mirror of
https://github.com/f4exb/sdrangel.git
synced 2024-11-16 13:21:50 -05:00
4930 lines
166 KiB
C++
4930 lines
166 KiB
C++
///////////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2016 F4EXB //
|
|
// written by Edouard Griffiths //
|
|
// //
|
|
// This program is free software; you can redistribute it and/or modify //
|
|
// it under the terms of the GNU General Public License as published by //
|
|
// the Free Software Foundation as version 3 of the License, or //
|
|
// (at your option) any later version. //
|
|
// //
|
|
// This program is distributed in the hope that it will be useful, //
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
|
// GNU General Public License V3 for more details. //
|
|
// //
|
|
// You should have received a copy of the GNU General Public License //
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include <algorithm>
|
|
|
|
#include <QMouseEvent>
|
|
#include <QOpenGLShaderProgram>
|
|
#include <QOpenGLFunctions>
|
|
#include <QPainter>
|
|
#include <QFontDatabase>
|
|
#include <QWindow>
|
|
#include "maincore.h"
|
|
#include "dsp/spectrumvis.h"
|
|
#include "gui/glspectrumview.h"
|
|
#include "gui/spectrummeasurements.h"
|
|
#include "settings/mainsettings.h"
|
|
#include "util/messagequeue.h"
|
|
#include "util/db.h"
|
|
|
|
#include <QDebug>
|
|
|
|
MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportSampleRate, Message)
|
|
MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportWaterfallShare, Message)
|
|
MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportFFTOverlap, Message)
|
|
MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportPowerScale, Message)
|
|
MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportCalibrationShift, Message)
|
|
MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportHistogramMarkersChange, Message)
|
|
MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportWaterfallMarkersChange, Message)
|
|
|
|
const float GLSpectrumView::m_maxFrequencyZoom = 10.0f;
|
|
const float GLSpectrumView::m_annotationMarkerHeight = 20.0f;
|
|
|
|
GLSpectrumView::GLSpectrumView(QWidget* parent) :
|
|
QOpenGLWidget(parent),
|
|
m_markersDisplay(SpectrumSettings::MarkersDisplaySpectrum),
|
|
m_histogramFindPeaks(false),
|
|
m_cursorState(CSNormal),
|
|
m_cursorChannel(0),
|
|
m_spectrumVis(nullptr),
|
|
m_fpsPeriodMs(50),
|
|
m_mouseInside(false),
|
|
m_changesPending(true),
|
|
m_centerFrequency(100000000),
|
|
m_referenceLevel(0),
|
|
m_powerRange(100),
|
|
m_linear(false),
|
|
m_decay(1),
|
|
m_sampleRate(500000),
|
|
m_timingRate(1),
|
|
m_fftOverlap(0),
|
|
m_fftSize(512),
|
|
m_nbBins(512),
|
|
m_displayGrid(true),
|
|
m_displayGridIntensity(5),
|
|
m_displayTraceIntensity(50),
|
|
m_invertedWaterfall(true),
|
|
m_displayMaxHold(false),
|
|
m_currentSpectrum(nullptr),
|
|
m_displayCurrent(false),
|
|
m_leftMargin(0),
|
|
m_rightMargin(0),
|
|
m_topMargin(0),
|
|
m_frequencyScaleHeight(0),
|
|
m_histogramHeight(80),
|
|
m_waterfallHeight(0),
|
|
m_bottomMargin(0),
|
|
m_waterfallBuffer(nullptr),
|
|
m_waterfallBufferPos(0),
|
|
m_waterfallTextureHeight(-1),
|
|
m_waterfallTexturePos(0),
|
|
m_displayWaterfall(true),
|
|
m_ssbSpectrum(false),
|
|
m_lsbDisplay(false),
|
|
m_3DSpectrogramBuffer(nullptr),
|
|
m_3DSpectrogramBufferPos(0),
|
|
m_3DSpectrogramTextureHeight(-1),
|
|
m_3DSpectrogramTexturePos(0),
|
|
m_display3DSpectrogram(false),
|
|
m_rotate3DSpectrogram(false),
|
|
m_pan3DSpectrogram(false),
|
|
m_scaleZ3DSpectrogram(false),
|
|
m_3DSpectrogramStyle(SpectrumSettings::Outline),
|
|
m_colorMapName("Angel"),
|
|
m_scrollFrequency(false),
|
|
m_scrollStartCenterFreq(0),
|
|
m_histogramBuffer(nullptr),
|
|
m_histogram(nullptr),
|
|
m_displayHistogram(true),
|
|
m_displayChanged(false),
|
|
m_displaySourceOrSink(true),
|
|
m_displayStreamIndex(0),
|
|
m_matrixLoc(0),
|
|
m_colorLoc(0),
|
|
m_useCalibration(false),
|
|
m_calibrationGain(1.0),
|
|
m_calibrationShiftdB(0.0),
|
|
m_calibrationInterpMode(SpectrumSettings::CalibInterpLinear),
|
|
m_messageQueueToGUI(nullptr),
|
|
m_openGLLogger(nullptr),
|
|
m_isDeviceSpectrum(false),
|
|
m_measurements(nullptr),
|
|
m_measurement(SpectrumSettings::MeasurementNone),
|
|
m_measurementCenterFrequencyOffset(0),
|
|
m_measurementBandwidth(10000),
|
|
m_measurementChSpacing(10000),
|
|
m_measurementAdjChBandwidth(10000),
|
|
m_measurementHarmonics(5),
|
|
m_measurementPeaks(5),
|
|
m_measurementHighlight(true),
|
|
m_measurementPrecision(1)
|
|
{
|
|
// Enable multisampling anti-aliasing (MSAA)
|
|
int multisamples = MainCore::instance()->getSettings().getMultisampling();
|
|
if (multisamples > 0)
|
|
{
|
|
QSurfaceFormat format;
|
|
format.setSamples(multisamples);
|
|
setFormat(format);
|
|
}
|
|
|
|
setObjectName("GLSpectrum");
|
|
setAutoFillBackground(false);
|
|
setAttribute(Qt::WA_OpaquePaintEvent, true);
|
|
setAttribute(Qt::WA_NoSystemBackground, true);
|
|
setMouseTracking(true);
|
|
|
|
setMinimumSize(360, 200);
|
|
|
|
m_waterfallShare = 0.5;
|
|
|
|
for (int i = 0; i <= 239; i++)
|
|
{
|
|
QColor c;
|
|
c.setHsv(239 - i, 255, 15 + i);
|
|
((quint8*)&m_waterfallPalette[i])[0] = c.red();
|
|
((quint8*)&m_waterfallPalette[i])[1] = c.green();
|
|
((quint8*)&m_waterfallPalette[i])[2] = c.blue();
|
|
((quint8*)&m_waterfallPalette[i])[3] = c.alpha();
|
|
}
|
|
|
|
m_waterfallPalette[239] = 0xffffffff;
