1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-23 16:38:37 -05:00
sdrangel/liblimesuite/srcmw/ConnectionSTREAM/ConnectionSTREAM.cpp

946 lines
29 KiB
C++

/**
@file ConnectionSTREAM.cpp
@author Lime Microsystems
@brief Implementation of STREAM board connection.
*/
#include "ConnectionSTREAM.h"
#include "ErrorReporting.h"
#include <cstring>
#include "Si5351C.h"
#include "FPGA_common.h"
#include "LMS7002M.h"
#include "Logger.h"
#include <ciso646>
#include <fstream>
#include <thread>
#include <chrono>
using namespace std;
#define CTR_W_REQCODE 0xC1
#define CTR_W_VALUE 0x0000
#define CTR_W_INDEX 0x0000
#define CTR_R_REQCODE 0xC0
#define CTR_R_VALUE 0x0000
#define CTR_R_INDEX 0x0000
using namespace lime;
const uint8_t ConnectionSTREAM::ctrlBulkOutAddr = 0x0F;
const uint8_t ConnectionSTREAM::ctrlBulkInAddr = 0x8F;
//control commands to be send via bulk port for boards v1.1 and earlier
const std::set<uint8_t> ConnectionSTREAM::commandsToBulkCtrlHw1 =
{
CMD_BRDSPI_WR, CMD_BRDSPI_RD,
CMD_LMS7002_WR, CMD_LMS7002_RD,
CMD_LMS7002_RST,
};
//control commands to be send via bulk port for boards v1.2 and later
const std::set<uint8_t> ConnectionSTREAM::commandsToBulkCtrlHw2 =
{
CMD_BRDSPI_WR, CMD_BRDSPI_RD,
CMD_LMS7002_WR, CMD_LMS7002_RD,
CMD_ANALOG_VAL_WR, CMD_ANALOG_VAL_RD,
CMD_ADF4002_WR,
CMD_LMS7002_RST,
CMD_GPIO_DIR_WR, CMD_GPIO_DIR_RD,
CMD_GPIO_WR, CMD_GPIO_RD,
};
/** @brief Initializes port type and object necessary to communicate to usb device.
*/
ConnectionSTREAM::ConnectionSTREAM(void *arg, const std::string &vidpid, const std::string &serial, const unsigned index)
{
bulkCtrlAvailable = false;
bulkCtrlInProgress = false;
RxLoopFunction = bind(&ConnectionSTREAM::ReceivePacketsLoop, this, std::placeholders::_1);
TxLoopFunction = bind(&ConnectionSTREAM::TransmitPacketsLoop, this, std::placeholders::_1);
isConnected = false;
#ifndef __unix__
if(arg == nullptr)
USBDevicePrimary = new CCyFX3Device();
else
USBDevicePrimary = new CCyFX3Device(*(CCyFX3Device*)arg);
InCtrlEndPt3 = nullptr;
OutCtrlEndPt3 = nullptr;
InCtrlBulkEndPt = nullptr;
OutCtrlBulkEndPt = nullptr;
for (int i = 0; i < MAX_EP_CNT; i++)
InEndPt[i] = OutEndPt[i] = nullptr;
#else
dev_handle = nullptr;
ctx = (libusb_context *)arg;
#endif
if (this->Open(vidpid, serial, index) != 0)
lime::error(GetLastErrorMessage());
commandsToBulkCtrl = commandsToBulkCtrlHw2;
LMSinfo info = this->GetInfo();
if (info.hardware <= 1)
{
commandsToBulkCtrl = commandsToBulkCtrlHw1;
}
this->VersionCheck();
if (info.device == LMS_DEV_LIMESDR || info.device == LMS_DEV_LIMESDR_USB_SP || info.device == LMS_DEV_LMS7002M_ULTIMATE_EVB)
