1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2025-07-31 21:12:28 -04:00
sdrangel/sdrbase/util/whittakereilers.cpp
2025-06-09 11:12:46 +01:00

234 lines
7.0 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2025 Jon Beniston, M7RCE <jon@beniston.com> //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include "whittakereilers.h"
WhittakerEilers::WhittakerEilers() :
v1a(nullptr),
v2a(nullptr),
da(nullptr),
dtd(nullptr),
ca(nullptr),
za(nullptr),
zb(nullptr),
b(nullptr),
m_length(0)
{
}
WhittakerEilers::~WhittakerEilers()
{
dealloc();
}
void WhittakerEilers::alloc(int length)
{
v1a = new double[length];
v2a = new double[length];
da = new double[length * 3];
dtd = new double[length * 3];
ca = new double[length * 3];
za = new double[length];
zb = new double[length];
b = new double[length];
m_length = length;
}
void WhittakerEilers::dealloc()
{
delete v1a;
delete v2a;
delete da;
delete dtd;
delete ca;
delete za;
delete zb;
delete b;
m_length = 0;
}
void WhittakerEilers::filter(const double *xi, double *yi, const double *w, const int length, const double lambda)
{
int i;
int j;
int k;
const int m = length;
if (m_length < length)
{
dealloc();
alloc(length);
}
for (i = 0; i < m - 1; i++) {
v1a[i] = 1.0 / (xi[i + 1] - xi[i]);
}
v1a[m - 1] = 0.0;
for (i = 0; i < m - 2; i++) {
v2a[i] = 1.0 / (xi[i + 2] - xi[i]);
}
v2a[m - 1] = 0.0;
v2a[m - 2] = 0.0;
//Wa = w;
// D1 = V1 * diff(I)
for (i = 0; i < m - 1; i++) {
da[i*3] = -v1a[i];
da[i*3+1] = v1a[i];
}
// D2 = V2 * diff(D1)
for (i = 0; i < m - 2; i++) {
da[i*3] = v2a[i] * -da[i*3];
da[i*3+1] = v2a[i] * (da[(i+1)*3] - da[i*3+1]);
da[i*3+2] = v2a[i] * da[(i+1)*3+1];
}
for (i = 1; i <= 6; i++) {
da[m * 3 - i] = 0;
}
dtd[0 * 3] = lambda * da[0 * 3] * da[0 * 3];
dtd[0 * 3 + 1] = lambda * da[0 * 3] * da[0 * 3 + 1];
dtd[0 * 3 + 2] = lambda * da[0 * 3] * da[0 * 3 + 2];
dtd[1 * 3] = lambda * (da[0 * 3 + 1] * da[0 * 3 + 1] + da[1 * 3] * da[1 * 3]);
dtd[1 * 3 + 1] = lambda * (da[0 * 3 + 1] * da[0 * 3 + 2] + da[1 * 3] * da[1 * 3 + 1]);
dtd[1 * 3 + 2] = lambda * (da[1 * 3] * da[1 * 3 + 2]);
for (int row = 2; row < m; row++) {
dtd[row * 3] = lambda * (da[(row - 2) * 3 + 2] * da[(row - 2) * 3 + 2] + da[(row - 1) * 3 + 1] * da[(row - 1) * 3 + 1] + da[row * 3] * da[row * 3]);
dtd[row * 3 + 1] = lambda * (da[(row - 1) * 3 + 1] * da[(row - 1) * 3 + 2] + da[(row) * 3] * da[(row) * 3 + 1]);
dtd[row * 3 + 2] = lambda * (da[(row) * 3] * da[(row) * 3 + 2]);
}
// Add in W
for (i = 0; i < m; i++) {
dtd[i * 3] = w[i] + dtd[i * 3];
}
// Cholesky Decomposition
i = 1;
j = i - 1;