|
|
m_histogramPalette[0] = 0;
|
|
|
|
for (int i = 1; i < 240; i++)
|
|
{
|
|
QColor c;
|
|
int light = i < 60 ? 128 + (60-i) : 128;
|
|
int sat = i < 60 ? 140 + i : i < 180 ? 200 : 200 - (i-180);
|
|
c.setHsl(239 - i, sat, light);
|
|
((quint8*)&m_histogramPalette[i])[0] = c.red();
|
|
((quint8*)&m_histogramPalette[i])[1] = c.green();
|
|
((quint8*)&m_histogramPalette[i])[2] = c.blue();
|
|
((quint8*)&m_histogramPalette[i])[3] = c.alpha();
|
|
}
|
|
|
|
// 4.2.3 palette
|
|
// for (int i = 1; i < 240; i++)
|
|
// {
|
|
// QColor c;
|
|
// int val = i < 60 ? 255 : 200;
|
|
// int sat = i < 60 ? 128 : i < 180 ? 255 : 180;
|
|
// c.setHsv(239 - i, sat, val);
|
|
// ((quint8*)&m_histogramPalette[i])[0] = c.red();
|
|
// ((quint8*)&m_histogramPalette[i])[1] = c.green();
|
|
// ((quint8*)&m_histogramPalette[i])[2] = c.blue();
|
|
// ((quint8*)&m_histogramPalette[i])[3] = c.alpha();
|
|
// }
|
|
|
|
// Original palette:
|
|
// for(int i = 16; i < 240; i++) {
|
|
// QColor c;
|
|
// c.setHsv(239 - i, 255 - ((i < 200) ? 0 : (i - 200) * 3), 150 + ((i < 100) ? i : 100));
|
|
// ((quint8*)&m_histogramPalette[i])[0] = c.red();
|
|
// ((quint8*)&m_histogramPalette[i])[1] = c.green();
|
|
// ((quint8*)&m_histogramPalette[i])[2] = c.blue();
|
|
// ((quint8*)&m_histogramPalette[i])[3] = c.alpha();
|
|
// }
|
|
// for(int i = 1; i < 16; i++) {
|
|
// QColor c;
|
|
// c.setHsv(255, 128, 48 + i * 4);
|
|
// ((quint8*)&m_histogramPalette[i])[0] = c.red();
|
|
// ((quint8*)&m_histogramPalette[i])[1] = c.green();
|
|
// ((quint8*)&m_histogramPalette[i])[2] = c.blue();
|
|
// ((quint8*)&m_histogramPalette[i])[3] = c.alpha();
|
|
// }
|
|
|
|
m_decayDivisor = 1;
|
|
m_decayDivisorCount = m_decayDivisor;
|
|
m_histogramStroke = 30;
|
|
|
|
m_timeScale.setFont(font());
|
|
m_timeScale.setOrientation(Qt::Vertical);
|
|
m_timeScale.setRange(Unit::Time, 0, 1);
|
|
m_powerScale.setFont(font());
|
|
m_powerScale.setOrientation(Qt::Vertical);
|
|
m_frequencyScale.setFont(font());
|
|
m_frequencyScale.setOrientation(Qt::Horizontal);
|
|
|
|
m_textOverlayFont = font(); // QFontDatabase::systemFont(QFontDatabase::FixedFont);
|
|
m_textOverlayFont.setBold(true);
|
|
// m_textOverlayFont.setPointSize(font().pointSize() - 1);
|
|
resetFrequencyZoom();
|
|
|
|
m_timer.setTimerType(Qt::PreciseTimer);
|
|
connect(&m_timer, SIGNAL(timeout()), this, SLOT(tick()));
|
|
m_timer.start(m_fpsPeriodMs);
|
|
|
|
// Handle KeyEvents
|
|
setFocusPolicy(Qt::StrongFocus);
|
|
installEventFilter(this);
|
|
}
|
|
|
|
GLSpectrumView::~GLSpectrumView()
|
|
{
|
|
QMutexLocker mutexLocker(&m_mutex);
|
|
|
|
if (m_waterfallBuffer)
|
|
{
|
|
delete m_waterfallBuffer;
|
|
m_waterfallBuffer = nullptr;
|
|
}
|
|
|
|
if (m_3DSpectrogramBuffer)
|
|
{
|
|
delete m_3DSpectrogramBuffer;
|
|
m_3DSpectrogramBuffer = nullptr;
|
|
}
|
|
|
|
if (m_histogramBuffer)
|
|
{
|
|
delete m_histogramBuffer;
|
|
m_histogramBuffer = nullptr;
|
|
}
|
|
|
|
if (m_histogram)
|
|
{
|
|
delete[] m_histogram;
|
|
m_histogram = nullptr;
|
|
}
|
|
|
|
if (m_openGLLogger)
|
|
{
|
|
delete m_openGLLogger;
|
|
m_openGLLogger = nullptr;
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::setCenterFrequency(qint64 frequency)
|
|
{
|
|
m_mutex.lock();
|
|
m_centerFrequency = frequency;
|
|
|
|
if (m_useCalibration) {
|
|
updateCalibrationPoints();
|
|
}
|
|
|
|
m_changesPending = true;
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setReferenceLevel(Real referenceLevel)
|
|
{
|
|
m_mutex.lock();
|
|
m_referenceLevel = referenceLevel;
|
|
m_changesPending = true;
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setPowerRange(Real powerRange)
|
|
{
|
|
m_mutex.lock();
|
|
m_powerRange = powerRange;
|
|
m_changesPending = true;
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setDecay(int decay)
|
|
{
|
|
m_decay = decay < 0 ? 0 : decay > 20 ? 20 : decay;
|
|
}
|
|
|
|
void GLSpectrumView::setDecayDivisor(int decayDivisor)
|
|
{
|
|
m_decayDivisor = decayDivisor < 1 ? 1 : decayDivisor > 20 ? 20 : decayDivisor;
|
|
}
|
|
|
|
void GLSpectrumView::setHistoStroke(int stroke)
|
|
{
|
|
m_histogramStroke = stroke < 1 ? 1 : stroke > 60 ? 60 : stroke;
|
|
}
|
|
|
|
void GLSpectrumView::setSampleRate(qint32 sampleRate)
|
|
{
|
|
m_mutex.lock();
|
|
m_sampleRate = sampleRate;
|
|
|
|
if (m_messageQueueToGUI) {
|
|
m_messageQueueToGUI->push(new MsgReportSampleRate(m_sampleRate));
|
|
}
|
|
|
|
m_changesPending = true;
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setTimingRate(qint32 timingRate)
|
|
{
|
|
m_mutex.lock();
|
|
m_timingRate = timingRate;
|
|
m_changesPending = true;
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setFFTOverlap(int overlap)
|
|
{
|
|
m_mutex.lock();
|
|
m_fftOverlap = overlap;
|
|
m_changesPending = true;
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setDisplayWaterfall(bool display)
|
|
{
|
|
m_mutex.lock();
|
|
m_displayWaterfall = display;
|
|
if (!display)
|
|
{
|
|
m_waterfallMarkers.clear();
|
|
if (m_messageQueueToGUI) {
|
|
m_messageQueueToGUI->push(new MsgReportWaterfallMarkersChange());
|
|
}
|
|
}
|
|
m_changesPending = true;
|
|
stopDrag();
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setDisplay3DSpectrogram(bool display)
|
|
{
|
|
m_mutex.lock();
|
|
m_display3DSpectrogram = display;
|
|
m_changesPending = true;
|
|
stopDrag();
