1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-15 12:51:49 -05:00
sdrangel/sdrbase/dsp/spectrumvis.cpp
2020-11-14 22:08:06 +01:00

1018 lines
35 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2015-2020 Edouard Griffiths, F4EXB //
// //
// Symbol synchronizer or symbol clock recovery mostly encapsulating //
// liquid-dsp's symsync "object" //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include "SWGGLSpectrum.h"
#include "SWGSpectrumServer.h"
#include "SWGSuccessResponse.h"
#include "glspectruminterface.h"
#include "dspcommands.h"
#include "dspengine.h"
#include "fftfactory.h"
#include "util/messagequeue.h"
#include "spectrumvis.h"
#define MAX_FFT_SIZE 4096
#ifndef LINUX
inline double log2f(double n)
{
return log(n) / log(2.0);
}
#endif
MESSAGE_CLASS_DEFINITION(SpectrumVis::MsgConfigureSpectrumVis, Message)
MESSAGE_CLASS_DEFINITION(SpectrumVis::MsgConfigureScalingFactor, Message)
MESSAGE_CLASS_DEFINITION(SpectrumVis::MsgConfigureWSpectrumOpenClose, Message)
MESSAGE_CLASS_DEFINITION(SpectrumVis::MsgConfigureWSpectrum, Message)
MESSAGE_CLASS_DEFINITION(SpectrumVis::MsgStartStop, Message)
const Real SpectrumVis::m_mult = (10.0f / log2f(10.0f));
SpectrumVis::SpectrumVis(Real scalef) :
BasebandSampleSink(),
m_running(true),
m_fft(nullptr),
m_fftEngineSequence(0),
m_fftBuffer(MAX_FFT_SIZE),
m_powerSpectrum(MAX_FFT_SIZE),
m_fftBufferFill(0),
m_needMoreSamples(false),
m_scalef(scalef),
m_glSpectrum(nullptr),
m_specMax(0.0f),
m_centerFrequency(0),
m_sampleRate(48000),
m_ofs(0),
m_powFFTDiv(1.0),
m_mutex(QMutex::Recursive)
{
setObjectName("SpectrumVis");
applySettings(m_settings, true);
}
SpectrumVis::~SpectrumVis()
{
FFTFactory *fftFactory = DSPEngine::instance()->getFFTFactory();
fftFactory->releaseEngine(m_settings.m_fftSize, false, m_fftEngineSequence);
}
void SpectrumVis::setScalef(Real scalef)
{
MsgConfigureScalingFactor* cmd = new MsgConfigureScalingFactor(scalef);
getInputMessageQueue()->push(cmd);
}
void SpectrumVis::configureWSSpectrum(const QString& address, uint16_t port)
{
MsgConfigureWSpectrum* cmd = new MsgConfigureWSpectrum(address, port);
getInputMessageQueue()->push(cmd);
}
void SpectrumVis::feedTriggered(const SampleVector::const_iterator& triggerPoint, const SampleVector::const_iterator& end, bool positiveOnly)
{
feed(triggerPoint, end, positiveOnly); // normal feed from trigger point
/*
if (triggerPoint == end)
{
// the following piece of code allows to terminate the FFT that ends past the end of scope captured data
// that is the spectrum will include the captured data
// just do nothing if you want the spectrum to be included inside the scope captured data
// that is to drop the FFT that dangles past the end of captured data
if (m_needMoreSamples) {
feed(begin, end, positiveOnly);
m_needMoreSamples = false; // force finish
}
}
else
{
feed(triggerPoint, end, positiveOnly); // normal feed from trigger point
}*/
}
void SpectrumVis::feed(const Complex *begin, unsigned int length)
{
if (!m_glSpectrum && !m_wsSpectrum.socketOpened()) {
return;
}
if (!m_mutex.tryLock(0)) { // prevent conflicts with configuration process
return;
}
Complex c;
Real v;
