1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-16 13:21:50 -05:00
sdrangel/plugins/samplemimo/testmi/testmiworker.h
2020-11-10 14:28:37 +01:00

363 lines
12 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#ifndef _TESTMI_TESTMIWORKER_H_
#define _TESTMI_TESTMIWORKER_H_
#include <QObject>
#include <QTimer>
#include <QElapsedTimer>
#include <QDebug>
#include "dsp/decimators.h"
#include "dsp/ncof.h"
#include "util/message.h"
#include "util/messagequeue.h"
#include "testmisettings.h"
#define TESTMI_THROTTLE_MS 50
class SampleMIFifo;
class TestMIWorker : public QObject {
Q_OBJECT
public:
TestMIWorker(SampleMIFifo* sampleFifo, int streamIndex, QObject* parent = nullptr);
~TestMIWorker();
void startWork();
void stopWork();
void setSamplerate(int samplerate);
void setLog2Decimation(unsigned int log2_decim);
void setFcPos(int fcPos);
void setBitSize(uint32_t bitSizeIndex);
void setAmplitudeBits(int32_t amplitudeBits);
void setDCFactor(float iFactor);
void setIFactor(float iFactor);
void setQFactor(float qFactor);
void setPhaseImbalance(float phaseImbalance);
void setFrequencyShift(int shift);
void setToneFrequency(int toneFrequency);
void setModulation(TestMIStreamSettings::Modulation modulation);
void setAMModulation(float amModulation);
void setFMDeviation(float deviation);
void setPattern0();
void setPattern1();
void setPattern2();
private:
volatile bool m_running;
qint16 *m_buf;
quint32 m_bufsize;
quint32 m_chunksize;
SampleVector m_convertBuffer;
SampleMIFifo* m_sampleFifo;
int m_streamIndex;
NCOF m_nco;
NCOF m_toneNco;
int m_frequencyShift;
int m_toneFrequency;
TestMIStreamSettings::Modulation m_modulation;
float m_amModulation;
float m_fmDeviationUnit;
float m_fmPhasor;
uint32_t m_pulseWidth; //!< pulse width in number of samples
uint32_t m_pulseSampleCount;
uint32_t m_pulsePatternCount;
uint32_t m_pulsePatternCycle;
uint32_t m_pulsePatternPlaces;
int m_samplerate;
unsigned int m_log2Decim;
int m_fcPos;
uint32_t m_bitSizeIndex;
uint32_t m_bitShift;
int32_t m_amplitudeBits;
float m_dcBias;
float m_iBias;
float m_qBias;
float m_phaseImbalance;
int32_t m_amplitudeBitsDC;
int32_t m_amplitudeBitsI;
int32_t m_amplitudeBitsQ;
uint64_t m_frequency;
int m_fcPosShift;
int m_throttlems;
QTimer m_timer;
QElapsedTimer m_elapsedTimer;
bool m_throttleToggle;
QMutex m_mutex;
MessageQueue m_inputMessageQueue;
Decimators<qint32, qint16, SDR_RX_SAMP_SZ, 8, true> m_decimators_8;
Decimators<qint32, qint16, SDR_RX_SAMP_SZ, 12, true> m_decimators_12;
Decimators<qint32, qint16, SDR_RX_SAMP_SZ, 16, true> m_decimators_16;
void callback(const qint16* buf, qint32 len);
void setBuffers(quint32 chunksize);
void generate(quint32 chunksize);
void pullAF(Real& afSample);
// Decimate according to specified log2 (ex: log2=4 => decim=16)
inline void convert_8(SampleVector::iterator* it, const qint16* buf, qint32 len)
{
if (m_log2Decim == 0) {
m_decimators_8.decimate1(it, buf, len);
} else {
if (m_fcPos == 0) { // Infradyne
switch (m_log2Decim) {
case 1:
m_decimators_8.decimate2_inf(it, buf, len);
break;
case 2:
m_decimators_8.decimate4_inf(it, buf, len);
break;
case 3:
m_decimators_8.decimate8_inf(it, buf, len);
break;
case 4:
m_decimators_8.decimate16_inf(it, buf, len);
break;
case 5:
m_decimators_8.decimate32_inf(it, buf, len);
break;
case 6:
m_decimators_8.decimate64_inf(it, buf, len);
break;
default:
break;
}
} else if (m_fcPos == 1) {// Supradyne
switch (m_log2Decim) {
case 1:
m_decimators_8.decimate2_sup(it, buf, len);
break;
case 2:
m_decimators_8.decimate4_sup(it, buf, len);
break;
case 3:
m_decimators_8.decimate8_sup(it, buf, len);
break;
case 4:
m_decimators_8.decimate16_sup(it, buf, len);
break;
case 5:
m_decimators_8.decimate32_sup(it, buf, len);
break;
case 6:
m_decimators_8.decimate64_sup(it, buf, len);
break;
default:
break;
}
} else { // Centered
switch (m_log2Decim) {
case 1:
m_decimators_8.decimate2_cen(it, buf, len);
break;
case 2:
m_decimators_8.decimate4_cen(it, buf, len);
break;
case 3:
m_decimators_8.decimate8_cen(it, buf, len);
break;
case 4:
m_decimators_8.decimate16_cen(it, buf, len);
break;
case 5:
m_decimators_8.decimate32_cen(it, buf, len);
break;
case 6:
m_decimators_8.decimate64_cen(it, buf, len);
break;
default:
break;
}
}
}
}
void convert_12(SampleVector::iterator* it, const qint16* buf, qint32 len)
{
if (m_log2Decim == 0) {
m_decimators_12.decimate1(it, buf, len);
} else {
if (m_fcPos == 0) { // Infradyne
switch (m_log2Decim) {
case 1:
m_decimators_12.decimate2_inf(it, buf, len);
break;
case 2:
m_decimators_12.decimate4_inf(it, buf, len);
break;
case 3:
m_decimators_12.decimate8_inf(it, buf, len);
break;
case 4:
m_decimators_12.decimate16_inf(it, buf, len);
break;
case 5:
m_decimators_12.decimate32_inf(it, buf, len);
break;
case 6:
m_decimators_12.decimate64_inf(it, buf, len);
break;
default:
break;
}
} else if (m_fcPos == 1) {// Supradyne
switch (m_log2Decim) {
case 1:
m_decimators_12.decimate2_sup(it, buf, len);
break;
case 2:
m_decimators_12.decimate4_sup(it, buf, len);
break;
case 3:
m_decimators_12.decimate8_sup(it, buf, len);
break;
case 4:
m_decimators_12.decimate16_sup(it, buf, len);
break;
case 5:
m_decimators_12.decimate32_sup(it, buf, len);
break;
case 6:
m_decimators_12.decimate64_sup(it, buf, len);
break;
default:
break;
}
} else { // Centered
switch (m_log2Decim) {
case 1:
m_decimators_12.decimate2_cen(it, buf, len);
break;
case 2:
m_decimators_12.decimate4_cen(it, buf, len);
break;
case 3:
m_decimators_12.decimate8_cen(it, buf, len);
break;
case 4:
m_decimators_12.decimate16_cen(it, buf, len);
break;
case 5:
m_decimators_12.decimate32_cen(it, buf, len);
break;
case 6:
m_decimators_12.decimate64_cen(it, buf, len);
break;
default:
break;
}
}
}
}
void convert_16(SampleVector::iterator* it, const qint16* buf, qint32 len)
{
if (m_log2Decim == 0) {
m_decimators_16.decimate1(it, buf, len);
} else {
if (m_fcPos == 0) { // Infradyne
switch (m_log2Decim) {
case 1:
m_decimators_16.decimate2_inf(it, buf, len);
break;
case 2:
m_decimators_16.decimate4_inf(it, buf, len);
break;
case 3:
m_decimators_16.decimate8_inf(it, buf, len);
break;
case 4:
m_decimators_16.decimate16_inf(it, buf, len);
break;
case 5:
m_decimators_16.decimate32_inf(it, buf, len);
break;
case 6:
m_decimators_16.decimate64_inf(it, buf, len);
break;
default:
break;
}
} else if (m_fcPos == 1) {// Supradyne
switch (m_log2Decim) {
case 1:
m_decimators_16.decimate2_sup(it, buf, len);
break;
case 2:
m_decimators_16.decimate4_sup(it, buf, len);
break;
case 3:
m_decimators_16.decimate8_sup(it, buf, len);
break;
case 4:
m_decimators_16.decimate16_sup(it, buf, len);
break;
case 5:
m_decimators_16.decimate32_sup(it, buf, len);
break;
case 6:
m_decimators_16.decimate64_sup(it, buf, len);
break;
default:
break;
}
} else { // Centered
switch (m_log2Decim) {
case 1:
m_decimators_16.decimate2_cen(it, buf, len);
break;
case 2:
m_decimators_16.decimate4_cen(it, buf, len);
break;
case 3:
m_decimators_16.decimate8_cen(it, buf, len);
break;
case 4:
m_decimators_16.decimate16_cen(it, buf, len);
break;
case 5:
m_decimators_16.decimate32_cen(it, buf, len);
break;
case 6:
m_decimators_16.decimate64_cen(it, buf, len);
break;
default:
break;
}
}
}
}
private slots:
void tick();
void handleInputMessages();
};
#endif // _TESTMI_TESTMIWORKER_H_