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setSpectrumStyle(SpectrumSettings::SpectrumStyle style)
|
|
{
|
|
m_spectrumStyle = style;
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::set3DSpectrogramStyle(SpectrumSettings::SpectrogramStyle style)
|
|
{
|
|
m_3DSpectrogramStyle = style;
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setColorMapName(const QString &colorMapName)
|
|
{
|
|
m_mutex.lock();
|
|
m_colorMapName = colorMapName;
|
|
m_changesPending = true;
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setSsbSpectrum(bool ssbSpectrum)
|
|
{
|
|
m_ssbSpectrum = ssbSpectrum;
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setLsbDisplay(bool lsbDisplay)
|
|
{
|
|
m_lsbDisplay = lsbDisplay;
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setInvertedWaterfall(bool inv)
|
|
{
|
|
m_mutex.lock();
|
|
m_invertedWaterfall = inv;
|
|
m_changesPending = true;
|
|
stopDrag();
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setDisplayMaxHold(bool display)
|
|
{
|
|
m_mutex.lock();
|
|
m_displayMaxHold = display;
|
|
if (!m_displayMaxHold && !m_displayCurrent && !m_displayHistogram)
|
|
{
|
|
m_histogramMarkers.clear();
|
|
if (m_messageQueueToGUI) {
|
|
m_messageQueueToGUI->push(new MsgReportHistogramMarkersChange());
|
|
}
|
|
}
|
|
m_changesPending = true;
|
|
stopDrag();
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setDisplayCurrent(bool display)
|
|
{
|
|
m_mutex.lock();
|
|
m_displayCurrent = display;
|
|
if (!m_displayMaxHold && !m_displayCurrent && !m_displayHistogram)
|
|
{
|
|
m_histogramMarkers.clear();
|
|
if (m_messageQueueToGUI) {
|
|
m_messageQueueToGUI->push(new MsgReportHistogramMarkersChange());
|
|
}
|
|
}
|
|
m_changesPending = true;
|
|
stopDrag();
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setDisplayHistogram(bool display)
|
|
{
|
|
m_mutex.lock();
|
|
m_displayHistogram = display;
|
|
if (!m_displayMaxHold && !m_displayCurrent && !m_displayHistogram)
|
|
{
|
|
m_histogramMarkers.clear();
|
|
if (m_messageQueueToGUI) {
|
|
m_messageQueueToGUI->push(new MsgReportHistogramMarkersChange());
|
|
}
|
|
}
|
|
m_changesPending = true;
|
|
stopDrag();
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setDisplayGrid(bool display)
|
|
{
|
|
m_displayGrid = display;
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setDisplayGridIntensity(int intensity)
|
|
{
|
|
m_displayGridIntensity = intensity;
|
|
|
|
if (m_displayGridIntensity > 100) {
|
|
m_displayGridIntensity = 100;
|
|
} else if (m_displayGridIntensity < 0) {
|
|
m_displayGridIntensity = 0;
|
|
}
|
|
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setDisplayTraceIntensity(int intensity)
|
|
{
|
|
m_displayTraceIntensity = intensity;
|
|
|
|
if (m_displayTraceIntensity > 100) {
|
|
m_displayTraceIntensity = 100;
|
|
} else if (m_displayTraceIntensity < 0) {
|
|
m_displayTraceIntensity = 0;
|
|
}
|
|
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setFreqScaleTruncationMode(bool mode)
|
|
{
|
|
m_frequencyScale.setTruncateMode(mode);
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setLinear(bool linear)
|
|
{
|
|
m_mutex.lock();
|
|
m_linear = linear;
|
|
m_changesPending = true;
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setUseCalibration(bool useCalibration)
|
|
{
|
|
m_mutex.lock();
|
|
m_useCalibration = useCalibration;
|
|
|
|
if (m_messageQueueToGUI) {
|
|
m_messageQueueToGUI->push(new MsgReportCalibrationShift(m_useCalibration ? m_calibrationShiftdB : 0.0));
|
|
}
|
|
|
|
m_changesPending = true;
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setMeasurementParams(SpectrumSettings::Measurement measurement,
|
|
int centerFrequencyOffset, int bandwidth, int chSpacing, int adjChBandwidth,
|
|
int harmonics, int peaks, bool highlight, int precision)
|
|
{
|
|
m_mutex.lock();
|
|
m_measurement = measurement;
|
|
m_measurementCenterFrequencyOffset = centerFrequencyOffset;
|
|
m_measurementBandwidth = bandwidth;
|
|
m_measurementChSpacing = chSpacing;
|
|
m_measurementAdjChBandwidth = adjChBandwidth;
|
|
m_measurementHarmonics = harmonics;
|
|
m_measurementPeaks = peaks;
|
|
m_measurementHighlight = highlight;
|
|
m_measurementPrecision = precision;
|
|
m_changesPending = true;
|
|
if (m_measurements) {
|
|
m_measurements->setMeasurementParams(measurement, peaks, precision);
|
|
}
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::addChannelMarker(ChannelMarker* channelMarker)
|
|
{
|
|
m_mutex.lock();
|
|
connect(channelMarker, SIGNAL(changedByAPI()), this, SLOT(channelMarkerChanged()));
|
|
connect(channelMarker, SIGNAL(destroyed(QObject*)), this, SLOT(channelMarkerDestroyed(QObject*)));
|
|
m_channelMarkerStates.append(new ChannelMarkerState(channelMarker));
|
|
m_changesPending = true;
|
|
stopDrag();
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::removeChannelMarker(ChannelMarker* channelMarker)
|
|
{
|
|
m_mutex.lock();
|
|
|
|
for (int i = 0; i < m_channelMarkerStates.size(); ++i)
|
|
{
|
|
if (m_channelMarkerStates[i]->m_channelMarker == channelMarker)
|
|
{
|
|
channelMarker->disconnect(this);
|
|
delete m_channelMarkerStates.takeAt(i);
|
|
m_changesPending = true;
|
|
stopDrag();
|
|
m_mutex.unlock();
|
|
update();
|
|
return;
|
|
}
|
|
}
|
|
|
|
m_mutex.unlock();
|
|
}
|
|
|
|
void GLSpectrumView::setHistogramMarkers(const QList<SpectrumHistogramMarker>& histogramMarkers)
|
|
{
|