DetectRefClk();
GetChipVersion();
//must configure synthesizer before using LimeSDR
if (info.device == LMS_DEV_LIMESDR && info.hardware < 4)
{
std::shared_ptr<Si5351C> si5351module(new Si5351C());
si5351module->Initialize(this);
si5351module->SetPLL(0, 25000000, 0);
si5351module->SetPLL(1, 25000000, 0);
si5351module->SetClock(0, 27000000, true, false);
si5351module->SetClock(1, 27000000, true, false);
for (int i = 2; i < 8; ++i)
si5351module->SetClock(i, 27000000, false, false);
Si5351C::Status status = si5351module->ConfigureClocks();
if (status != Si5351C::SUCCESS)
{
lime::warning("Failed to configure Si5351C");
return;
}
status = si5351module->UploadConfiguration();
if (status != Si5351C::SUCCESS)
lime::warning("Failed to upload Si5351C configuration");
std::this_thread::sleep_for(std::chrono::milliseconds(10)); //some settle time
}
}
double ConnectionSTREAM::DetectRefClk(void)
{
const double fx3Clk = 100e6 * 1.008; //fx3 clock 100MHz (adjusted to 100.8 MHz based on measurement on multiple boards)
const double fx3Cnt = 16777210; //fixed fx3 counter in FPGA
const double clkTbl[] = { 30.72e6, 38.4e6, 40e6, 52e6 };
const uint32_t addr[] = { 0x61, 0x63 };
const uint32_t vals[] = { 0x0, 0x0 };
if (this->WriteRegisters(addr, vals, 2) != 0)
{
return -1;
}
auto start = std::chrono::steady_clock::now();
if (this->WriteRegister(0x61, 0x4) != 0)
{
return -1;
}
while (1) //wait for test to finish
{
unsigned completed;
if (this->ReadRegister(0x65, completed) != 0)
{
return -1;
}
if (completed & 0x4)
break;
auto end = std::chrono::steady_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
if (elapsed_seconds.count() > 0.5) //timeout
{
return -1;
}
}
const uint32_t addr2[] = { 0x72, 0x73 };
uint32_t vals2[2];
if (this->ReadRegisters(addr2, vals2, 2) != 0)
{
return -1;
}
double count = (vals2[0] | (vals2[1] << 16)); //cock counter
count *= fx3Clk / fx3Cnt; //estimate ref clock based on FX3 Clock
lime::info("Estimated reference clock %1.4f MHz", count/1e6);
unsigned i = 0;
double delta = 100e6;
while (i < sizeof(clkTbl) / sizeof(*clkTbl))
if (delta < fabs(count - clkTbl[i]))
break;
else
delta = fabs(count - clkTbl[i++]);
this->SetReferenceClockRate(clkTbl[i-1]);
lime::info("Selected reference clock %1.3f MHz", clkTbl[i - 1] / 1e6);
return clkTbl[i - 1];
}
/** @brief Closes connection to chip and deallocates used memory.
*/
ConnectionSTREAM::~ConnectionSTREAM()
{
Close();
#ifndef __unix__
delete USBDevicePrimary;
#endif
}
/** @brief Tries to open connected USB device and find communication endpoints.
@return Returns 0-Success, other-EndPoints not found or device didn't connect.
