1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-15 21:01:45 -05:00
sdrangel/plugins/samplesource/sigmffileinput/sigmffileinputworker.cpp

740 lines
26 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2020, 2023 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <errno.h>
#include <QDebug>
#include "dsp/filerecord.h"
#include "dsp/samplesinkfifo.h"
#include "util/messagequeue.h"
#include "sigmffiledata.h"
#include "sigmffileconvert.h"
#include "sigmffileinputsettings.h"
#include "sigmffileinputworker.h"
MESSAGE_CLASS_DEFINITION(SigMFFileInputWorker::MsgReportEOF, Message)
MESSAGE_CLASS_DEFINITION(SigMFFileInputWorker::MsgReportTrackChange, Message)
SigMFFileInputWorker::SigMFFileInputWorker(std::ifstream *samplesStream,
SampleSinkFifo* sampleFifo,
const QTimer& timer,
MessageQueue *fileInputMessageQueue,
QObject* parent) :
QObject(parent),
m_running(false),
m_currentTrackIndex(0),
m_ifstream(samplesStream),
m_fileBuf(0),
m_convertBuf(0),
m_bufsize(0),
m_chunksize(0),
m_sampleFifo(sampleFifo),
m_samplesCount(0),
m_timer(timer),
m_fileInputMessageQueue(fileInputMessageQueue),
m_samplerate(48000),
m_accelerationFactor(1),
m_samplesize(16),
m_samplebytes(2),
m_throttlems(FILESOURCE_THROTTLE_MS),
m_throttleToggle(false),
m_sigMFConverter(nullptr)
{
}
SigMFFileInputWorker::~SigMFFileInputWorker()
{
if (m_running) {
stopWork();
}
if (m_fileBuf != 0) {
free(m_fileBuf);
}
if (m_convertBuf != 0) {
free(m_convertBuf);
}
}
void SigMFFileInputWorker::startWork()
{
qDebug() << "SigMFFileInputWorker::startWork: ";
if (m_ifstream->is_open())
{
qDebug() << "SigMFFileInputWorker::startWork: file stream open, starting...";
m_elapsedTimer.start();
connect(&m_timer, SIGNAL(timeout()), this, SLOT(tick()));
m_running = true;
}
else
{
qDebug() << "SigMFFileInputWorker::startWork: file stream closed, not starting.";
}
}
void SigMFFileInputWorker::stopWork()
{
qDebug() << "SigMFFileInputWorker::stopWork";
disconnect(&m_timer, SIGNAL(timeout()), this, SLOT(tick()));
m_running = false;
}
void SigMFFileInputWorker::setMetaInformation(const SigMFFileMetaInfo *metaInfo, const QList<SigMFFileCapture> *captures)
{
m_metaInfo = metaInfo;
m_captures = captures;
m_samplerate = m_metaInfo->m_coreSampleRate;
m_samplesize = m_metaInfo->m_dataType.m_sampleBits;
setConverter();
setSampleRate();
}
void SigMFFileInputWorker::setTrackIndex(int trackIndex)
{
m_currentTrackIndex = trackIndex;
m_samplesCount = m_captures->at(m_currentTrackIndex).m_sampleStart;
int sampleRate = m_captures->at(m_currentTrackIndex).m_sampleRate;
if (sampleRate != m_samplerate)
{
m_samplerate = sampleRate;
setSampleRate();
}
MsgReportTrackChange *message = MsgReportTrackChange::create(m_currentTrackIndex);
m_fileInputMessageQueue->push(message);
}
void SigMFFileInputWorker::setAccelerationFactor(int accelerationFactor)
{
m_accelerationFactor = accelerationFactor;
setSampleRate();
}
void SigMFFileInputWorker::setSampleRate()
{
bool running = m_running;
if (running) {
stopWork();
}
m_samplebytes = SigMFFileInputSettings::bitsToBytes(m_samplesize);