|
m_mutex.lock();
|
|
m_histogramMarkers = histogramMarkers;
|
|
updateHistogramMarkers();
|
|
m_changesPending = true;
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setWaterfallMarkers(const QList<SpectrumWaterfallMarker>& waterfallMarkers)
|
|
{
|
|
m_mutex.lock();
|
|
m_waterfallMarkers = waterfallMarkers;
|
|
updateWaterfallMarkers();
|
|
m_changesPending = true;
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setAnnotationMarkers(const QList<SpectrumAnnotationMarker>& annotationMarkers)
|
|
{
|
|
m_mutex.lock();
|
|
m_annotationMarkers = annotationMarkers;
|
|
updateAnnotationMarkers();
|
|
m_changesPending = true;
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setMarkersDisplay(SpectrumSettings::MarkersDisplay markersDisplay)
|
|
{
|
|
m_mutex.lock();
|
|
m_markersDisplay = markersDisplay;
|
|
updateMarkersDisplay();
|
|
m_changesPending = true;
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setCalibrationPoints(const QList<SpectrumCalibrationPoint>& calibrationPoints)
|
|
{
|
|
m_mutex.lock();
|
|
m_calibrationPoints = calibrationPoints;
|
|
updateCalibrationPoints();
|
|
m_changesPending = true;
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::setCalibrationInterpMode(SpectrumSettings::CalibrationInterpolationMode mode)
|
|
{
|
|
m_mutex.lock();
|
|
m_calibrationInterpMode = mode;
|
|
updateCalibrationPoints();
|
|
m_changesPending = true;
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
float GLSpectrumView::getPowerMax() const
|
|
{
|
|
return m_linear ? m_powerScale.getRangeMax() : CalcDb::powerFromdB(m_powerScale.getRangeMax());
|
|
}
|
|
|
|
float GLSpectrumView::getTimeMax() const
|
|
{
|
|
return m_timeScale.getRangeMax();
|
|
}
|
|
|
|
void GLSpectrumView::newSpectrum(const Real *spectrum, int nbBins, int fftSize)
|
|
{
|
|
QMutexLocker mutexLocker(&m_mutex);
|
|
|
|
m_displayChanged = true;
|
|
if (m_changesPending)
|
|
{
|
|
m_fftSize = fftSize;
|
|
m_nbBins = nbBins;
|
|
return;
|
|
}
|
|
|
|
if ((fftSize != m_fftSize) || (m_nbBins != nbBins))
|
|
{
|
|
m_fftSize = fftSize;
|
|
m_nbBins = nbBins;
|
|
m_changesPending = true;
|
|
return;
|
|
}
|
|
|
|
updateWaterfall(spectrum);
|
|
update3DSpectrogram(spectrum);
|
|
updateHistogram(spectrum);
|
|
}
|
|
|
|
void GLSpectrumView::updateWaterfall(const Real *spectrum)
|
|
{
|
|
if (m_waterfallBufferPos < m_waterfallBuffer->height())
|
|
{
|
|
quint32* pix = (quint32*)m_waterfallBuffer->scanLine(m_waterfallBufferPos);
|
|
|
|
for (int i = 0; i < m_nbBins; i++)
|
|
{
|
|
int v = (int)((spectrum[i] - m_referenceLevel) * 2.4 * 100.0 / m_powerRange + 240.0);
|
|
|
|
if (v > 239) {
|
|
v = 239;
|
|
} else if (v < 0) {
|
|
v = 0;
|
|
}
|
|
|
|
*pix++ = m_waterfallPalette[(int)v];
|
|
}
|
|
|
|
m_waterfallBufferPos++;
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::update3DSpectrogram(const Real *spectrum)
|
|
{
|
|
if (m_3DSpectrogramBufferPos < m_3DSpectrogramBuffer->height())
|
|
{
|
|
quint8* pix = (quint8*)m_3DSpectrogramBuffer->scanLine(m_3DSpectrogramBufferPos);
|
|
|
|
for (int i = 0; i < m_nbBins; i++)
|
|
{
|
|
int v = (int)((spectrum[i] - m_referenceLevel) * 2.4 * 100.0 / m_powerRange + 240.0);
|
|
|
|
if (v > 255) {
|
|
v = 255;
|
|
} else if (v < 0) {
|
|
v = 0;
|
|
}
|
|
|
|
*pix++ = v;
|
|
}
|
|
|
|
m_3DSpectrogramBufferPos++;
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::updateHistogram(const Real *spectrum)
|
|
{
|
|
quint8* b = m_histogram;
|
|
int fftMulSize = 100 * m_nbBins;
|
|
|
|
if ((m_displayHistogram || m_displayMaxHold) && (m_decay != 0))
|
|
{
|
|
m_decayDivisorCount--;
|
|
|
|
if ((m_decay > 1) || (m_decayDivisorCount <= 0))
|
|
{
|
|
for (int i = 0; i < fftMulSize; i++)
|
|
{
|
|
if (*b > m_decay) {
|
|
*b = *b - m_decay;
|
|
} else {
|
|
*b = 0;
|
|
}
|
|
|
|
b++;
|
|
}
|
|
|
|
m_decayDivisorCount = m_decayDivisor;
|
|
}
|
|
}
|
|
|
|
m_currentSpectrum = spectrum; // Store spectrum for current spectrum line display
|
|
|
|
#if 0 //def USE_SSE2
|
|
if(m_decay >= 0) { // normal
|
|
const __m128 refl = {m_referenceLevel, m_referenceLevel, m_referenceLevel, m_referenceLevel};
|
|
const __m128 power = {m_powerRange, m_powerRange, m_powerRange, m_powerRange};
|
|
const __m128 mul = {100.0f, 100.0f, 100.0f, 100.0f};
|
|
|
|
for(int i = 0; i < m_fftSize; i += 4) {
|
|
__m128 abc = _mm_loadu_ps (&spectrum[i]);
|
|
abc = _mm_sub_ps(abc, refl);
|
|
abc = _mm_mul_ps(abc, mul);
|
|
abc = _mm_div_ps(abc, power);
|
|
abc = _mm_add_ps(abc, mul);
|
|
__m128i result = _mm_cvtps_epi32(abc);
|
|
|
|
for(int j = 0; j < 4; j++) {
|
|
int v = ((int*)&result)[j];
|
|
if((v >= 0) && (v <= 99)) {
|
|
b = m_histogram + (i + j) * 100 + v;
|
|
if(*b < 220)
|
|
*b += m_histogramStroke; // was 4
|
|
else if(*b < 239)
|
|
*b += 1;
|
|
}
|
|
}
|
|
}
|
|
} else { // draw double pixels
|
|
int add = -m_decay * 4;
|
|
const __m128 refl = {m_referenceLevel, m_referenceLevel, m_referenceLevel, m_referenceLevel};
|
|
const __m128 power = {m_powerRange, m_powerRange, m_powerRange, m_powerRange};
|
|
const __m128 mul = {100.0f, 100.0f, 100.0f, 100.0f};
|
|
|
|
for(int i = 0; i < m_fftSize; i += 4) {
|
|
__m128 abc = _mm_loadu_ps (&spectrum[i]);
|
|
abc = _mm_sub_ps(abc, refl);
|
|
abc = _mm_mul_ps(abc, mul);
|
|
abc = _mm_div_ps(abc, power);
|
|
abc = _mm_add_ps(abc, mul);
|
|
__m128i result = _mm_cvtps_epi32(abc);
|
|
|
|
for(int j = 0; j < 4; j++) {