*/
int ConnectionSTREAM::Open(const std::string &vidpid, const std::string &serial, const unsigned index)
{
bulkCtrlAvailable = false;
#ifndef __unix__
if(index > USBDevicePrimary->DeviceCount())
return ReportError(ERANGE, "ConnectionSTREAM: Device index out of range");
if(USBDevicePrimary->Open(index) == false)
return ReportError(-1, "ConnectionSTREAM: Failed to open device");
if (InCtrlEndPt3)
{
delete InCtrlEndPt3;
InCtrlEndPt3 = nullptr;
}
InCtrlEndPt3 = new CCyControlEndPoint(*USBDevicePrimary->ControlEndPt);
if (OutCtrlEndPt3)
{
delete OutCtrlEndPt3;
OutCtrlEndPt3 = nullptr;
}
OutCtrlEndPt3 = new CCyControlEndPoint(*USBDevicePrimary->ControlEndPt);
InCtrlEndPt3->ReqCode = CTR_R_REQCODE;
InCtrlEndPt3->Value = CTR_R_VALUE;
InCtrlEndPt3->Index = CTR_R_INDEX;
InCtrlEndPt3->TimeOut = 3000;
OutCtrlEndPt3->ReqCode = CTR_W_REQCODE;
OutCtrlEndPt3->Value = CTR_W_VALUE;
OutCtrlEndPt3->Index = CTR_W_INDEX;
OutCtrlEndPt3->TimeOut = 3000;
for (int i = 0; i < USBDevicePrimary->EndPointCount(); i++)
{
auto adr = USBDevicePrimary->EndPoints[i]->Address;
if (adr < ctrlBulkOutAddr)
{
OutEndPt[adr] = USBDevicePrimary->EndPoints[i];
long len = OutEndPt[adr]->MaxPktSize * 64;
OutEndPt[adr]->SetXferSize(len);
}
else if (adr < ctrlBulkInAddr)
{
adr &= 0xF;
InEndPt[adr] = USBDevicePrimary->EndPoints[i];
long len = InEndPt[adr]->MaxPktSize * 64;
InEndPt[adr]->SetXferSize(len);
}
}
InCtrlBulkEndPt = nullptr;
for (int i=0; i<USBDevicePrimary->EndPointCount(); i++)
if(USBDevicePrimary->EndPoints[i]->Address == ctrlBulkInAddr)
{
InCtrlBulkEndPt = USBDevicePrimary->EndPoints[i];
InCtrlBulkEndPt->TimeOut = 1000;
bulkCtrlAvailable = true;
break;
}
OutCtrlBulkEndPt = nullptr;
for (int i=0; i<USBDevicePrimary->EndPointCount(); i++)
if(USBDevicePrimary->EndPoints[i]->Address == ctrlBulkOutAddr)
{
OutCtrlBulkEndPt = USBDevicePrimary->EndPoints[i];
OutCtrlBulkEndPt->TimeOut = 1000;
bulkCtrlAvailable = true;
break;
}
isConnected = true;
return 0;
#else
const auto splitPos = vidpid.find(":");
const auto vid = std::stoi(vidpid.substr(0, splitPos), nullptr, 16);
const auto pid = std::stoi(vidpid.substr(splitPos+1), nullptr, 16);
libusb_device **devs; //pointer to pointer of device, used to retrieve a list of devices
int usbDeviceCount = libusb_get_device_list(ctx, &devs);
if (usbDeviceCount < 0) {
return ReportError(-1, "ConnectionSTREAM: libusb_get_device_list failed: %s", libusb_strerror(libusb_error(usbDeviceCount)));
}
for(int i=0; i<usbDeviceCount; ++i)
{
libusb_device_descriptor desc;
int r = libusb_get_device_descriptor(devs[i], &desc);
if(r<0) {
lime::error("failed to get device description");
continue;
}
if (desc.idProduct != pid) continue;
if (desc.idVendor != vid) continue;
if(libusb_open(devs[i], &dev_handle) != 0) continue;
std::string foundSerial;
if (desc.iSerialNumber > 0)
{
char data[255];
r = libusb_get_string_descriptor_ascii(dev_handle,desc.iSerialNumber,(unsigned char*)data, sizeof(data));
if(r<0)
lime::error("failed to get serial number");
else
foundSerial = std::string(data, size_t(r));
}
if (serial == foundSerial) break; //found it
libusb_close(dev_handle);
dev_handle = nullptr;
}
libusb_free_device_list(devs, 1);
if(dev_handle == nullptr)
return ReportError(-1, "ConnectionSTREAM: libusb_open failed");
if(libusb_kernel_driver_active(dev_handle, 0) == 1) //find out if kernel driver is attached
