{
d.readBlob(2, &data);
if (data.size() > 0) {
m_deviceSinkEngine->getSink()->deserialize(data);
}
}
if (m_deviceMIMOEngine && m_deviceMIMOEngine->getMIMO())
{
d.readBlob(3, &data);
if (data.size() > 0) {
m_deviceMIMOEngine->getMIMO()->deserialize(data);
}
}
d.readList<quint64>(4, &centerFrequency);
setCenterFrequency(centerFrequency);
return true;
}
else
{
return false;
}
}
void DeviceAPI::loadSamplingDeviceSettings(const Preset* preset)
{
if (m_deviceSourceEngine && (preset->isSourcePreset()))
{
qDebug("DeviceAPI::loadSamplingDeviceSettings: Loading Rx preset [%s | %s]", qPrintable(preset->getGroup()), qPrintable(preset->getDescription()));
const QByteArray* sourceConfig = preset->findBestDeviceConfig(m_samplingDeviceId, m_samplingDeviceSerial, m_samplingDeviceSequence);
qint64 centerFrequency = preset->getCenterFrequency();
qDebug("DeviceAPI::loadSamplingDeviceSettings: source center frequency: %llu Hz", centerFrequency);
if (sourceConfig)
{
qDebug("DeviceAPI::loadSamplingDeviceSettings: deserializing source %s[%d]: %s",
qPrintable(m_samplingDeviceId), m_samplingDeviceSequence, qPrintable(m_samplingDeviceSerial));
if (m_deviceSourceEngine->getSource() != 0) // Server flavor
{
m_deviceSourceEngine->getSource()->deserialize(*sourceConfig);
}
else
{
qDebug("DeviceAPI::loadSamplingDeviceSettings: deserializing no source");
}
}
else
{
qDebug("DeviceAPI::loadSamplingDeviceSettings: source %s[%d]: %s not found",
qPrintable(m_samplingDeviceId), m_samplingDeviceSequence, qPrintable(m_samplingDeviceSerial));
}
// set center frequency anyway
if (m_deviceSourceEngine->getSource())
{
m_deviceSourceEngine->getSource()->setCenterFrequency(centerFrequency);
}
else
{
qDebug("DeviceAPI::loadSamplingDeviceSettings: no source");
}
}
else if (m_deviceSinkEngine && preset->isSinkPreset())
{
qDebug("DeviceAPI::loadSamplingDeviceSettings: Loading Tx preset [%s | %s]", qPrintable(preset->getGroup()), qPrintable(preset->getDescription()));
const QByteArray* sinkConfig = preset->findBestDeviceConfig(m_samplingDeviceId, m_samplingDeviceSerial, m_samplingDeviceSequence);
qint64 centerFrequency = preset->getCenterFrequency();
qDebug("DeviceAPI::loadSamplingDeviceSettings: sink center frequency: %llu Hz", centerFrequency);
if (sinkConfig)
{
qDebug("DeviceAPI::loadSamplingDeviceSettings: deserializing sink %s[%d]: %s",
qPrintable(m_samplingDeviceId), m_samplingDeviceSequence, qPrintable(m_samplingDeviceSerial));
if (m_deviceSinkEngine->getSink())
{
m_deviceSinkEngine->getSink()->deserialize(*sinkConfig);
m_deviceSinkEngine->getSink()->setCenterFrequency(centerFrequency);
}
else
{
qDebug("DeviceAPI::loadSamplingDeviceSettings: no sink");
}
}
else
{
qDebug("DeviceAPI::loadSamplingDeviceSettings: sink %s[%d]: %s not found",
qPrintable(m_samplingDeviceId), m_samplingDeviceSequence, qPrintable(m_samplingDeviceSerial));
}
}
else if (m_deviceMIMOEngine && preset->isMIMOPreset())
{