ca[j * 3] = sqrt(dtd[j * 3]);
i = 2;
j = i - 2;
ca[j * 3 + 1] = 1.0 / ca[j * 3] * dtd[j * 3 + 1];
i = 2;
j = i - 1;
k = i - 2;
double sum = ca[k * 3 + 1] * ca[k * 3 + 1];
ca[j * 3] = sqrt(dtd[j * 3] - sum);
for (i = 3; i <= m; i++) {
j = i - 3;
ca[j * 3 + 2] = 1.0 / ca[j * 3] * dtd[j * 3 + 2];
k = i - 3;
sum = ca[k * 3 + 2] * ca[k * 3 + 1];
j = i - 2;
ca[j * 3 + 1] = 1.0 / ca[j * 3] * (dtd[j * 3 + 1] - sum);
k = i - 3;
sum = ca[k * 3 + 2] * ca[k * 3 + 2];
k = i - 2;
sum = sum + ca[k * 3 + 1] * ca[k * 3 + 1];
j = i - 1;
ca[j * 3] = sqrt(dtd[j * 3] - sum);
}
ca[m * 3 - 1] = 0;
ca[m * 3 - 2] = 0;
ca[m * 3 - 4] = 0;
// % Forward substitution(C' \ (w .* y))
for (i = 0; i < m; i++) {
b[i] = w[i] * yi[i];
}
za[0] = b[0] / ca[0];
sum = ca[0 * 3 + 1] * za[0];
za[1] = (b[1] - sum) / ca[1 * 3];
for (i = 3; i <= m; i++) {
sum = ca[(i - 3) * 3 + 2] * za[i - 3] + ca[(i - 2) * 3 + 1] * za[i - 2];
za[i - 1] = (b[i - 1] - sum) / ca[(i - 1) * 3];
}
// Backward substituion C \ (C' \ (w .* y));
b = za;
i = m - 1;
zb[i] = b[i] / ca[i * 3];
i = m - 2;
sum = ca[i * 3 + 1] * zb[i + 1];
zb[i] = (b[i] - sum) / ca[i * 3];
for (i = m - 2; i >= 1; i--) {
sum = ca[(i - 1) * 3 + 2] * zb[i + 1] + ca[(i - 1) * 3 + 1] * zb[i];
zb[i-1] = (b[i - 1] - sum) / ca[(i - 1) * 3];
}
if (std::isnan(zb[0])) {
qDebug() << "lambda" << lambda;
for (int i = 0; i < m; i++) {
qDebug() << "xi[" << i << "]" << qSetRealNumberPrecision(12) << xi[i];
}
for (int i = 0; i < m; i++) {
qDebug() << "yi[" << i << "]" << qSetRealNumberPrecision(12) << yi[i];
}
for (int i = 0; i < m; i++) {
qDebug() << "w[" << i << "]" << qSetRealNumberPrecision(12) << w[i];
}
for (int i = 0; i < m; i++) {
qDebug() << "v1a[" << i << "]" << qSetRealNumberPrecision(12) << v1a[i];
}
for (int i = 0; i < m; i++) {
qDebug() << "v2a[" << i << "]" << qSetRealNumberPrecision(12) << v2a[i];
}
for (int i = 0; i < m * 3; i++) {
qDebug() << "da[" << i << "]" << qSetRealNumberPrecision(12) << da[i];
}
for (int i = 0; i < m * 3; i++) {
qDebug() << "dtd[" << i << "]" << qSetRealNumberPrecision(12) << dtd[i];
}
for (int i = 0; i < m * 3; i++) {
qDebug() << "ca[" << i << "]" << qSetRealNumberPrecision(12) << ca[i];
}
for (int i = 0; i < m; i++) {
qDebug() << "za[" << i << "]" << qSetRealNumberPrecision(12) << za[i];
}
for (int i = 0; i < m; i++) {
qDebug() << "zb[" << i << "]" << qSetRealNumberPrecision(12) << zb[i];
}
// Don't put NaNs in output
return;
}
// Copy result back to input
for (i = 0; i < m; i++) {
yi[i] = zb[i];
}
/*for (i = 0; i < m; i++) {
qDebug() << "zb[" << i << "]=" << zb[i];
}*/
}