m_chunksize = (m_accelerationFactor * m_samplerate * 2 * m_samplebytes * m_throttlems) / 1000;
setBuffers(m_chunksize);
if (running) {
startWork();
}
}
void SigMFFileInputWorker::setBuffers(std::size_t chunksize)
{
if (chunksize > m_bufsize)
{
m_bufsize = chunksize;
int nbSamples = m_bufsize/(2 * m_samplebytes);
if (m_fileBuf == 0)
{
qDebug() << "FileInputThread::setBuffers: Allocate file buffer";
m_fileBuf = (quint8*) malloc(m_bufsize);
}
else
{
qDebug() << "FileInputThread::setBuffers: Re-allocate file buffer";
quint8 *buf = m_fileBuf;
m_fileBuf = (quint8*) realloc((void*) m_fileBuf, m_bufsize);
if (!m_fileBuf) free(buf);
}
if (m_convertBuf == 0)
{
qDebug() << "FileInputThread::setBuffers: Allocate conversion buffer";
m_convertBuf = (quint8*) malloc(nbSamples*sizeof(Sample));
}
else
{
qDebug() << "FileInputThread::setBuffers: Re-allocate conversion buffer";
quint8 *buf = m_convertBuf;
m_convertBuf = (quint8*) realloc((void*) m_convertBuf, nbSamples*sizeof(Sample));
if (!m_convertBuf) free(buf);
}
qDebug() << "FileInputThread::setBuffers: size: " << m_bufsize
<< " #samples: " << nbSamples;
}
}
void SigMFFileInputWorker::tick()
{
if (m_running)
{
qint64 throttlems = m_elapsedTimer.restart();
if (throttlems != m_throttlems)
{
m_throttlems = throttlems;
m_chunksize = 2 * m_samplebytes * ((m_samplerate * m_accelerationFactor * (m_throttlems+(m_throttleToggle ? 1 : 0))) / 1000);
m_throttleToggle = !m_throttleToggle;
setBuffers(m_chunksize);
}
// read samples directly feeding the SampleFifo (no callback)
if (m_samplesCount + m_chunksize > m_totalSamples) {
m_ifstream->read(reinterpret_cast<char*>(m_fileBuf), m_totalSamples - m_samplesCount);
} else {
m_ifstream->read(reinterpret_cast<char*>(m_fileBuf), m_chunksize);
}
if ((m_samplesCount + m_chunksize > m_totalSamples) || m_ifstream->eof())
{
writeToSampleFifo(m_fileBuf, (qint32) m_ifstream->gcount()); // take what has been read
MsgReportEOF *message = MsgReportEOF::create();
m_fileInputMessageQueue->push(message);
}
else
{
writeToSampleFifo(m_fileBuf, (qint32) m_chunksize);
m_samplesCount += m_chunksize / (2 * m_samplebytes);
if ((m_currentTrackIndex + 1 < m_captures->size())
&& (m_samplesCount > m_captures->at(m_currentTrackIndex+1).m_sampleStart))
{
m_currentTrackIndex++;
int sampleRate = m_captures->at(m_currentTrackIndex).m_sampleRate;
if (sampleRate != m_samplerate)
{
m_samplerate = sampleRate;
setSampleRate();
}
MsgReportTrackChange *message = MsgReportTrackChange::create(m_currentTrackIndex);
m_fileInputMessageQueue->push(message);
}
}
}
}
void SigMFFileInputWorker::setConverter()
{
if (m_metaInfo->m_dataType.m_floatingPoint) // float
{
if (m_metaInfo->m_dataType.m_complex)
{
if (m_metaInfo->m_dataType.m_bigEndian)
{
if (m_metaInfo->m_dataType.m_swapIQ) {
m_sigMFConverter = new SigMFConverter<float, SDR_RX_SAMP_SZ, 32, true, true, true>();
} else {
m_sigMFConverter = new SigMFConverter<float, SDR_RX_SAMP_SZ, 32, true, true, false>();
}
}
else
{
if (m_metaInfo->m_dataType.m_swapIQ) {
m_sigMFConverter = new SigMFConverter<float, SDR_RX_SAMP_SZ, 32, true, false, true>();