{
lime::info("Kernel Driver Active");
if(libusb_detach_kernel_driver(dev_handle, 0) == 0) //detach it
lime::info("Kernel Driver Detached!");
}
int r = libusb_claim_interface(dev_handle, 0); //claim interface 0 (the first) of device
if(r < 0)
return ReportError(-1, "ConnectionSTREAM: Cannot claim interface - %s", libusb_strerror(libusb_error(r)));
libusb_device* device = libusb_get_device(dev_handle);
libusb_config_descriptor* descriptor = nullptr;
if(libusb_get_active_config_descriptor(device, &descriptor) < 0)
{
lime::error("failed to get config descriptor");
}
//check for 0x0F and 0x8F endpoints
if(descriptor->bNumInterfaces > 0)
{
libusb_interface_descriptor iface = descriptor->interface[0].altsetting[0];
for(int i=0; i<iface.bNumEndpoints; ++i)
if(iface.endpoint[i].bEndpointAddress == ctrlBulkOutAddr ||
iface.endpoint[i].bEndpointAddress == ctrlBulkInAddr)
{
bulkCtrlAvailable = true;
break;
}
}
libusb_free_config_descriptor(descriptor);
isConnected = true;
if(bulkCtrlAvailable)
{
LMS64CProtocol::GenericPacket ctrPkt;
ctrPkt.cmd = CMD_USB_FIFO_RST;
ctrPkt.outBuffer.push_back(0x01); //reset bulk endpoints
if(TransferPacket(ctrPkt) != 0)
lime::error("Failed to reset USB bulk endpoints");
}
return 0;
#endif
}
/** @brief Closes communication to device.
*/
void ConnectionSTREAM::Close()
{
#ifndef __unix__
USBDevicePrimary->Close();
for (int i = 0; i < MAX_EP_CNT; i++)
InEndPt[i] = OutEndPt[i] = nullptr;
InCtrlBulkEndPt = nullptr;
OutCtrlBulkEndPt = nullptr;
if (InCtrlEndPt3)
{
delete InCtrlEndPt3;
InCtrlEndPt3 = nullptr;
}
if (OutCtrlEndPt3)
{
delete OutCtrlEndPt3;
OutCtrlEndPt3 = nullptr;
}
#else
if(dev_handle != 0)
{
libusb_release_interface(dev_handle, 0);
libusb_close(dev_handle);
dev_handle = 0;
}
#endif
isConnected = false;
}
/** @brief Returns connection status
@return 1-connection open, 0-connection closed.
*/
bool ConnectionSTREAM::IsOpen()
{
#ifndef __unix__
return USBDevicePrimary->IsOpen() && isConnected;
#else
return isConnected;
#endif
}
/** @brief Sends given data buffer to chip through USB port.
@param buffer data buffer, must not be longer than 64 bytes.
@param length given buffer size.
@param timeout_ms timeout limit for operation in milliseconds
@return number of bytes sent.
*/
int ConnectionSTREAM::Write(const unsigned char *buffer, const int length, int timeout_ms)
{
std::lock_guard<std::mutex> lock(mExtraUsbMutex);
long len = length;
if(IsOpen() == false)
return 0;
unsigned char* wbuffer = new unsigned char[length];
memcpy(wbuffer, buffer, length);
bulkCtrlInProgress = false;
#ifndef __unix__
if(bulkCtrlAvailable
&& commandsToBulkCtrl.find(buffer[0]) != commandsToBulkCtrl.end())
{
bulkCtrlInProgress = true;
OutCtrlBulkEndPt->XferData(wbuffer, len);
}
else if(OutCtrlEndPt3)
OutCtrlEndPt3->Write(wbuffer, len);
else
len = 0;
#else
if(bulkCtrlAvailable
&& commandsToBulkCtrl.find(buffer[0]) != commandsToBulkCtrl.end())
{
bulkCtrlInProgress = true;
int actual = 0;
libusb_bulk_transfer(dev_handle, ctrlBulkOutAddr, wbuffer, length, &actual, timeout_ms);
len = actual;
}
else
len = libusb_control_transfer(dev_handle, LIBUSB_REQUEST_TYPE_VENDOR,CTR_W_REQCODE ,CTR_W_VALUE, CTR_W_INDEX, wbuffer, length, timeout_ms);
#endif
delete[] wbuffer;
return len;
}
/** @brief Reads data coming from the chip through USB port.