if (m_settings.m_averagingMode == GLSpectrumSettings::AvgModeNone)
{
for (unsigned int i = 0; i < m_settings.m_fftSize; i++)
{
if (i < length) {
c = begin[i];
} else {
c = Complex{0,0};
}
v = c.real() * c.real() + c.imag() * c.imag();
v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2f(v) + m_ofs;
m_powerSpectrum[i] = v;
}
// send new data to visualisation
if (m_glSpectrum) {
m_glSpectrum->newSpectrum(m_powerSpectrum, m_settings.m_fftSize);
}
// web socket spectrum connections
if (m_wsSpectrum.socketOpened())
{
m_wsSpectrum.newSpectrum(
m_powerSpectrum,
m_settings.m_fftSize,
m_centerFrequency,
m_sampleRate,
m_settings.m_linear,
m_settings.m_ssb,
m_settings.m_usb
);
}
}
else if (m_settings.m_averagingMode == GLSpectrumSettings::AvgModeMoving)
{
for (unsigned int i = 0; i < m_settings.m_fftSize; i++)
{
if (i < length) {
c = begin[i];
} else {
c = Complex{0,0};
}
v = c.real() * c.real() + c.imag() * c.imag();
v = m_movingAverage.storeAndGetAvg(v, i);
v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2f(v) + m_ofs;
m_powerSpectrum[i] = v;
}
// send new data to visualisation
if (m_glSpectrum) {
m_glSpectrum->newSpectrum(m_powerSpectrum, m_settings.m_fftSize);
}
// web socket spectrum connections
if (m_wsSpectrum.socketOpened())
{
m_wsSpectrum.newSpectrum(
m_powerSpectrum,
m_settings.m_fftSize,
m_centerFrequency,
m_sampleRate,
m_settings.m_linear,
m_settings.m_ssb,
m_settings.m_usb
);
}
m_movingAverage.nextAverage();
}
else if (m_settings.m_averagingMode == GLSpectrumSettings::AvgModeFixed)
{
double avg;
for (unsigned int i = 0; i < m_settings.m_fftSize; i++)
{
if (i < length) {
c = begin[i];
} else {
c = Complex{0,0};
}
v = c.real() * c.real() + c.imag() * c.imag();
// result available
if (m_fixedAverage.storeAndGetAvg(avg, v, i))
{
avg = m_settings.m_linear ? avg/m_powFFTDiv : m_mult * log2f(avg) + m_ofs;
m_powerSpectrum[i] = avg;
}
}
// result available
if (m_fixedAverage.nextAverage())
{
// send new data to visualisation
if (m_glSpectrum) {
m_glSpectrum->newSpectrum(m_powerSpectrum, m_settings.m_fftSize);
}
// web socket spectrum connections
if (m_wsSpectrum.socketOpened())
{
m_wsSpectrum.newSpectrum(
m_powerSpectrum,
m_settings.m_fftSize,
m_centerFrequency,
m_sampleRate,
m_settings.m_linear,
m_settings.m_ssb,
m_settings.m_usb
);
}
}
}
else if (m_settings.m_averagingMode == GLSpectrumSettings::AvgModeMax)
{
double max;
for (unsigned int i = 0; i < m_settings.m_fftSize; i++)
{
if (i < length) {
c = begin[i];
} else {
c = Complex{0,0};
}
v = c.real() * c.real() + c.imag() * c.imag();
// result available
if (m_max.storeAndGetMax(max, v, i))
{
max = m_settings.m_linear ? max/m_powFFTDiv : m_mult * log2f(max) + m_ofs;
m_powerSpectrum[i] = max;
}
}
// result available
if (m_max.nextMax())
{
// send new data to visualisation
if (m_glSpectrum) {
m_glSpectrum->newSpectrum(m_powerSpectrum, m_settings.m_fftSize);
}
// web socket spectrum connections
if (m_wsSpectrum.socketOpened())
{
m_wsSpectrum.newSpectrum(
m_powerSpectrum,
m_settings.m_fftSize,
m_centerFrequency,
m_sampleRate,
m_settings.m_linear,
m_settings.m_ssb,
m_settings.m_usb
);
}
}
}
m_mutex.unlock();
}