} else {
m_sigMFConverter = new SigMFConverter<float, SDR_RX_SAMP_SZ, 32, true, false, false>();
}
}
}
else
{
if (m_metaInfo->m_dataType.m_bigEndian) {
m_sigMFConverter = new SigMFConverter<float, SDR_RX_SAMP_SZ, 32, false, true, false>();
} else {
m_sigMFConverter = new SigMFConverter<float, SDR_RX_SAMP_SZ, 32, false, false, false>();
}
}
}
else if ((m_metaInfo->m_dataType.m_signed) && (m_samplesize == 8)) // i8
{
if (m_metaInfo->m_dataType.m_complex)
{
if (m_metaInfo->m_dataType.m_swapIQ) {
m_sigMFConverter = new SigMFConverter<int8_t, SDR_RX_SAMP_SZ, 8, true, false, true>();
} else {
m_sigMFConverter = new SigMFConverter<int8_t, SDR_RX_SAMP_SZ, 8, true, false, false>();
}
}
else
{
m_sigMFConverter = new SigMFConverter<int8_t, SDR_RX_SAMP_SZ, 8, false, false, false>();
}
}
else if ((!m_metaInfo->m_dataType.m_signed) && (m_samplesize == 8)) // u8
{
if (m_metaInfo->m_dataType.m_complex)
{
if (m_metaInfo->m_dataType.m_swapIQ) {
m_sigMFConverter = new SigMFConverter<uint8_t, SDR_RX_SAMP_SZ, 8, true, false, true>();
} else {
m_sigMFConverter = new SigMFConverter<uint8_t, SDR_RX_SAMP_SZ, 8, true, false, false>();
}
}
else
{
m_sigMFConverter = new SigMFConverter<uint8_t, SDR_RX_SAMP_SZ, 8, false, false, false>();
}
}
else if ((m_metaInfo->m_dataType.m_signed) && (m_samplesize == 16)) // i16
{
if (m_metaInfo->m_dataType.m_complex)
{
if (m_metaInfo->m_dataType.m_bigEndian)
{
if (m_metaInfo->m_dataType.m_swapIQ) {
m_sigMFConverter = new SigMFConverter<int16_t, SDR_RX_SAMP_SZ, 16, true, true, true>();
} else {
m_sigMFConverter = new SigMFConverter<int16_t, SDR_RX_SAMP_SZ, 16, true, true, false>();
}
}
else
{
if (m_metaInfo->m_dataType.m_swapIQ) {
m_sigMFConverter = new SigMFConverter<int16_t, SDR_RX_SAMP_SZ, 16, true, false, true>();
} else {
m_sigMFConverter = new SigMFConverter<int16_t, SDR_RX_SAMP_SZ, 16, true, false, false>();
}
}
}
else
{
if (m_metaInfo->m_dataType.m_bigEndian) {
m_sigMFConverter = new SigMFConverter<int16_t, SDR_RX_SAMP_SZ, 16, false, true, false>();
} else {
m_sigMFConverter = new SigMFConverter<int16_t, SDR_RX_SAMP_SZ, 16, false, false, false>();
}
}
}
else if ((!m_metaInfo->m_dataType.m_signed) && (m_samplesize == 16)) // u16
{
if (m_metaInfo->m_dataType.m_complex)
{
if (m_metaInfo->m_dataType.m_bigEndian)
{
if (m_metaInfo->m_dataType.m_swapIQ) {
m_sigMFConverter = new SigMFConverter<uint16_t, SDR_RX_SAMP_SZ, 16, true, true, true>();
} else {
m_sigMFConverter = new SigMFConverter<uint16_t, SDR_RX_SAMP_SZ, 16, true, true, false>();
}
}
else
{
if (m_metaInfo->m_dataType.m_swapIQ) {
m_sigMFConverter = new SigMFConverter<uint16_t, SDR_RX_SAMP_SZ, 16, true, false, true>();
} else {
m_sigMFConverter = new SigMFConverter<uint16_t, SDR_RX_SAMP_SZ, 16, true, false, false>();
}
}
}
else
{
if (m_metaInfo->m_dataType.m_bigEndian) {
m_sigMFConverter = new SigMFConverter<uint16_t, SDR_RX_SAMP_SZ, 16, false, true, false>();
} else {
m_sigMFConverter = new SigMFConverter<uint16_t, SDR_RX_SAMP_SZ, 16, false, false, false>();
}
}
}