|
|
int v = ((int*)&result)[j];
|
|
if((v >= 1) && (v <= 98)) {
|
|
b = m_histogram + (i + j) * 100 + v;
|
|
if(b[-1] < 220)
|
|
b[-1] += add;
|
|
else if(b[-1] < 239)
|
|
b[-1] += 1;
|
|
if(b[0] < 220)
|
|
b[0] += add;
|
|
else if(b[0] < 239)
|
|
b[0] += 1;
|
|
if(b[1] < 220)
|
|
b[1] += add;
|
|
else if(b[1] < 239)
|
|
b[1] += 1;
|
|
} else if((v >= 0) && (v <= 99)) {
|
|
b = m_histogram + (i + j) * 100 + v;
|
|
if(*b < 220)
|
|
*b += add;
|
|
else if(*b < 239)
|
|
*b += 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
for (int i = 0; i < m_nbBins; i++)
|
|
{
|
|
int v = (int)((spectrum[i] - m_referenceLevel) * 100.0 / m_powerRange + 100.0);
|
|
|
|
if ((v >= 0) && (v <= 99))
|
|
{
|
|
b = m_histogram + i * 100 + v;
|
|
|
|
// capping to 239 as palette values are [0..239]
|
|
if (*b + m_histogramStroke <= 239) {
|
|
*b += m_histogramStroke; // was 4
|
|
} else {
|
|
*b = 239;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void GLSpectrumView::initializeGL()
|
|
{
|
|
QOpenGLContext *glCurrentContext = QOpenGLContext::currentContext();
|
|
int majorVersion = 0;
|
|
int minorVersion = 0;
|
|
|
|
if (glCurrentContext)
|
|
{
|
|
if (QOpenGLContext::currentContext()->isValid())
|
|
{
|
|
qDebug() << "GLSpectrumView::initializeGL: context:"
|
|
<< " major: " << (QOpenGLContext::currentContext()->format()).majorVersion()
|
|
<< " minor: " << (QOpenGLContext::currentContext()->format()).minorVersion()
|
|
<< " ES: " << (QOpenGLContext::currentContext()->isOpenGLES() ? "yes" : "no");
|
|
majorVersion = (QOpenGLContext::currentContext()->format()).majorVersion();
|
|
minorVersion = (QOpenGLContext::currentContext()->format()).minorVersion();
|
|
}
|
|
else {
|
|
qDebug() << "GLSpectrumView::initializeGL: current context is invalid";
|
|
}
|
|
|
|
// Enable OpenGL debugging
|
|
// Disable for release, as some OpenGL drivers are quite verbose and output
|
|
// info on every frame
|
|
if (false)
|
|
{
|
|
QSurfaceFormat format = glCurrentContext->format();
|
|
format.setOption(QSurfaceFormat::DebugContext);
|
|
glCurrentContext->setFormat(format);
|
|
|
|
if (glCurrentContext->hasExtension(QByteArrayLiteral("GL_KHR_debug")))
|
|
{
|
|
m_openGLLogger = new QOpenGLDebugLogger(this);
|
|
m_openGLLogger->initialize();
|
|
connect(m_openGLLogger, &QOpenGLDebugLogger::messageLogged, this, &GLSpectrumView::openGLDebug);
|
|
m_openGLLogger->startLogging(QOpenGLDebugLogger::SynchronousLogging);
|
|
}
|
|
else
|
|
{
|
|
qDebug() << "GLSpectrumView::initializeGL: GL_KHR_debug not available";
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
qCritical() << "GLSpectrumView::initializeGL: no current context";
|
|
return;
|
|
}
|
|
|
|
QOpenGLFunctions *glFunctions = QOpenGLContext::currentContext()->functions();
|
|
glFunctions->initializeOpenGLFunctions();
|
|
|
|
//glDisable(GL_DEPTH_TEST);
|
|
m_glShaderSimple.initializeGL(majorVersion, minorVersion);
|
|
m_glShaderLeftScale.initializeGL(majorVersion, minorVersion);
|
|
m_glShaderFrequencyScale.initializeGL(majorVersion, minorVersion);
|
|
m_glShaderWaterfall.initializeGL(majorVersion, minorVersion);
|
|
m_glShaderHistogram.initializeGL(majorVersion, minorVersion);
|
|
m_glShaderColorMap.initializeGL(majorVersion, minorVersion);
|
|
m_glShaderTextOverlay.initializeGL(majorVersion, minorVersion);
|
|
m_glShaderInfo.initializeGL(majorVersion, minorVersion);
|
|
m_glShaderSpectrogram.initializeGL(majorVersion, minorVersion);
|
|
m_glShaderSpectrogramTimeScale.initializeGL(majorVersion, minorVersion);
|
|
m_glShaderSpectrogramPowerScale.initializeGL(majorVersion, minorVersion);
|
|
}
|
|
|
|
void GLSpectrumView::openGLDebug(const QOpenGLDebugMessage &debugMessage)
|
|
{
|
|
qDebug() << "GLSpectrumView::openGLDebug: " << debugMessage;
|
|
}
|
|
|
|
void GLSpectrumView::resizeGL(int width, int height)
|
|
{
|
|
QMutexLocker mutexLocker(&m_mutex);
|
|
QOpenGLFunctions *glFunctions = QOpenGLContext::currentContext()->functions();
|
|
glFunctions->glViewport(0, 0, width, height);
|
|
m_changesPending = true;
|
|
}
|
|
|
|
void GLSpectrumView::clearSpectrumHistogram()
|
|
{
|
|
if (!m_mutex.tryLock(2)) {
|
|
return;
|
|
}
|
|
|
|
memset(m_histogram, 0x00, 100 * m_nbBins);
|
|
|
|
m_mutex.unlock();
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::paintGL()
|
|
{
|
|
if (!m_mutex.tryLock(2)) {
|
|
return;
|
|
}
|
|
|
|
if (m_changesPending)
|
|
{
|
|
applyChanges();
|
|
m_changesPending = false;
|
|
}
|
|
|
|
if (m_nbBins <= 0)
|
|
{
|
|
m_mutex.unlock();
|
|
return;
|
|
}
|
|
|
|
QOpenGLFunctions *glFunctions = QOpenGLContext::currentContext()->functions();
|
|
glFunctions->glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
|
|
glFunctions->glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
|
|
|
QMatrix4x4 spectrogramGridMatrix;
|
|
int devicePixelRatio;
|
|
|
|
if (m_display3DSpectrogram)
|
|
{
|
|
m_glShaderSpectrogram.applyTransform(spectrogramGridMatrix);
|
|
// paint 3D spectrogram
|
|
if (m_3DSpectrogramTexturePos + m_3DSpectrogramBufferPos < m_3DSpectrogramTextureHeight)
|
|
{
|
|
m_glShaderSpectrogram.subTexture(0, m_3DSpectrogramTexturePos, m_nbBins, m_3DSpectrogramBufferPos, m_3DSpectrogramBuffer->scanLine(0));
|
|
m_3DSpectrogramTexturePos += m_3DSpectrogramBufferPos;
|
|
}
|
|
else
|
|
{
|
|
int breakLine = m_3DSpectrogramTextureHeight - m_3DSpectrogramTexturePos;
|