void SpectrumVis::feed(const SampleVector::const_iterator& cbegin, const SampleVector::const_iterator& end, bool positiveOnly)
{
if (!m_running) {
return;
}
// if no visualisation is set, send the samples to /dev/null
if (!m_glSpectrum && !m_wsSpectrum.socketOpened()) {
return;
}
if (!m_mutex.tryLock(0)) { // prevent conflicts with configuration process
return;
}
SampleVector::const_iterator begin(cbegin);
while (begin < end)
{
std::size_t todo = end - begin;
std::size_t samplesNeeded = m_refillSize - m_fftBufferFill;
if (todo >= samplesNeeded)
{
// fill up the buffer
std::vector<Complex>::iterator it = m_fftBuffer.begin() + m_fftBufferFill;
for (std::size_t i = 0; i < samplesNeeded; ++i, ++begin)
{
*it++ = Complex(begin->real() / m_scalef, begin->imag() / m_scalef);
}
// apply fft window (and copy from m_fftBuffer to m_fftIn)
m_window.apply(&m_fftBuffer[0], m_fft->in());
// calculate FFT
m_fft->transform();
// extract power spectrum and reorder buckets
const Complex* fftOut = m_fft->out();
Complex c;
Real v;
std::size_t halfSize = m_settings.m_fftSize / 2;
if (m_settings.m_averagingMode == GLSpectrumSettings::AvgModeNone)
{
m_specMax = 0.0f;
if ( positiveOnly )
{
for (std::size_t i = 0; i < halfSize; i++)
{
c = fftOut[i];
v = c.real() * c.real() + c.imag() * c.imag();
m_specMax = v > m_specMax ? v : m_specMax;
v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2f(v) + m_ofs;
m_powerSpectrum[i * 2] = v;
m_powerSpectrum[i * 2 + 1] = v;
}
}
else
{
for (std::size_t i = 0; i < halfSize; i++)
{
c = fftOut[i + halfSize];
v = c.real() * c.real() + c.imag() * c.imag();
m_specMax = v > m_specMax ? v : m_specMax;
v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2f(v) + m_ofs;
m_powerSpectrum[i] = v;
c = fftOut[i];
v = c.real() * c.real() + c.imag() * c.imag();
m_specMax = v > m_specMax ? v : m_specMax;
v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2f(v) + m_ofs;
m_powerSpectrum[i + halfSize] = v;
}
}
// send new data to visualisation
if (m_glSpectrum) {
m_glSpectrum->newSpectrum(m_powerSpectrum, m_settings.m_fftSize);
}
// web socket spectrum connections
if (m_wsSpectrum.socketOpened())
{
m_wsSpectrum.newSpectrum(
m_powerSpectrum,
m_settings.m_fftSize,
m_centerFrequency,
m_sampleRate,
m_settings.m_linear,
m_settings.m_ssb,
m_settings.m_usb
);
}
}
else if (m_settings.m_averagingMode == GLSpectrumSettings::AvgModeMoving)
{
m_specMax = 0.0f;
if ( positiveOnly )
{
for (std::size_t i = 0; i < halfSize; i++)
{
c = fftOut[i];
v = c.real() * c.real() + c.imag() * c.imag();
v = m_movingAverage.storeAndGetAvg(v, i);
m_specMax = v > m_specMax ? v : m_specMax;
v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2f(v) + m_ofs;
m_powerSpectrum[i * 2] = v;
m_powerSpectrum[i * 2 + 1] = v;
}
}
else
{
for (std::size_t i = 0; i < halfSize; i++)
{
c = fftOut[i + halfSize];
v = c.real() * c.real() + c.imag() * c.imag();
v = m_movingAverage.storeAndGetAvg(v, i+halfSize);
m_specMax = v > m_specMax ? v : m_specMax;
v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2f(v) + m_ofs;
m_powerSpectrum[i] = v;
c = fftOut[i];
v = c.real() * c.real() + c.imag() * c.imag();
v = m_movingAverage.storeAndGetAvg(v, i);
m_specMax = v > m_specMax ? v : m_specMax;