else if ((m_metaInfo->m_dataType.m_signed) && (m_samplesize == 24)) // i24 (SDRangel special)
{
m_sigMFConverter = new SigMFConverter<int32_t, SDR_RX_SAMP_SZ, 24, true, false, false>();
}
else if ((m_metaInfo->m_dataType.m_signed) && (m_samplesize == 32)) // i32
{
if (m_metaInfo->m_dataType.m_complex)
{
if (m_metaInfo->m_dataType.m_bigEndian)
{
if (m_metaInfo->m_dataType.m_swapIQ) {
m_sigMFConverter = new SigMFConverter<int32_t, SDR_RX_SAMP_SZ, 32, true, true, true>();
} else {
m_sigMFConverter = new SigMFConverter<int32_t, SDR_RX_SAMP_SZ, 32, true, true, false>();
}
}
else
{
if (m_metaInfo->m_dataType.m_swapIQ) {
m_sigMFConverter = new SigMFConverter<int32_t, SDR_RX_SAMP_SZ, 32, true, false, true>();
} else {
m_sigMFConverter = new SigMFConverter<int32_t, SDR_RX_SAMP_SZ, 32, true, false, false>();
}
}
}
else
{
if (m_metaInfo->m_dataType.m_bigEndian) {
m_sigMFConverter = new SigMFConverter<int32_t, SDR_RX_SAMP_SZ, 32, false, true, false>();
} else {
m_sigMFConverter = new SigMFConverter<int32_t, SDR_RX_SAMP_SZ, 32, false, false, false>();
}
}
}
else if ((!m_metaInfo->m_dataType.m_signed) && (m_samplesize == 32)) // u32
{
if (m_metaInfo->m_dataType.m_complex)
{
if (m_metaInfo->m_dataType.m_bigEndian)
{
if (m_metaInfo->m_dataType.m_swapIQ) {
m_sigMFConverter = new SigMFConverter<uint32_t, SDR_RX_SAMP_SZ, 32, true, true, true>();
} else {
m_sigMFConverter = new SigMFConverter<uint32_t, SDR_RX_SAMP_SZ, 32, true, true, false>();
}
}
else
{
if (m_metaInfo->m_dataType.m_swapIQ) {
m_sigMFConverter = new SigMFConverter<uint32_t, SDR_RX_SAMP_SZ, 32, true, false, true>();
} else {
m_sigMFConverter = new SigMFConverter<uint32_t, SDR_RX_SAMP_SZ, 32, true, false, false>();
}
}
}
else
{
if (m_metaInfo->m_dataType.m_bigEndian) {
m_sigMFConverter = new SigMFConverter<uint32_t, SDR_RX_SAMP_SZ, 32, false, true, false>();
} else {
m_sigMFConverter = new SigMFConverter<uint32_t, SDR_RX_SAMP_SZ, 32, false, false, false>();
}
}
}
}
void SigMFFileInputWorker::writeToSampleFifo(const quint8* buf, qint32 nbBytes)
{
if (!m_sigMFConverter)
{
qDebug("SigMFFileInputWorker::writeToSampleFifo: no converter - probably sample format is not supported");
return;
}
#if defined(__WINDOWS__) || (BYTE_ORDER == LITTLE_ENDIAN)
if ((m_metaInfo->m_dataType.m_complex) && (!m_metaInfo->m_dataType.m_bigEndian) && (!m_metaInfo->m_dataType.m_swapIQ))
{
if ((m_samplesize == 16) && (SDR_RX_SAMP_SZ == 16))
{
m_sampleFifo->write(buf, nbBytes);
return;
}
if ((m_samplesize == 24) && (SDR_RX_SAMP_SZ == 24))
{
m_sampleFifo->write(buf, nbBytes);
return;
}
}
#endif
int nbSamples = m_sigMFConverter->convert((FixReal *) m_convertBuf, buf, nbBytes);
m_sampleFifo->write(m_convertBuf, nbSamples*sizeof(Sample));
}
void SigMFFileInputWorker::writeToSampleFifoBAK(const quint8* buf, qint32 nbBytes)
{
if (m_metaInfo->m_dataType.m_floatingPoint) // FP assumes 32 bit floats (float) always
{
FixReal *convertBuf = (FixReal *) m_convertBuf;
const float *fileBuf = (float *) buf;
int nbSamples;
if (m_metaInfo->m_dataType.m_complex)
{
nbSamples = nbBytes / (2 * m_samplebytes);