|
int linesLeft = m_3DSpectrogramTexturePos + m_3DSpectrogramBufferPos - m_3DSpectrogramTextureHeight;
|
|
m_glShaderSpectrogram.subTexture(0, m_3DSpectrogramTexturePos, m_nbBins, breakLine, m_3DSpectrogramBuffer->scanLine(0));
|
|
m_glShaderSpectrogram.subTexture(0, 0, m_nbBins, linesLeft, m_3DSpectrogramBuffer->scanLine(breakLine));
|
|
m_3DSpectrogramTexturePos = linesLeft;
|
|
}
|
|
|
|
m_3DSpectrogramBufferPos = 0;
|
|
|
|
float prop_y = m_3DSpectrogramTexturePos / (m_3DSpectrogramTextureHeight - 1.0);
|
|
|
|
// Temporarily reduce viewport to waterfall area so anything outside is clipped
|
|
if (window()->windowHandle()) {
|
|
devicePixelRatio = window()->windowHandle()->devicePixelRatio();
|
|
} else {
|
|
devicePixelRatio = 1;
|
|
}
|
|
glFunctions->glViewport(0, m_3DSpectrogramBottom*devicePixelRatio, width()*devicePixelRatio, m_waterfallHeight*devicePixelRatio);
|
|
m_glShaderSpectrogram.drawSurface(m_3DSpectrogramStyle, spectrogramGridMatrix, prop_y, m_invertedWaterfall);
|
|
glFunctions->glViewport(0, 0, width()*devicePixelRatio, height()*devicePixelRatio);
|
|
}
|
|
else if (m_displayWaterfall)
|
|
{
|
|
// paint 2D waterfall
|
|
{
|
|
GLfloat vtx1[] = {
|
|
0, m_invertedWaterfall ? 0.0f : 1.0f,
|
|
1, m_invertedWaterfall ? 0.0f : 1.0f,
|
|
1, m_invertedWaterfall ? 1.0f : 0.0f,
|
|
0, m_invertedWaterfall ? 1.0f : 0.0f
|
|
};
|
|
|
|
|
|
if (m_waterfallTexturePos + m_waterfallBufferPos < m_waterfallTextureHeight)
|
|
{
|
|
m_glShaderWaterfall.subTexture(0, m_waterfallTexturePos, m_nbBins, m_waterfallBufferPos, m_waterfallBuffer->scanLine(0));
|
|
m_waterfallTexturePos += m_waterfallBufferPos;
|
|
}
|
|
else
|
|
{
|
|
int breakLine = m_waterfallTextureHeight - m_waterfallTexturePos;
|
|
int linesLeft = m_waterfallTexturePos + m_waterfallBufferPos - m_waterfallTextureHeight;
|
|
m_glShaderWaterfall.subTexture(0, m_waterfallTexturePos, m_nbBins, breakLine, m_waterfallBuffer->scanLine(0));
|
|
m_glShaderWaterfall.subTexture(0, 0, m_nbBins, linesLeft, m_waterfallBuffer->scanLine(breakLine));
|
|
m_waterfallTexturePos = linesLeft;
|
|
}
|
|
|
|
m_waterfallBufferPos = 0;
|
|
|
|
float prop_y = m_waterfallTexturePos / (m_waterfallTextureHeight - 1.0);
|
|
float off = 1.0 / (m_waterfallTextureHeight - 1.0);
|
|
|
|
GLfloat tex1[] = {
|
|
0, prop_y + 1 - off,
|
|
1, prop_y + 1 - off,
|
|
1, prop_y,
|
|
0, prop_y
|
|
};
|
|
|
|
m_glShaderWaterfall.drawSurface(m_glWaterfallBoxMatrix, tex1, vtx1, 4);
|
|
}
|
|
|
|
// paint channels
|
|
if (m_mouseInside)
|
|
{
|
|
for (int i = 0; i < m_channelMarkerStates.size(); ++i)
|
|
{
|
|
ChannelMarkerState* dv = m_channelMarkerStates[i];
|
|
|
|
if (dv->m_channelMarker->getVisible()
|
|
&& (dv->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink)
|
|
&& dv->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
|
|
{
|
|
{
|
|
GLfloat q3[] {
|
|
0, 0,
|
|
1, 0,
|
|
1, 1,
|
|
0, 1,
|
|
0.5, 0,
|
|
0.5, 1,
|
|
};
|
|
|
|
QVector4D color(dv->m_channelMarker->getColor().redF(), dv->m_channelMarker->getColor().greenF(), dv->m_channelMarker->getColor().blueF(), 0.3f);
|
|
m_glShaderSimple.drawSurface(dv->m_glMatrixWaterfall, color, q3, 4);
|
|
|
|
QVector4D colorLine(0.8f, 0.8f, 0.6f, 1.0f);
|
|
m_glShaderSimple.drawSegments(dv->m_glMatrixDsbWaterfall, colorLine, &q3[8], 2);
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// draw rect around
|
|
{
|
|
GLfloat q3[] {
|
|
1, 1,
|
|
0, 1,
|
|
0, 0,
|
|
1, 0
|
|
};
|
|
|
|
QVector4D color(1.0f, 1.0f, 1.0f, 0.5f);
|
|
m_glShaderSimple.drawContour(m_glWaterfallBoxMatrix, color, q3, 4);
|
|
}
|
|
}
|
|
|
|
// paint histogram
|
|
if (m_displayHistogram || m_displayMaxHold || m_displayCurrent)
|
|
{
|
|
if (m_displayHistogram)
|
|
{
|
|
{
|
|
// import new lines into the texture
|
|
quint32* pix;
|
|
quint8* bs = m_histogram;
|
|
|
|
for (int y = 0; y < 100; y++)
|
|
{
|
|
quint8* b = bs;
|
|
pix = (quint32*)m_histogramBuffer->scanLine(99 - y);
|
|
|
|
for (int x = 0; x < m_nbBins; x++)
|
|
{
|
|
*pix = m_histogramPalette[*b];
|
|
pix++;
|
|
b += 100;
|
|
}
|
|
|
|
bs++;
|
|
}
|
|
|
|
GLfloat vtx1[] = {
|
|
0, 0,
|
|
1, 0,
|
|
1, 1,
|
|
0, 1
|
|
};
|
|
GLfloat tex1[] = {
|
|
0, 0,
|
|
1, 0,
|
|
1, 1,
|
|
0, 1
|
|
};
|
|
|
|
m_glShaderHistogram.subTexture(0, 0, m_nbBins, 100, m_histogramBuffer->scanLine(0));
|
|
m_glShaderHistogram.drawSurface(m_glHistogramBoxMatrix, tex1, vtx1, 4);
|
|
}
|
|
}
|
|
|
|
|
|
// paint channels
|
|
if (m_mouseInside)
|
|
{
|
|
// Effective BW overlays
|
|
for (int i = 0; i < m_channelMarkerStates.size(); ++i)
|
|
{
|
|
ChannelMarkerState* dv = m_channelMarkerStates[i];
|
|
|
|
if (dv->m_channelMarker->getVisible()
|
|
&& (dv->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink)
|
|
&& dv->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
|
|
{
|
|
{
|
|
GLfloat q3[] {
|
|
0, 0,
|
|
1, 0,
|
|
1, 1,
|
|
0, 1,
|
|
0.5, 0,
|
|
0.5, 1
|
|
};
|
|
|
|
QVector4D color(dv->m_channelMarker->getColor().redF(), dv->m_channelMarker->getColor().greenF(), dv->m_channelMarker->getColor().blueF(), 0.3f);
|
|
m_glShaderSimple.drawSurface(dv->m_glMatrixHistogram, color, q3, 4);
|
|
|
|
QVector4D colorLine(0.8f, 0.8f, 0.6f, 1.0f);
|
|
|
|
if (dv->m_channelMarker->getSidebands() != ChannelMarker::dsb) {
|
|
q3[6] = 0.5;
|
|
}
|
|
|
|
m_glShaderSimple.drawSegments(dv->m_glMatrixDsbHistogram, colorLine, &q3[8], 2);
|
|