@param buffer pointer to array where received data will be copied, array must be
big enough to fit received data.
@param length number of bytes to read from chip.
@param timeout_ms timeout limit for operation in milliseconds
@return number of bytes received.
*/
int ConnectionSTREAM::Read(unsigned char *buffer, const int length, int timeout_ms)
{
std::lock_guard<std::mutex> lock(mExtraUsbMutex);
long len = length;
if(IsOpen() == false)
return 0;
#ifndef __unix__
if(bulkCtrlAvailable && bulkCtrlInProgress)
{
InCtrlBulkEndPt->XferData(buffer, len);
bulkCtrlInProgress = false;
}
else if(InCtrlEndPt3)
InCtrlEndPt3->Read(buffer, len);
else
len = 0;
#else
if(bulkCtrlAvailable && bulkCtrlInProgress)
{
int actual = 0;
libusb_bulk_transfer(dev_handle, ctrlBulkInAddr, buffer, len, &actual, timeout_ms);
len = actual;
bulkCtrlInProgress = false;
}
else
len = libusb_control_transfer(dev_handle, LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN ,CTR_R_REQCODE ,CTR_R_VALUE, CTR_R_INDEX, buffer, len, timeout_ms);
#endif
return len;
}
#ifdef __unix__
/** @brief Function for handling libusb callbacks
*/
void callback_libusbtransfer(libusb_transfer *trans)
{
USBTransferContext *context = reinterpret_cast<USBTransferContext*>(trans->user_data);
std::unique_lock<std::mutex> lck(context->transferLock);
switch(trans->status)
{
case LIBUSB_TRANSFER_CANCELLED:
//lime::error("Transfer %i canceled", context->id);
context->bytesXfered = trans->actual_length;
context->done.store(true);
//context->used = false;
//context->reset();
break;
case LIBUSB_TRANSFER_COMPLETED:
//if(trans->actual_length == context->bytesExpected)
{
context->bytesXfered = trans->actual_length;
context->done.store(true);
}
break;
case LIBUSB_TRANSFER_ERROR:
lime::error("TRANSFER ERRROR");
context->bytesXfered = trans->actual_length;
context->done.store(true);
//context->used = false;
break;
case LIBUSB_TRANSFER_TIMED_OUT:
//lime::error("transfer timed out %i", context->id);
context->bytesXfered = trans->actual_length;
context->done.store(true);
//context->used = false;
break;
case LIBUSB_TRANSFER_OVERFLOW:
lime::error("transfer overflow");
break;
case LIBUSB_TRANSFER_STALL:
lime::error("transfer stalled");
break;
case LIBUSB_TRANSFER_NO_DEVICE:
lime::error("transfer no device");
break;
}
lck.unlock();
context->cv.notify_one();
}
#endif
/**
@brief Starts asynchronous data reading from board
@param *buffer buffer where to store received data
@param length number of bytes to read
@param streamBulkInAddr endpoint index?