for (int is = 0; is < nbSamples; is++)
{
convertBuf[2*is] = fileBuf[2*is] * SDR_RX_SCALEF;
convertBuf[2*is+1] = fileBuf[2*is+1] * SDR_RX_SCALEF;
}
}
else
{
nbSamples = nbBytes / m_samplebytes;
for (int is = 0; is < nbSamples; is++)
{
convertBuf[2*is] = fileBuf[is] * SDR_RX_SCALEF;
convertBuf[2*is+1] = 0;
}
}
m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample));
}
else if (m_metaInfo->m_dataType.m_signed) // signed integers
{
if (m_samplesize == 8)
{
FixReal *convertBuf = (FixReal *) m_convertBuf;
const int8_t *fileBuf = (int8_t *) buf;
int nbSamples;
if (m_metaInfo->m_dataType.m_complex)
{
nbSamples = nbBytes / (2 * m_samplebytes);
for (int is = 0; is < nbSamples; is++)
{
convertBuf[2*is] = fileBuf[2*is];
convertBuf[2*is] <<= (SDR_RX_SAMP_SZ == 16) ? 8 : 16;
convertBuf[2*is+1] = fileBuf[2*is+1];
convertBuf[2*is+1] <<= (SDR_RX_SAMP_SZ == 16) ? 8 : 16;
}
}
else
{
nbSamples = nbBytes / m_samplebytes;
for (int is = 0; is < nbSamples; is++)
{
convertBuf[2*is] = fileBuf[is];
convertBuf[2*is] <<= (SDR_RX_SAMP_SZ == 16) ? 8 : 16;
convertBuf[2*is+1] = 0;
}
}
m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample));
}
else if (m_samplesize == 16)
{
if (SDR_RX_SAMP_SZ == 16)
{
if (m_metaInfo->m_dataType.m_complex)
{
m_sampleFifo->write(buf, nbBytes);
}
else
{
FixReal *convertBuf = (FixReal *) m_convertBuf;
const int16_t *fileBuf = (int16_t *) buf;
int nbSamples = nbBytes / m_samplebytes;
for (int is = 0; is < nbSamples; is++)
{
convertBuf[2*is] = fileBuf[2*is];
convertBuf[2*is+1] = 0;
}
m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample));
}
}
else if (SDR_RX_SAMP_SZ == 24)
{
FixReal *convertBuf = (FixReal *) m_convertBuf;
const int16_t *fileBuf = (int16_t *) buf;
int nbSamples;
if (m_metaInfo->m_dataType.m_complex)
{
nbSamples = nbBytes / (2 * m_samplebytes);
for (int is = 0; is < nbSamples; is++)
{
convertBuf[2*is] = fileBuf[2*is] << 8;
convertBuf[2*is+1] = fileBuf[2*is+1] << 8;
}
}
else
{
nbSamples = nbBytes / m_samplebytes;
for (int is = 0; is < nbSamples; is++)
{
convertBuf[2*is] = fileBuf[is] << 8;
convertBuf[2*is+1] = 0;
}
}
m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample));
}
}
else if (m_samplesize == 24)
{
if (SDR_RX_SAMP_SZ == 24)
{
if (m_metaInfo->m_dataType.m_complex)
{
m_sampleFifo->write(buf, nbBytes);
}
else
{
FixReal *convertBuf = (FixReal *) m_convertBuf;
const int32_t *fileBuf = (int32_t *) buf;
int nbSamples = nbBytes / m_samplebytes;
for (int is = 0; is < nbSamples; is++)
{
convertBuf[2*is] = fileBuf[2*is];
convertBuf[2*is+1] = 0;
}
m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample));
}
}
else if (SDR_RX_SAMP_SZ == 16)
{
FixReal *convertBuf = (FixReal *) m_convertBuf;
const int32_t *fileBuf = (int32_t *) buf;
int nbSamples;
if (m_metaInfo->m_dataType.m_complex)
{
nbSamples = nbBytes / (2 * m_samplebytes);
for (int is = 0; is < nbSamples; is++)
{
convertBuf[2*is] = fileBuf[2*is] >> 8;
convertBuf[2*is+1] = fileBuf[2*is+1] >> 8;
}
}
else
{
nbSamples = nbBytes / m_samplebytes;
for (int is = 0; is < nbSamples; is++)
{
convertBuf[2*is] = fileBuf[is] >> 8;