v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2f(v) + m_ofs;
m_powerSpectrum[i + halfSize] = v;
}
}
// send new data to visualisation
if (m_glSpectrum) {
m_glSpectrum->newSpectrum(m_powerSpectrum, m_settings.m_fftSize);
}
// web socket spectrum connections
if (m_wsSpectrum.socketOpened())
{
m_wsSpectrum.newSpectrum(
m_powerSpectrum,
m_settings.m_fftSize,
m_centerFrequency,
m_sampleRate,
m_settings.m_linear,
m_settings.m_ssb,
m_settings.m_usb
);
}
m_movingAverage.nextAverage();
}
else if (m_settings.m_averagingMode == GLSpectrumSettings::AvgModeFixed)
{
double avg;
Real specMax = 0.0f;
if ( positiveOnly )
{
for (std::size_t i = 0; i < halfSize; i++)
{
c = fftOut[i];
v = c.real() * c.real() + c.imag() * c.imag();
// result available
if (m_fixedAverage.storeAndGetAvg(avg, v, i))
{
specMax = avg > specMax ? avg : specMax;
avg = m_settings.m_linear ? avg/m_powFFTDiv : m_mult * log2f(avg) + m_ofs;
m_powerSpectrum[i * 2] = avg;
m_powerSpectrum[i * 2 + 1] = avg;
}
}
}
else
{
for (std::size_t i = 0; i < halfSize; i++)
{
c = fftOut[i + halfSize];
v = c.real() * c.real() + c.imag() * c.imag();
// result available
if (m_fixedAverage.storeAndGetAvg(avg, v, i+halfSize))
{
specMax = avg > specMax ? avg : specMax;
avg = m_settings.m_linear ? avg/m_powFFTDiv : m_mult * log2f(avg) + m_ofs;
m_powerSpectrum[i] = avg;
}
c = fftOut[i];
v = c.real() * c.real() + c.imag() * c.imag();
// result available
if (m_fixedAverage.storeAndGetAvg(avg, v, i))
{
specMax = avg > specMax ? avg : specMax;
avg = m_settings.m_linear ? avg/m_powFFTDiv : m_mult * log2f(avg) + m_ofs;
m_powerSpectrum[i + halfSize] = avg;
}
}
}
// result available
if (m_fixedAverage.nextAverage())
{
m_specMax = specMax;
// send new data to visualisation
if (m_glSpectrum) {
m_glSpectrum->newSpectrum(m_powerSpectrum, m_settings.m_fftSize);
}
// web socket spectrum connections
if (m_wsSpectrum.socketOpened())
{
m_wsSpectrum.newSpectrum(
m_powerSpectrum,
m_settings.m_fftSize,
m_centerFrequency,
m_sampleRate,
m_settings.m_linear,
m_settings.m_ssb,
m_settings.m_usb
);
}
}
}
else if (m_settings.m_averagingMode == GLSpectrumSettings::AvgModeMax)
{
double max;
Real specMax = 0.0f;
if ( positiveOnly )
{
for (std::size_t i = 0; i < halfSize; i++)
{
c = fftOut[i];
v = c.real() * c.real() + c.imag() * c.imag();
// result available
if (m_max.storeAndGetMax(max, v, i))
{
specMax = max > specMax ? max : specMax;
max = m_settings.m_linear ? max/m_powFFTDiv : m_mult * log2f(max) + m_ofs;
m_powerSpectrum[i * 2] = max;
m_powerSpectrum[i * 2 + 1] = max;
}
}
}
else
{
for (std::size_t i = 0; i < halfSize; i++)
{
c = fftOut[i + halfSize];
v = c.real() * c.real() + c.imag() * c.imag();
// result available
if (m_max.storeAndGetMax(max, v, i+halfSize))
{
specMax = max > specMax ? max : specMax;
max = m_settings.m_linear ? max/m_powFFTDiv : m_mult * log2f(max) + m_ofs;
m_powerSpectrum[i] = max;
}
c = fftOut[i];
v = c.real() * c.real() + c.imag() * c.imag();
// result available
if (m_max.storeAndGetMax(max, v, i))
{
specMax = max > specMax ? max : specMax;
max = m_settings.m_linear ? max/m_powFFTDiv : m_mult * log2f(max) + m_ofs;
m_powerSpectrum[i + halfSize] = max;