m_glShaderSimple.drawSegments(dv->m_glMatrixFreqScale, colorLine, q3, 2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// paint left scales (time and power)
|
|
if (m_displayWaterfall || m_displayMaxHold || m_displayCurrent || m_displayHistogram )
|
|
{
|
|
{
|
|
GLfloat vtx1[] = {
|
|
0, 1,
|
|
1, 1,
|
|
1, 0,
|
|
0, 0
|
|
};
|
|
GLfloat tex1[] = {
|
|
0, 1,
|
|
1, 1,
|
|
1, 0,
|
|
0, 0
|
|
};
|
|
|
|
m_glShaderLeftScale.drawSurface(m_glLeftScaleBoxMatrix, tex1, vtx1, 4);
|
|
}
|
|
}
|
|
|
|
// paint frequency scale
|
|
if (m_displayWaterfall || m_displayMaxHold || m_displayCurrent || m_displayHistogram)
|
|
{
|
|
{
|
|
GLfloat vtx1[] = {
|
|
0, 1,
|
|
1, 1,
|
|
1, 0,
|
|
0, 0
|
|
};
|
|
GLfloat tex1[] = {
|
|
0, 1,
|
|
1, 1,
|
|
1, 0,
|
|
0, 0
|
|
};
|
|
|
|
m_glShaderFrequencyScale.drawSurface(m_glFrequencyScaleBoxMatrix, tex1, vtx1, 4);
|
|
}
|
|
|
|
// paint channels
|
|
|
|
// Effective bandwidth overlays
|
|
for (int i = 0; i < m_channelMarkerStates.size(); ++i)
|
|
{
|
|
ChannelMarkerState* dv = m_channelMarkerStates[i];
|
|
|
|
// frequency scale channel overlay
|
|
if (dv->m_channelMarker->getVisible()
|
|
&& (dv->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink)
|
|
&& dv->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
|
|
{
|
|
{
|
|
GLfloat q3[] {
|
|
1, 0.2,
|
|
0, 0.2,
|
|
0, 0,
|
|
1, 0,
|
|
0.5, 0,
|
|
0.5, 1
|
|
};
|
|
|
|
QVector4D color(dv->m_channelMarker->getColor().redF(), dv->m_channelMarker->getColor().greenF(), dv->m_channelMarker->getColor().blueF(), 0.5f);
|
|
m_glShaderSimple.drawSurface(dv->m_glMatrixFreqScale, color, q3, 4);
|
|
|
|
if (dv->m_channelMarker->getHighlighted())
|
|
{
|
|
QVector4D colorLine(0.8f, 0.8f, 0.6f, 1.0f);
|
|
m_glShaderSimple.drawSegments(dv->m_glMatrixDsbFreqScale, colorLine, &q3[8], 2);
|
|
m_glShaderSimple.drawSegments(dv->m_glMatrixFreqScale, colorLine, &q3[4], 2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// paint 3D spectrogram scales
|
|
if (m_display3DSpectrogram && m_displayGrid)
|
|
{
|
|
glFunctions->glViewport(0, m_3DSpectrogramBottom*devicePixelRatio, width()*devicePixelRatio, m_waterfallHeight*devicePixelRatio);
|
|
{
|
|
GLfloat l = m_spectrogramTimePixmap.width() / (GLfloat) width();
|
|
GLfloat r = m_rightMargin / (GLfloat) width();
|
|
GLfloat h = m_frequencyPixmap.height() / (GLfloat) m_waterfallHeight;
|
|
|
|
GLfloat vtx1[] = {
|
|
-l, -h,
|
|
1.0f+r, -h,
|
|
1.0f+r, 0.0f,
|
|
-l, 0.0f
|
|
};
|
|
GLfloat tex1[] = {
|
|
0, 1,
|
|
1, 1,
|
|
1, 0,
|
|
0, 0
|
|
};
|
|
|
|
m_glShaderFrequencyScale.drawSurface(spectrogramGridMatrix, tex1, vtx1, 4);
|
|
}
|
|
|
|
{
|
|
GLfloat w = m_spectrogramTimePixmap.width() / (GLfloat) width();
|
|
GLfloat h = (m_bottomMargin/2) / (GLfloat) m_waterfallHeight; // m_bottomMargin is fm.ascent
|
|
|
|
GLfloat vtx1[] = {
|
|
-w, 0.0f-h,
|
|
0.0f, 0.0f-h,
|
|
0.0f, 1.0f+h,
|
|
-w, 1.0f+h
|
|
};
|
|
GLfloat tex1[] = {
|
|
0, 1,
|
|
1, 1,
|
|
1, 0,
|
|
0, 0
|
|
};
|
|
|
|
m_glShaderSpectrogramTimeScale.drawSurface(spectrogramGridMatrix, tex1, vtx1, 4);
|
|
}
|
|
|
|
{
|
|
GLfloat w = m_spectrogramPowerPixmap.width() / (GLfloat) width();
|
|
GLfloat h = m_topMargin / (GLfloat) m_spectrogramPowerPixmap.height();
|
|
|
|
GLfloat vtx1[] = {
|
|
-w, 1.0f, 0.0f,
|
|
0.0f, 1.0f, 0.0f,
|
|
0.0f, 1.0f, 1.0f+h,
|
|
-w, 1.0f, 1.0f+h,
|
|
};
|
|
GLfloat tex1[] = {
|
|
0, 1,
|
|
1, 1,
|
|
1, 0,
|
|
0, 0
|
|
};
|
|
|
|
m_glShaderSpectrogramPowerScale.drawSurface(spectrogramGridMatrix, tex1, vtx1, 4, 3);
|
|
}
|
|
|
|
glFunctions->glViewport(0, 0, width()*devicePixelRatio, height()*devicePixelRatio);
|
|
}
|
|
|
|
// paint max hold lines on top of histogram
|
|
if (m_displayMaxHold)
|
|
{
|
|
if (m_maxHold.size() < (uint) m_nbBins) {
|
|
m_maxHold.resize(m_nbBins);
|
|
}
|
|
|
|
for (int i = 0; i < m_nbBins; i++)
|
|
{
|
|
int j;
|
|
quint8* bs = m_histogram + i * 100;
|
|
|
|
for (j = 99; j >= 0; j--)
|
|
{
|
|
if (bs[j] > 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// m_referenceLevel : top
|
|
// m_referenceLevel - m_powerRange : bottom
|
|
m_maxHold[i] = ((j - 99) * m_powerRange) / 99.0 + m_referenceLevel;
|
|
}
|
|
// Fill under max hold line
|
|
if (m_spectrumStyle != SpectrumSettings::Line)
|
|
{
|
|
GLfloat *q3 = m_q3ColorMap.m_array;
|
|
for (int i = 0; i < m_nbBins; i++)
|
|
{
|
|
Real v = m_maxHold[i] - m_referenceLevel;
|
|
|
|
if (v > 0) {
|
|
v = 0;
|
|
} else if (v < -m_powerRange) {
|
|
v = -m_powerRange;
|
|
}
|
|
|
|
q3[4*i] = (GLfloat)i;
|
|
q3[4*i+1] = -m_powerRange;
|
|
q3[4*i+2] = (GLfloat)i;
|
|
q3[4*i+3] = v;
|
|
}
|
|
// Replicate Nyquist sample to end of positive side
|
|
q3[4*m_nbBins] = (GLfloat) m_nbBins;
|
|
q3[4*m_nbBins+1] = q3[1];
|
|
q3[4*m_nbBins+2] = (GLfloat) m_nbBins;
|
|
q3[4*m_nbBins+3] = q3[3];
|
|
|
|
QVector4D color(0.5f, 0.0f, 0.0f, (float) m_displayTraceIntensity / 100.0f);
|
|
m_glShaderSimple.drawSurfaceStrip(m_glHistogramSpectrumMatrix, color, q3, 2*(m_nbBins+1));
|
|
}
|
|
// Max hold line
|
|
{
|
|
GLfloat *q3 = m_q3FFT.m_array;
|
|
|
|
for (int i = 0; i < m_nbBins; i++)
|
|
{
|
|
Real v = m_maxHold[i] - m_referenceLevel;
|
|
|
|
if (v >= 0) {
|
|
v = 0;
|
|
} else if (v < -m_powerRange) {
|
|
v = -m_powerRange;
|
|
}
|
|
|
|
q3[2*i] = (Real) i;
|
|
q3[2*i+1] = v;
|
|
}
|
|
// Replicate Nyquist sample to end of positive side
|
|
q3[2*m_nbBins] = (GLfloat) m_nbBins;
|
|
q3[2*m_nbBins+1] = q3[1];