@return handle of transfer context
*/
int ConnectionSTREAM::BeginDataReading(char *buffer, uint32_t length, const uint8_t streamBulkInAddr)
{
int i = 0;
bool contextFound = false;
//find not used context
for(i = 0; i<USB_MAX_CONTEXTS; i++)
{
if(!contexts[i].used)
{
contextFound = true;
break;
}
}
if(!contextFound)
{
lime::error("No contexts left for reading data");
return -1;
}
contexts[i].used = true;
#ifndef __unix__
if (InEndPt[streamBulkInAddr & 0xF])
{
contexts[i].EndPt = InEndPt[streamBulkInAddr & 0xF];
contexts[i].context = contexts[i].EndPt->BeginDataXfer((unsigned char*)buffer, length, contexts[i].inOvLap);
}
return i;
#else
unsigned int Timeout = 500;
libusb_transfer *tr = contexts[i].transfer;
libusb_fill_bulk_transfer(tr, dev_handle, streamBulkInAddr, (unsigned char*)buffer, length, callback_libusbtransfer, &contexts[i], Timeout);
contexts[i].done = false;
contexts[i].bytesXfered = 0;
contexts[i].bytesExpected = length;
int status = libusb_submit_transfer(tr);
if(status != 0)
{
lime::error("BEGIN DATA READING %s", libusb_error_name(status));
contexts[i].used = false;
return -1;
}
#endif
return i;
}
/**
@brief Waits for asynchronous data reception
@param contextHandle handle of which context data to wait
@param timeout_ms number of miliseconds to wait
@return 1-data received, 0-data not received
*/
int ConnectionSTREAM::WaitForReading(int contextHandle, unsigned int timeout_ms)
{
if(contextHandle >= 0 && contexts[contextHandle].used == true)
{
#ifndef __unix__
int status = 0;
status = contexts[contextHandle].EndPt->WaitForXfer(contexts[contextHandle].inOvLap, timeout_ms);
return status;
#else
auto t1 = chrono::high_resolution_clock::now();
auto t2 = chrono::high_resolution_clock::now();
std::unique_lock<std::mutex> lck(contexts[contextHandle].transferLock);
while(contexts[contextHandle].done.load() == false && std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1).count() < timeout_ms)
{
//blocking not to waste CPU
contexts[contextHandle].cv.wait_for(lck, chrono::milliseconds(timeout_ms));
t2 = chrono::high_resolution_clock::now();
}
return contexts[contextHandle].done.load() == true;
#endif
}
else
return 0;
}
/**
@brief Finishes asynchronous data reading from board
@param buffer array where to store received data
@param length number of bytes to read
@param contextHandle handle of which context to finish
@return negative values failure, positive number of bytes received
*/
int ConnectionSTREAM::FinishDataReading(char *buffer, uint32_t length, int contextHandle)
{
if(contextHandle >= 0 && contexts[contextHandle].used == true)
{
#ifndef __unix__
int status = 0;
long len = length;
status = contexts[contextHandle].EndPt->FinishDataXfer((unsigned char*)buffer, len, contexts[contextHandle].inOvLap, contexts[contextHandle].context);
contexts[contextHandle].used = false;
contexts[contextHandle].reset();
return len;
#else
length = contexts[contextHandle].bytesXfered;
contexts[contextHandle].used = false;
contexts[contextHandle].reset();
return length;
#endif
}
else
return 0;
}
/**
@brief Aborts reading operations
*/
void ConnectionSTREAM::AbortReading(int ep)
{
#ifndef __unix__
for (int i = 0; i < MAX_EP_CNT; i++)
if (InEndPt[i] && InEndPt[i]->Address == ep)
InEndPt[i]->Abort();
#else
for(int i=0; i<USB_MAX_CONTEXTS; ++i)
{
if(contexts[i].used && contexts[i].transfer->endpoint == ep)
libusb_cancel_transfer( contexts[i].transfer );
}
#endif
}
/**
@brief Starts asynchronous data Sending to board
@param *buffer buffer to send
@param length number of bytes to send
@param streamBulkOutAddr endpoint index?