}
}
}
// result available
if (m_max.nextMax())
{
m_specMax = specMax;
// send new data to visualisation
if (m_glSpectrum) {
m_glSpectrum->newSpectrum(m_powerSpectrum, m_settings.m_fftSize);
}
// web socket spectrum connections
if (m_wsSpectrum.socketOpened())
{
m_wsSpectrum.newSpectrum(
m_powerSpectrum,
m_settings.m_fftSize,
m_centerFrequency,
m_sampleRate,
m_settings.m_linear,
m_settings.m_ssb,
m_settings.m_usb
);
}
}
}
// advance buffer respecting the fft overlap factor
std::copy(m_fftBuffer.begin() + m_refillSize, m_fftBuffer.end(), m_fftBuffer.begin());
// start over
m_fftBufferFill = m_overlapSize;
m_needMoreSamples = false;
}
else
{
// not enough samples for FFT - just fill in new data and return
for(std::vector<Complex>::iterator it = m_fftBuffer.begin() + m_fftBufferFill; begin < end; ++begin)
{
*it++ = Complex(begin->real() / m_scalef, begin->imag() / m_scalef);
}
m_fftBufferFill += todo;
m_needMoreSamples = true;
}
}
m_mutex.unlock();
}
void SpectrumVis::start()
{
setRunning(true);
if (getMessageQueueToGUI()) // propagate to GUI if any
{
MsgStartStop *msg = MsgStartStop::create(true);
getMessageQueueToGUI()->push(msg);
}
}
void SpectrumVis::stop()
{
setRunning(false);
if (getMessageQueueToGUI()) // propagate to GUI if any
{
MsgStartStop *msg = MsgStartStop::create(false);
getMessageQueueToGUI()->push(msg);
}
}
bool SpectrumVis::handleMessage(const Message& message)
{
if (DSPSignalNotification::match(message))
{
// This is coming from device engine and will apply to main spectrum
DSPSignalNotification& notif = (DSPSignalNotification&) message;
qDebug() << "SpectrumVis::handleMessage: DSPSignalNotification:"
<< " centerFrequency: " << notif.getCenterFrequency()
<< " sampleRate: " << notif.getSampleRate();
handleConfigureDSP(notif.getCenterFrequency(), notif.getSampleRate());
return true;
}
else if (MsgConfigureSpectrumVis::match(message))
{
MsgConfigureSpectrumVis& cfg = (MsgConfigureSpectrumVis&) message;
qDebug() << "SpectrumVis::handleMessage: MsgConfigureSpectrumVis";
applySettings(cfg.getSettings(), cfg.getForce());
return true;
}
else if (MsgConfigureScalingFactor::match(message))
{
MsgConfigureScalingFactor& conf = (MsgConfigureScalingFactor&) message;
handleScalef(conf.getScalef());
return true;
}
else if (MsgConfigureWSpectrumOpenClose::match(message))
{
MsgConfigureWSpectrumOpenClose& conf = (MsgConfigureWSpectrumOpenClose&) message;
handleWSOpenClose(conf.getOpenClose());
return true;
}
else if (MsgConfigureWSpectrum::match(message)) {
MsgConfigureWSpectrum& conf = (MsgConfigureWSpectrum&) message;
handleConfigureWSSpectrum(conf.getAddress(), conf.getPort());
return true;
}
else if (MsgStartStop::match(message))
{
MsgStartStop& cmd = (MsgStartStop&) message;
setRunning(cmd.getStartStop());
return true;
}
else
{
return false;
}
}
void SpectrumVis::applySettings(const GLSpectrumSettings& settings, bool force)
{
QMutexLocker mutexLocker(&m_mutex);
unsigned int fftSize = settings.m_fftSize > MAX_FFT_SIZE ?
MAX_FFT_SIZE :
settings.m_fftSize < 64 ?
64 :
settings.m_fftSize;
int overlapPercent = settings.m_fftOverlap > 100 ?
100 :
settings.m_fftOverlap < 0 ?