qDebug("DeviceAPI::loadSamplingDeviceSettings: Loading MIMO preset [%s | %s]", qPrintable(preset->getGroup()), qPrintable(preset->getDescription()));
const QByteArray* mimoConfig = preset->findBestDeviceConfig(m_samplingDeviceId, m_samplingDeviceSerial, m_samplingDeviceSequence);
qint64 centerFrequency = preset->getCenterFrequency();
qDebug("DeviceAPI::loadSamplingDeviceSettings: MIMO center frequency: %llu Hz", centerFrequency);
if (mimoConfig)
{
qDebug("DeviceAPI::loadSamplingDeviceSettings: deserializing MIMO %s[%d]: %s",
qPrintable(m_samplingDeviceId), m_samplingDeviceSequence, qPrintable(m_samplingDeviceSerial));
if (m_deviceMIMOEngine->getMIMO())
{
m_deviceMIMOEngine->getMIMO()->deserialize(*mimoConfig);
m_deviceMIMOEngine->getMIMO()->setSourceCenterFrequency(centerFrequency, 0);
m_deviceMIMOEngine->getMIMO()->setSinkCenterFrequency(centerFrequency, 0);
}
else
{
qDebug("DeviceAPI::loadSamplingDeviceSettings: no MIMO");
}
}
else
{
qDebug("DeviceAPI::loadSamplingDeviceSettings: MIMO %s[%d]: %s not found",
qPrintable(m_samplingDeviceId), m_samplingDeviceSequence, qPrintable(m_samplingDeviceSerial));
}
}
else
{
qDebug("DeviceAPI::loadSamplingDeviceSettings: Loading preset [%s | %s] is not a suitable preset", qPrintable(preset->getGroup()), qPrintable(preset->getDescription()));
}
}
void DeviceAPI::saveSamplingDeviceSettings(Preset* preset)
{
if (m_deviceSourceEngine && (preset->isSourcePreset()))
{
qDebug("DeviceAPI::saveSamplingDeviceSettings: serializing source %s[%d]: %s",
qPrintable(m_samplingDeviceId), m_samplingDeviceSequence, qPrintable(m_samplingDeviceSerial));
if (m_deviceSourceEngine->getSource()) // Server flavor
{
preset->addOrUpdateDeviceConfig(m_samplingDeviceId, m_samplingDeviceSerial, m_samplingDeviceSequence, m_deviceSourceEngine->getSource()->serialize());
preset->setCenterFrequency(m_deviceSourceEngine->getSource()->getCenterFrequency());
}
else
{
qDebug("DeviceAPI::saveSamplingDeviceSettings: no source");
}
}
else if (m_deviceSinkEngine && preset->isSinkPreset())
{
qDebug("DeviceAPI::saveSamplingDeviceSettings: serializing sink %s[%d]: %s",
qPrintable(m_samplingDeviceId), m_samplingDeviceSequence, qPrintable(m_samplingDeviceSerial));
if (m_deviceSinkEngine->getSink()) // Server flavor
{
preset->addOrUpdateDeviceConfig(m_samplingDeviceId, m_samplingDeviceSerial, m_samplingDeviceSequence, m_deviceSinkEngine->getSink()->serialize());
preset->setCenterFrequency(m_deviceSinkEngine->getSink()->getCenterFrequency());
}
else
{
qDebug("DeviceAPI::saveSamplingDeviceSettings: no sink");
}
}
else if (m_deviceMIMOEngine && preset->isMIMOPreset())
{
qDebug("DeviceAPI::saveSamplingDeviceSettings: serializing MIMO %s[%d]: %s",
qPrintable(m_samplingDeviceId), m_samplingDeviceSequence, qPrintable(m_samplingDeviceSerial));
if (m_deviceMIMOEngine->getMIMO()) // Server flavor
{
preset->addOrUpdateDeviceConfig(m_samplingDeviceId, m_samplingDeviceSerial, m_samplingDeviceSequence, m_deviceMIMOEngine->getMIMO()->serialize());