@return handle of transfer context
*/
int ConnectionSTREAM::BeginDataSending(const char *buffer, uint32_t length, const uint8_t streamBulkOutAddr)
{
int i = 0;
//find not used context
bool contextFound = false;
for(i = 0; i<USB_MAX_CONTEXTS; i++)
{
if(!contextsToSend[i].used)
{
contextFound = true;
break;
}
}
if(!contextFound)
return -1;
contextsToSend[i].used = true;
#ifndef __unix__
if (OutEndPt[streamBulkOutAddr])
{
contextsToSend[i].EndPt = OutEndPt[streamBulkOutAddr];
contextsToSend[i].context = contextsToSend[i].EndPt->BeginDataXfer((unsigned char*)buffer, length, contextsToSend[i].inOvLap);
}
return i;
#else
unsigned int Timeout = 500;
libusb_transfer *tr = contextsToSend[i].transfer;
libusb_fill_bulk_transfer(tr, dev_handle, streamBulkOutAddr, (unsigned char*)buffer, length, callback_libusbtransfer, &contextsToSend[i], Timeout);
contextsToSend[i].done = false;
contextsToSend[i].bytesXfered = 0;
contextsToSend[i].bytesExpected = length;
int status = libusb_submit_transfer(tr);
if(status != 0)
{
lime::error("BEGIN DATA SENDING %s", libusb_error_name(status));
contextsToSend[i].used = false;
return -1;
}
#endif
return i;
}
/**
@brief Waits for asynchronous data sending
@param contextHandle handle of which context data to wait
@param timeout_ms number of miliseconds to wait
@return 1-data received, 0-data not received
*/
int ConnectionSTREAM::WaitForSending(int contextHandle, unsigned int timeout_ms)
{
if( contextsToSend[contextHandle].used == true )
{
# ifndef __unix__
int status = 0;
status = contextsToSend[contextHandle].EndPt->WaitForXfer(contextsToSend[contextHandle].inOvLap, timeout_ms);
return status;
# else
auto t1 = chrono::high_resolution_clock::now();
auto t2 = chrono::high_resolution_clock::now();
std::unique_lock<std::mutex> lck(contextsToSend[contextHandle].transferLock);
while(contextsToSend[contextHandle].done.load() == false && std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1).count() < timeout_ms)
{
//blocking not to waste CPU
contextsToSend[contextHandle].cv.wait_for(lck, chrono::milliseconds(timeout_ms));
t2 = chrono::high_resolution_clock::now();
}
return contextsToSend[contextHandle].done == true;
# endif
}
else
return 0;
}
/**
@brief Finishes asynchronous data sending to board
@param buffer array where to store received data
@param length number of bytes to read, function changes this value to number of bytes acctually received
@param contextHandle handle of which context to finish
@return false failure, true number of bytes sent
*/
int ConnectionSTREAM::FinishDataSending(const char *buffer, uint32_t length, int contextHandle)
{
if( contextsToSend[contextHandle].used == true)
{
#ifndef __unix__
long len = length;
contextsToSend[contextHandle].EndPt->FinishDataXfer((unsigned char*)buffer, len, contextsToSend[contextHandle].inOvLap, contextsToSend[contextHandle].context);
contextsToSend[contextHandle].used = false;
contextsToSend[contextHandle].reset();
return len;
#else
length = contextsToSend[contextHandle].bytesXfered;
contextsToSend[contextHandle].used = false;
contextsToSend[contextHandle].reset();
return length;
#endif
}
else
return 0;
}
/**
@brief Aborts sending operations
*/
void ConnectionSTREAM::AbortSending(int ep)
{
#ifndef __unix__
for (int i = 0; i < MAX_EP_CNT; i++)
if (OutEndPt[i] && OutEndPt[i]->Address == ep)
OutEndPt[i]->Abort();
#else
for (int i = 0; i<USB_MAX_CONTEXTS; ++i)
{
if(contextsToSend[i].used && contextsToSend[i].transfer->endpoint == ep)
libusb_cancel_transfer(contextsToSend[i].transfer);
}
#endif
}
int ConnectionSTREAM::SendData(const char* buffer, int length, int epIndex, int timeout)
{
const unsigned char ep = 0x01;
int context = BeginDataSending((char*)buffer, length, ep);
if (WaitForSending(context, timeout)==false)
AbortSending(ep);
return FinishDataSending((char*)buffer, length , context);