0 :
settings.m_fftOverlap;
qDebug() << "SpectrumVis::applySettings:"
<< " m_fftSize: " << fftSize
<< " m_fftWindow: " << settings.m_fftWindow
<< " m_fftOverlap: " << overlapPercent
<< " m_averagingIndex: " << settings.m_averagingIndex
<< " m_averagingMode: " << settings.m_averagingMode
<< " m_refLevel: " << settings.m_refLevel
<< " m_powerRange: " << settings.m_powerRange
<< " m_linear: " << settings.m_linear
<< " m_ssb: " << settings.m_ssb
<< " m_usb: " << settings.m_usb
<< " m_wsSpectrumAddress: " << settings.m_wsSpectrumAddress
<< " m_wsSpectrumPort: " << settings.m_wsSpectrumPort
<< " force: " << force;
if ((fftSize != m_settings.m_fftSize) || force)
{
FFTFactory *fftFactory = DSPEngine::instance()->getFFTFactory();
// release previous engine allocation if any
if (m_fft) {
fftFactory->releaseEngine(m_settings.m_fftSize, false, m_fftEngineSequence);
}
m_fftEngineSequence = fftFactory->getEngine(fftSize, false, &m_fft);
m_ofs = 20.0f * log10f(1.0f / fftSize);
m_powFFTDiv = fftSize * fftSize;
}
if ((fftSize != m_settings.m_fftSize)
|| (settings.m_fftWindow != m_settings.m_fftWindow) || force)
{
m_window.create(settings.m_fftWindow, fftSize);
}
if ((fftSize != m_settings.m_fftSize)
|| (overlapPercent != m_settings.m_fftOverlap) || force)
{
m_overlapSize = (fftSize * overlapPercent) / 100;
m_refillSize = fftSize - m_overlapSize;
m_fftBufferFill = m_overlapSize;
}
if ((fftSize != m_settings.m_fftSize)
|| (settings.m_averagingIndex != m_settings.m_averagingIndex)
|| (settings.m_averagingMode != m_settings.m_averagingMode) || force)
{
unsigned int averagingValue = GLSpectrumSettings::getAveragingValue(settings.m_averagingIndex, settings.m_averagingMode);
m_movingAverage.resize(fftSize, averagingValue > 1000 ? 1000 : averagingValue); // Capping to avoid out of memory condition
m_fixedAverage.resize(fftSize, averagingValue);
m_max.resize(fftSize, averagingValue);
}
if ((settings.m_wsSpectrumAddress != m_settings.m_wsSpectrumAddress)
|| (settings.m_wsSpectrumPort != m_settings.m_wsSpectrumPort) || force) {
handleConfigureWSSpectrum(settings.m_wsSpectrumAddress, settings.m_wsSpectrumPort);
}
m_settings = settings;
m_settings.m_fftSize = fftSize;
m_settings.m_fftOverlap = overlapPercent;
}
void SpectrumVis::handleConfigureDSP(uint64_t centerFrequency, int sampleRate)
{
QMutexLocker mutexLocker(&m_mutex);
m_centerFrequency = centerFrequency;
m_sampleRate = sampleRate;
}
void SpectrumVis::handleScalef(Real scalef)
{
QMutexLocker mutexLocker(&m_mutex);
m_scalef = scalef;
}
void SpectrumVis::handleWSOpenClose(bool openClose)
{
QMutexLocker mutexLocker(&m_mutex);
if (openClose) {
m_wsSpectrum.openSocket();
} else {
m_wsSpectrum.closeSocket();
}
}
void SpectrumVis::handleConfigureWSSpectrum(const QString& address, uint16_t port)
{
m_wsSpectrum.setListeningAddress(address);
m_wsSpectrum.setPort(port);
if (m_wsSpectrum.socketOpened())
{
m_wsSpectrum.closeSocket();
m_wsSpectrum.openSocket();
}
}
int SpectrumVis::webapiSpectrumSettingsGet(SWGSDRangel::SWGGLSpectrum& response, QString& errorMessage) const
{
(void) errorMessage;
response.init();
webapiFormatSpectrumSettings(response, m_settings);
return 200;
}
int SpectrumVis::webapiSpectrumSettingsPutPatch(
bool force,
const QStringList& spectrumSettingsKeys,
SWGSDRangel::SWGGLSpectrum& response, // query + response
QString& errorMessage)
{
(void) errorMessage;
GLSpectrumSettings settings = m_settings;
webapiUpdateSpectrumSettings(settings, spectrumSettingsKeys, response);
MsgConfigureSpectrumVis *msg = MsgConfigureSpectrumVis::create(settings, force);