preset->setCenterFrequency(m_deviceMIMOEngine->getMIMO()->getMIMOCenterFrequency());
}
else
{
qDebug("DeviceAPI::saveSamplingDeviceSettings: no MIMO");
}
}
else
{
qDebug("DeviceAPI::saveSamplingDeviceSettings: not a suitable preset");
}
}
void DeviceAPI::addSourceBuddy(DeviceAPI* buddy)
{
if (buddy->m_streamType != StreamSingleRx)
{
qDebug("DeviceAPI::addSourceBuddy: buddy %s(%s) is not of single Rx type",
qPrintable(buddy->getHardwareId()),
qPrintable(buddy->getSamplingDeviceSerial()));
return;
}
m_sourceBuddies.push_back(buddy);
if (m_streamType == StreamSingleRx) {
buddy->m_sourceBuddies.push_back(this); // this is a source
} else if (m_streamType == StreamSingleTx) {
buddy->m_sinkBuddies.push_back(this); // this is a sink
} else {
qDebug("DeviceAPI::addSourceBuddy: not relevant if this is not a single Rx or Tx");
return;
}
qDebug("DeviceAPI::addSourceBuddy: added buddy %s(%s) [%llu] <-> [%llu]",
qPrintable(buddy->getHardwareId()),
qPrintable(buddy->getSamplingDeviceSerial()),
(quint64) buddy,
(quint64) this);
}
void DeviceAPI::addSinkBuddy(DeviceAPI* buddy)
{
if (buddy->m_streamType != StreamSingleTx)
{
qDebug("DeviceAPI::addSinkBuddy: buddy %s(%s) is not of single Tx type",
qPrintable(buddy->getHardwareId()),
qPrintable(buddy->getSamplingDeviceSerial()));
return;
}
m_sinkBuddies.push_back(buddy);
if (m_streamType == StreamSingleRx) {
buddy->m_sourceBuddies.push_back(this); // this is a source
} else if (m_streamType == StreamSingleTx) {
buddy->m_sinkBuddies.push_back(this); // this is a sink
} else {
qDebug("DeviceAPI::addSinkBuddy: not relevant if this is not a single Rx or Tx");
return;
}
qDebug("DeviceAPI::addSinkBuddy: added buddy %s(%s) [%llu] <-> [%llu]",
qPrintable(buddy->getHardwareId()),
qPrintable(buddy->getSamplingDeviceSerial()),
(quint64) buddy,
(quint64) this);
}
void DeviceAPI::removeSourceBuddy(DeviceAPI* buddy)
{
if (buddy->m_streamType != StreamSingleRx)
{
qDebug("DeviceAPI::removeSourceBuddy: buddy %s(%s) is not of single Rx type",
qPrintable(buddy->getHardwareId()),
qPrintable(buddy->getSamplingDeviceSerial()));
return;
}
std::vector<DeviceAPI*>::iterator it = m_sourceBuddies.begin();
for (;it != m_sourceBuddies.end(); ++it)
{
if (*it == buddy)
{
qDebug("DeviceAPI::removeSourceBuddy: buddy %s(%s) [%llu] removed from the list of [%llu]",
qPrintable(buddy->getHardwareId()),
qPrintable(buddy->getSamplingDeviceSerial()),
(quint64) (*it),
(quint64) this);
m_sourceBuddies.erase(it);
return;
}
}
qDebug("DeviceAPI::removeSourceBuddy: buddy %s(%s) [%llu] not found in the list of [%llu]",
qPrintable(buddy->getHardwareId()),
qPrintable(buddy->getSamplingDeviceSerial()),
(quint64) buddy,
(quint64) this);
}
void DeviceAPI::removeSinkBuddy(DeviceAPI* buddy)
{
if (buddy->m_streamType != StreamSingleTx)
{
qDebug("DeviceAPI::removeSinkBuddy: buddy %s(%s) is not of single Tx type",
qPrintable(buddy->getHardwareId()),
qPrintable(buddy->getSamplingDeviceSerial()));