convertBuf[2*is+1] = 0;
}
}
m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample));
}
}
if (m_samplesize == 32)
{
FixReal *convertBuf = (FixReal *) m_convertBuf;
const int32_t *fileBuf = (int32_t *) buf;
int nbSamples;
if (m_metaInfo->m_dataType.m_complex)
{
nbSamples = nbBytes / (2 * m_samplebytes);
for (int is = 0; is < nbSamples; is++)
{
convertBuf[2*is] = fileBuf[2*is] >> (SDR_RX_SAMP_SZ == 24) ? 8 : 16;
convertBuf[2*is+1] = fileBuf[2*is+1] >> (SDR_RX_SAMP_SZ == 24) ? 8 : 16;
}
}
else
{
nbSamples = nbBytes / m_samplebytes;
for (int is = 0; is < nbSamples; is++)
{
convertBuf[2*is] = fileBuf[is] >> (SDR_RX_SAMP_SZ == 24) ? 8 : 16;
convertBuf[2*is+1] = 0;
}
}
m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample));
}
}
else // unsigned integers
{
if (m_samplesize == 8)
{
FixReal *convertBuf = (FixReal *) m_convertBuf;
const uint8_t *fileBuf = (uint8_t *) buf;
int nbSamples;
if (m_metaInfo->m_dataType.m_complex)
{
nbSamples = nbBytes / (2 * m_samplebytes);
for (int is = 0; is < nbSamples; is++)
{
convertBuf[2*is] = fileBuf[2*is] - 128;
convertBuf[2*is] <<= (SDR_RX_SAMP_SZ == 16) ? 8 : 16;
convertBuf[2*is+1] = fileBuf[2*is+1] - 128;
convertBuf[2*is+1] <<= (SDR_RX_SAMP_SZ == 16) ? 8 : 16;
}
}
else
{
nbSamples = nbBytes / m_samplebytes;
for (int is = 0; is < nbSamples; is++)
{
convertBuf[2*is] = fileBuf[is] - 128;
convertBuf[2*is] <<= (SDR_RX_SAMP_SZ == 16) ? 8 : 16;
convertBuf[2*is+1] = 0;
}
}
m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample));
}
else if (m_samplesize == 16)
{
FixReal *convertBuf = (FixReal *) m_convertBuf;
const uint16_t *fileBuf = (uint16_t *) buf;
int nbSamples;
if (m_metaInfo->m_dataType.m_complex)
{
nbSamples = nbBytes / (2 * m_samplebytes);
for (int is = 0; is < nbSamples; is++)
{
convertBuf[2*is] = fileBuf[2*is] - 32768;
convertBuf[2*is] <<= (SDR_RX_SAMP_SZ == 16) ? 0 : 8;
convertBuf[2*is+1] = fileBuf[2*is+1] - 32768;
convertBuf[2*is+1] <<= (SDR_RX_SAMP_SZ == 16) ? 0 : 8;
}
}
else
{
nbSamples = nbBytes / m_samplebytes;
for (int is = 0; is < nbSamples; is++)
{
convertBuf[2*is] = fileBuf[is] - 32768;
convertBuf[2*is] <<= (SDR_RX_SAMP_SZ == 16) ? 0 : 8;
convertBuf[2*is+1] = 0;
}
}
m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample));
}
else if (m_samplesize == 32)
{
FixReal *convertBuf = (FixReal *) m_convertBuf;
const uint32_t *fileBuf = (uint32_t *) buf;
int nbSamples;
if (m_metaInfo->m_dataType.m_complex)
{
nbSamples = nbBytes / (2 * m_samplebytes);
for (int is = 0; is < nbSamples; is++)
{
convertBuf[2*is] = (fileBuf[2*is] >> (SDR_RX_SAMP_SZ == 24) ? 8 : 16)
- ((SDR_RX_SAMP_SZ == 24) ? (1<<23) : (1<<15));
convertBuf[2*is+1] = (fileBuf[2*is+1] >> (SDR_RX_SAMP_SZ == 24) ? 8 : 16)
- ((SDR_RX_SAMP_SZ == 24) ? (1<<23) : (1<<15));;
}
}
else
{
nbSamples = nbBytes / m_samplebytes;
for (int is = 0; is < nbSamples; is++)
{
convertBuf[2*is] = (fileBuf[is] >> (SDR_RX_SAMP_SZ == 24) ? 8 : 16)
- ((SDR_RX_SAMP_SZ == 24) ? (1<<23) : (1<<15));
convertBuf[2*is+1] = 0;
}
}
m_sampleFifo->write((quint8*) convertBuf, nbSamples*sizeof(Sample));
}
}
}