m_inputMessageQueue.push(msg);
if (getMessageQueueToGUI()) // forward to GUI if any
{
MsgConfigureSpectrumVis *msgToGUI = MsgConfigureSpectrumVis::create(settings, force);
getMessageQueueToGUI()->push(msgToGUI);
}
webapiFormatSpectrumSettings(response, settings);
return 200;
}
int SpectrumVis::webapiSpectrumServerGet(SWGSDRangel::SWGSpectrumServer& response, QString& errorMessage) const
{
(void) errorMessage;
bool serverRunning = m_wsSpectrum.socketOpened();
QList<QHostAddress> peerHosts;
QList<quint16> peerPorts;
m_wsSpectrum.getPeers(peerHosts, peerPorts);
response.init();
response.setRun(serverRunning ? 1 : 0);
QHostAddress serverAddress = m_wsSpectrum.getListeningAddress();
if (serverAddress != QHostAddress::Null) {
response.setListeningAddress(new QString(serverAddress.toString()));
}
uint16_t serverPort = m_wsSpectrum.getListeningPort();
if (serverPort != 0) {
response.setListeningPort(serverPort);
}
if (peerHosts.size() > 0)
{
response.setClients(new QList<SWGSDRangel::SWGSpectrumServer_clients*>);
for (int i = 0; i < peerHosts.size(); i++)
{
response.getClients()->push_back(new SWGSDRangel::SWGSpectrumServer_clients);
response.getClients()->back()->setAddress(new QString(peerHosts.at(i).toString()));
response.getClients()->back()->setPort(peerPorts.at(i));
}
}
return 200;
}
int SpectrumVis::webapiSpectrumServerPost(SWGSDRangel::SWGSuccessResponse& response, QString& errorMessage)
{
(void) errorMessage;
MsgConfigureWSpectrumOpenClose *msg = MsgConfigureWSpectrumOpenClose::create(true);
m_inputMessageQueue.push(msg);
if (getMessageQueueToGUI()) // forward to GUI if any
{
MsgConfigureWSpectrumOpenClose *msgToGui = MsgConfigureWSpectrumOpenClose::create(true);
getMessageQueueToGUI()->push(msgToGui);
}
response.setMessage(new QString("Websocket spectrum server started"));
return 200;
}
int SpectrumVis::webapiSpectrumServerDelete(SWGSDRangel::SWGSuccessResponse& response, QString& errorMessage)
{
(void) errorMessage;
MsgConfigureWSpectrumOpenClose *msg = MsgConfigureWSpectrumOpenClose::create(false);
m_inputMessageQueue.push(msg);
if (getMessageQueueToGUI()) // forward to GUI if any
{
MsgConfigureWSpectrumOpenClose *msgToGui = MsgConfigureWSpectrumOpenClose::create(false);
getMessageQueueToGUI()->push(msgToGui);
}
response.setMessage(new QString("Websocket spectrum server stopped"));
return 200;
}
void SpectrumVis::webapiFormatSpectrumSettings(SWGSDRangel::SWGGLSpectrum& response, const GLSpectrumSettings& settings)
{
response.setFftSize(settings.m_fftSize);
response.setFftOverlap(settings.m_fftOverlap);
response.setFftWindow((int) settings.m_fftWindow);
response.setRefLevel(settings.m_refLevel);
response.setPowerRange(settings.m_powerRange);
response.setDecay(settings.m_decay);
response.setDecayDivisor(settings.m_decayDivisor);
response.setHistogramStroke(settings.m_histogramStroke);
response.setDisplayGridIntensity(settings.m_displayGridIntensity);
response.setDisplayTraceIntensity(settings.m_displayTraceIntensity);
response.setDisplayWaterfall(settings.m_displayWaterfall ? 1 : 0);
response.setInvertedWaterfall(settings.m_invertedWaterfall ? 1 : 0);
response.setWaterfallShare(settings.m_waterfallShare);
response.setDisplayMaxHold(settings.m_displayMaxHold ? 1 : 0);
response.setDisplayCurrent(settings.m_displayCurrent ? 1 : 0);
response.setDisplayHistogram(settings.m_displayHistogram ? 1 : 0);
response.setDisplayGrid(settings.m_displayGrid ? 1 : 0);
response.setAveragingMode((int) settings.m_averagingMode);