}
int ConnectionSTREAM::ReceiveData(char* buffer, int length, int epIndex, int timeout)
{
const unsigned char ep = 0x81;
int context = BeginDataReading(buffer, length, ep);
if (WaitForReading(context, timeout) == false)
AbortReading(ep);
return FinishDataReading(buffer, length, context);
}
int ConnectionSTREAM::ProgramWrite(const char *buffer, const size_t length, const int programmingMode, const int device, ProgrammingCallback callback)
{
if (device == LMS64CProtocol::FX3 && programmingMode == 1)
{
#ifdef __unix__
libusb_device_descriptor desc;
int ret = libusb_get_device_descriptor(libusb_get_device(dev_handle), &desc);
if(ret<0)
lime::error("failed to get device description");
else if (desc.idProduct == 243)
#else
if (USBDevicePrimary->ProductID == 243)
#endif
{
#ifdef __unix__
return fx3_usbboot_download((unsigned char*)buffer,length);
#else
char* filename = "fx3fw_image_tmp.img";
int ret = 0;
std::ofstream myfile(filename, ios::out | ios::binary | ios::trunc);
if (!myfile.is_open())
{
ReportError("FX3 FW:Unable to create temporary file");
return -1;
}
myfile.write(buffer,length);
if (myfile.fail())
{
ReportError("FX3 FW:Unable to write to temporary file");
ret = -1;
}
myfile.close();
if (ret != -1)
{
if ((ret=USBDevicePrimary->DownloadFw(filename, FX3_FWDWNLOAD_MEDIA_TYPE::RAM))!=0)
ReportError("FX3: Failed to upload FW to RAM");
}
std::remove(filename);
return ret;
#endif
}
else
{
ReportError("FX3 bootloader NOT detected");
return -1;
}
}
return LMS64CProtocol::ProgramWrite(buffer,length,programmingMode,device,callback);
}
#ifdef __unix__
#define MAX_FWIMG_SIZE (512 * 1024) // Maximum size of the firmware binary.
#define GET_LSW(v) ((unsigned short)((v) & 0xFFFF))
#define GET_MSW(v) ((unsigned short)((v) >> 16))
#define VENDORCMD_TIMEOUT (5000) // Timeout for each vendor command is set to 5 seconds.
int ConnectionSTREAM::ram_write(unsigned char *buf, unsigned int ramAddress, int len)
{
const int MAX_WRITE_SIZE = (2 * 1024); // Max. size of data that can be written through one vendor command.
int r;
int index = 0;
int size;
while ( len > 0 )
{
size = (len > MAX_WRITE_SIZE) ? MAX_WRITE_SIZE : len;
r = libusb_control_transfer(dev_handle, 0x40, 0xA0, GET_LSW(ramAddress), GET_MSW(ramAddress),&buf[index], size, VENDORCMD_TIMEOUT);
if ( r != size )
{
lime::error("Vendor write to FX3 RAM failed");
return -1;
}
ramAddress += size;
index += size;
len -= size;
}
return 0;
}
int ConnectionSTREAM::fx3_usbboot_download(unsigned char *fwBuf, int filesize)
{
unsigned int *data_p;
unsigned int i, checksum;
unsigned int address, length;
int r, index;
if ( filesize > MAX_FWIMG_SIZE ) {
ReportError("File size exceeds maximum firmware image size\n");
return -2;
}
if ( strncmp((char *)fwBuf,"CY",2) ) {
ReportError("Image does not have 'CY' at start. aborting\n");
return -4;
}
if ( fwBuf[2] & 0x01 ) {
ReportError("Image does not contain executable code\n");
return -5;
}
if ( !(fwBuf[3] == 0xB0) ) {
ReportError("Not a normal FW binary with checksum\n");
return -6;
}
// Run through each section of code, and use vendor commands to download them to RAM.
index = 4;
checksum = 0;
while ( index < filesize )
{
data_p = (unsigned int *)(fwBuf + index);
length = data_p[0];
address = data_p[1];
if (length != 0)
{
for (i = 0; i < length; i++)
checksum += data_p[2 + i];
r = ram_write(fwBuf + index + 8, address, length * 4);
if (r != 0)
{
ReportError("Failed to download data to FX3 RAM\n");
return -3;
}
}
else
{
if (checksum != data_p[2]) {
ReportError ("Checksum error in firmware binary\n");
return -4;
}
r = libusb_control_transfer(dev_handle, 0x40, 0xA0, GET_LSW(address), GET_MSW(address), NULL,0, VENDORCMD_TIMEOUT);
if ( r != 0 )
lime::error("Ignored error in control transfer: %d", r);
break;
}
index += (8 + length * 4);
}
return 0;
}
#endif