return;
}
std::vector<DeviceAPI*>::iterator it = m_sinkBuddies.begin();
for (;it != m_sinkBuddies.end(); ++it)
{
if (*it == buddy)
{
qDebug("DeviceAPI::removeSinkBuddy: buddy %s(%s) [%llu] removed from the list of [%llu]",
qPrintable(buddy->getHardwareId()),
qPrintable(buddy->getSamplingDeviceSerial()),
(quint64) (*it),
(quint64) this);
m_sinkBuddies.erase(it);
return;
}
}
qDebug("DeviceAPI::removeSourceBuddy: buddy %s(%s) [%llu] not found in the list of [%llu]",
qPrintable(buddy->getHardwareId()),
qPrintable(buddy->getSamplingDeviceSerial()),
(quint64) buddy,
(quint64) this);
}
void DeviceAPI::clearBuddiesLists()
{
std::vector<DeviceAPI*>::iterator itSource = m_sourceBuddies.begin();
std::vector<DeviceAPI*>::iterator itSink = m_sinkBuddies.begin();
bool leaderElected = false;
for (;itSource != m_sourceBuddies.end(); ++itSource)
{
if (isBuddyLeader() && !leaderElected)
{
(*itSource)->setBuddyLeader(true);
leaderElected = true;
}
(*itSource)->removeSinkBuddy(this);
}
m_sourceBuddies.clear();
for (;itSink != m_sinkBuddies.end(); ++itSink)
{
if (isBuddyLeader() && !leaderElected)
{
(*itSink)->setBuddyLeader(true);
leaderElected = true;
}
(*itSink)->removeSinkBuddy(this);
}
m_sinkBuddies.clear();
}
void DeviceAPI::renumerateChannels()
{
if (m_streamType == StreamSingleRx)
{
for (int i = 0; i < m_channelSinkAPIs.size(); ++i)
{
m_channelSinkAPIs.at(i)->setIndexInDeviceSet(i);
m_channelSinkAPIs.at(i)->setDeviceSetIndex(m_deviceTabIndex);
m_channelSinkAPIs.at(i)->setDeviceAPI(this);
}
}
else if (m_streamType == StreamSingleTx)
{
for (int i = 0; i < m_channelSourceAPIs.size(); ++i)
{
m_channelSourceAPIs.at(i)->setIndexInDeviceSet(i);
m_channelSourceAPIs.at(i)->setDeviceSetIndex(m_deviceTabIndex);
m_channelSourceAPIs.at(i)->setDeviceAPI(this);
}
}
else if (m_streamType == StreamMIMO)
{
int index = 0;
for (; index < m_channelSinkAPIs.size(); ++index)
{
m_channelSinkAPIs.at(index)->setIndexInDeviceSet(index);
m_channelSinkAPIs.at(index)->setDeviceSetIndex(m_deviceTabIndex);
m_channelSinkAPIs.at(index)->setDeviceAPI(this);
}
for (; index < m_channelSourceAPIs.size() + m_channelSinkAPIs.size(); ++index)
{
int sourceIndex = index - m_channelSinkAPIs.size();
m_channelSourceAPIs.at(sourceIndex)->setIndexInDeviceSet(index);
m_channelSourceAPIs.at(sourceIndex)->setDeviceSetIndex(m_deviceTabIndex);
m_channelSourceAPIs.at(sourceIndex)->setDeviceAPI(this);
}
for (; index < m_mimoChannelAPIs.size() + m_channelSourceAPIs.size() + m_channelSinkAPIs.size(); ++index)
{
int mimoIndex = index - m_channelSourceAPIs.size() - m_channelSinkAPIs.size();
m_mimoChannelAPIs.at(mimoIndex)->setIndexInDeviceSet(index);
m_mimoChannelAPIs.at(mimoIndex)->setDeviceSetIndex(m_deviceTabIndex);
m_mimoChannelAPIs.at(mimoIndex)->setDeviceAPI(this);
}
}
}
void DeviceAPI::setDeviceSetIndex(int deviceSetIndex)
{
m_deviceTabIndex = deviceSetIndex;
renumerateChannels();
}
void DeviceAPI::engineStateChanged()
{
emit stateChanged(this);
}