response.setAveragingValue(GLSpectrumSettings::getAveragingValue(settings.m_averagingIndex, settings.m_averagingMode));
response.setLinear(settings.m_linear ? 1 : 0);
response.setSsb(settings.m_ssb ? 1 : 0);
response.setUsb(settings.m_usb ? 1 : 0);
response.setWsSpectrumPort(settings.m_wsSpectrumPort);
if (response.getWsSpectrumAddress()) {
*response.getWsSpectrumAddress() = settings.m_wsSpectrumAddress;
} else {
response.setWsSpectrumAddress(new QString(settings.m_wsSpectrumAddress));
}
}
void SpectrumVis::webapiUpdateSpectrumSettings(
GLSpectrumSettings& settings,
const QStringList& spectrumSettingsKeys,
SWGSDRangel::SWGGLSpectrum& response)
{
if (spectrumSettingsKeys.contains("fftSize")) {
settings.m_fftSize = response.getFftSize();
}
if (spectrumSettingsKeys.contains("fftOverlap")) {
settings.m_fftOverlap = response.getFftOverlap();
}
if (spectrumSettingsKeys.contains("fftWindow")) {
settings.m_fftWindow = (FFTWindow::Function) response.getFftWindow();
}
if (spectrumSettingsKeys.contains("refLevel")) {
settings.m_refLevel = response.getRefLevel();
}
if (spectrumSettingsKeys.contains("powerRange")) {
settings.m_powerRange = response.getPowerRange();
}
if (spectrumSettingsKeys.contains("decay")) {
settings.m_decay = response.getDecay();
}
if (spectrumSettingsKeys.contains("decayDivisor")) {
settings.m_decayDivisor = response.getDecayDivisor();
}
if (spectrumSettingsKeys.contains("histogramStroke")) {
settings.m_histogramStroke = response.getHistogramStroke();
}
if (spectrumSettingsKeys.contains("displayGridIntensity")) {
settings.m_displayGridIntensity = response.getDisplayGridIntensity();
}
if (spectrumSettingsKeys.contains("displayTraceIntensity")) {
settings.m_displayTraceIntensity = response.getDisplayTraceIntensity();
}
if (spectrumSettingsKeys.contains("displayWaterfall")) {
settings.m_displayWaterfall = response.getDisplayWaterfall() != 0;
}
if (spectrumSettingsKeys.contains("invertedWaterfall")) {
settings.m_invertedWaterfall = response.getInvertedWaterfall() != 0;
}
if (spectrumSettingsKeys.contains("waterfallShare")) {
settings.m_waterfallShare = response.getWaterfallShare();
}
if (spectrumSettingsKeys.contains("displayMaxHold")) {
settings.m_displayMaxHold = response.getDisplayMaxHold() != 0;
}
if (spectrumSettingsKeys.contains("displayCurrent")) {
settings.m_displayCurrent = response.getDisplayCurrent() != 0;
}
if (spectrumSettingsKeys.contains("displayHistogram")) {
settings.m_displayHistogram = response.getDisplayHistogram() != 0;
}
if (spectrumSettingsKeys.contains("displayGrid")) {
settings.m_displayGrid = response.getDisplayGrid() != 0;
}
if (spectrumSettingsKeys.contains("averagingMode")) {
settings.m_averagingMode = (GLSpectrumSettings::AveragingMode) response.getAveragingMode();
}
if (spectrumSettingsKeys.contains("averagingValue"))
{
qint32 tmp = response.getAveragingValue();
settings.m_averagingIndex = GLSpectrumSettings::getAveragingIndex(tmp, settings.m_averagingMode);
settings.m_averagingValue = GLSpectrumSettings::getAveragingValue(settings.m_averagingIndex, settings.m_averagingMode);
}
if (spectrumSettingsKeys.contains("linear")) {
settings.m_linear = response.getLinear() != 0;
}
if (spectrumSettingsKeys.contains("ssb")) {
settings.m_ssb = response.getSsb() != 0;
}
if (spectrumSettingsKeys.contains("usb")) {
settings.m_usb = response.getUsb() != 0;
}
if (spectrumSettingsKeys.contains("wsSpectrumAddress")) {
settings.m_wsSpectrumAddress = *response.getWsSpectrumAddress();
}
if (spectrumSettingsKeys.contains("wsSpectrumPort")) {
settings.m_wsSpectrumPort = response.getWsSpectrumPort();
}
}