|
|
|
|
QVector4D color(1.0f, 0.0f, 0.0f, (float) m_displayTraceIntensity / 100.0f);
|
|
m_glShaderSimple.drawPolyline(m_glHistogramSpectrumMatrix, color, q3, m_nbBins+1);
|
|
}
|
|
}
|
|
|
|
// paint current spectrum line on top of histogram
|
|
if (m_displayCurrent && m_currentSpectrum)
|
|
{
|
|
Real bottom = -m_powerRange;
|
|
GLfloat *q3;
|
|
|
|
if (m_spectrumStyle != SpectrumSettings::Line)
|
|
{
|
|
q3 = m_q3ColorMap.m_array;
|
|
// Fill under line
|
|
for (int i = 0; i < m_nbBins; i++)
|
|
{
|
|
Real v = m_currentSpectrum[i] - m_referenceLevel;
|
|
|
|
if (v > 0) {
|
|
v = 0;
|
|
} else if (v < bottom) {
|
|
v = bottom;
|
|
}
|
|
|
|
q3[4*i] = (GLfloat)i;
|
|
q3[4*i+1] = bottom;
|
|
q3[4*i+2] = (GLfloat)i;
|
|
q3[4*i+3] = v;
|
|
}
|
|
// Replicate Nyquist sample to end of positive side
|
|
q3[4*m_nbBins] = (GLfloat) m_nbBins;
|
|
q3[4*m_nbBins+1] = q3[1];
|
|
q3[4*m_nbBins+2] = (GLfloat) m_nbBins;
|
|
q3[4*m_nbBins+3] = q3[3];
|
|
|
|
QVector4D color(1.0f, 1.0f, 0.25f, (float) m_displayTraceIntensity / 100.0f);
|
|
if (m_spectrumStyle == SpectrumSettings::Gradient) {
|
|
m_glShaderColorMap.drawSurfaceStrip(m_glHistogramSpectrumMatrix, q3, 2*(m_nbBins+1), bottom, 0.75f);
|
|
} else {
|
|
m_glShaderSimple.drawSurfaceStrip(m_glHistogramSpectrumMatrix, color, q3, 2*(m_nbBins+1));
|
|
}
|
|
}
|
|
|
|
{
|
|
if (m_histogramFindPeaks) {
|
|
m_peakFinder.init(m_currentSpectrum[0]);
|
|
}
|
|
|
|
// Draw line
|
|
q3 = m_q3FFT.m_array;
|
|
for (int i = 0; i < m_nbBins; i++)
|
|
{
|
|
Real v = m_currentSpectrum[i] - m_referenceLevel;
|
|
|
|
if (v > 0) {
|
|
v = 0;
|
|
} else if (v < bottom) {
|
|
v = bottom;
|
|
}
|
|
|
|
q3[2*i] = (Real) i;
|
|
q3[2*i+1] = v;
|
|
|
|
if (m_histogramFindPeaks && (i > 0)) {
|
|
m_peakFinder.push(m_currentSpectrum[i], i == m_nbBins - 1);
|
|
}
|
|
}
|
|
// Replicate Nyquist sample to end of positive side
|
|
q3[2*m_nbBins] = (GLfloat) m_nbBins;
|
|
q3[2*m_nbBins+1] = q3[1];
|
|
|
|
QVector4D color;
|
|
if (m_spectrumStyle == SpectrumSettings::Gradient) {
|
|
color = QVector4D(m_colorMap[255*3], m_colorMap[255*3+1], m_colorMap[255*3+2], (float) m_displayTraceIntensity / 100.0f);
|
|
} else {
|
|
color = QVector4D(1.0f, 1.0f, 0.25f, (float) m_displayTraceIntensity / 100.0f);
|
|
}
|
|
m_glShaderSimple.drawPolyline(m_glHistogramSpectrumMatrix, color, q3, m_nbBins+1);
|
|
|
|
if (m_histogramFindPeaks) {
|
|
m_peakFinder.sortPeaks();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (m_displayCurrent && m_currentSpectrum && (m_markersDisplay & SpectrumSettings::MarkersDisplaySpectrum))
|
|
{
|
|
if (m_histogramFindPeaks) {
|
|
updateHistogramPeaks();
|
|
}
|
|
|
|
drawSpectrumMarkers();
|
|
}
|
|
|
|
if (m_markersDisplay & SpectrumSettings::MarkersDisplayAnnotations) {
|
|
drawAnnotationMarkers();
|
|
}
|
|
|
|
// paint waterfall grid
|
|
if (m_displayWaterfall && m_displayGrid)
|
|
{
|
|
const ScaleEngine::TickList* tickList;
|
|
const ScaleEngine::Tick* tick;
|
|
tickList = &m_timeScale.getTickList();
|
|
|
|
{
|
|
GLfloat *q3 = m_q3TickTime.m_array;
|
|
int effectiveTicks = 0;
|
|
|
|
for (int i= 0; i < tickList->count(); i++)
|
|
{
|
|
tick = &(*tickList)[i];
|
|
|
|
if (tick->major)
|
|
{
|
|
if (tick->textSize > 0)
|
|
{
|
|
float y = tick->pos / m_timeScale.getSize();
|
|
q3[4*effectiveTicks] = 0;
|
|
q3[4*effectiveTicks+1] = y;
|
|
q3[4*effectiveTicks+2] = 1;
|
|
q3[4*effectiveTicks+3] = y;
|
|
effectiveTicks++;
|
|
}
|
|
}
|
|
}
|
|
|
|
QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
|
|
m_glShaderSimple.drawSegments(m_glWaterfallBoxMatrix, color, q3, 2*effectiveTicks);
|
|
}
|
|
|
|
tickList = &m_frequencyScale.getTickList();
|
|
|
|
{
|
|
GLfloat *q3 = m_q3TickFrequency.m_array;
|
|
int effectiveTicks = 0;
|
|
|
|
for (int i= 0; i < tickList->count(); i++)
|
|
{
|
|
tick = &(*tickList)[i];
|
|
|
|
if (tick->major)
|
|
{
|
|
if (tick->textSize > 0)
|
|
{
|
|
float x = tick->pos / m_frequencyScale.getSize();
|
|
q3[4*effectiveTicks] = x;
|
|
q3[4*effectiveTicks+1] = 0;
|
|
q3[4*effectiveTicks+2] = x;
|
|
q3[4*effectiveTicks+3] = 1;
|
|
effectiveTicks++;
|
|
}
|
|
}
|
|
}
|
|
|
|
QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
|
|
m_glShaderSimple.drawSegments(m_glWaterfallBoxMatrix, color, q3, 2*effectiveTicks);
|
|
}
|
|
}
|
|
|
|
// paint 3D spectrogram grid - this is drawn on top of signal, so that appears slightly transparent
|
|
// x-axis is freq, y time and z power
|
|
if (m_displayGrid && m_display3DSpectrogram)
|
|
{
|
|
const ScaleEngine::TickList* tickList;
|
|
const ScaleEngine::Tick* tick;
|
|
|
|
glFunctions->glViewport(0, m_3DSpectrogramBottom*devicePixelRatio, width()*devicePixelRatio, m_waterfallHeight*devicePixelRatio);
|
|
|
|
tickList = &m_powerScale.getTickList();
|
|
{
|
|
GLfloat *q3 = m_q3TickPower.m_array;
|
|
int effectiveTicks = 0;
|
|
|
|
for (int i= 0; i < tickList->count(); i++)
|
|
{
|
|
tick = &(*tickList)[i];
|
|
|
|
if (tick->major)
|
|
{
|
|
if (tick->textSize > 0)
|
|
{
|
|
float y = tick->pos / m_powerScale.getSize();
|
|
q3[6*effectiveTicks] = 0.0;
|
|
q3[6*effectiveTicks+1] = 1.0;
|
|
q3[6*effectiveTicks+2] = y;
|
|
q3[6*effectiveTicks+3] = 1.0;
|
|
q3[6*effectiveTicks+4] = 1.0;
|
|
q3[6*effectiveTicks+5] = y;
|
|
effectiveTicks++;
|
|
}
|
|
}
|
|
}
|
|
|
|
QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
|
|
m_glShaderSimple.drawSegments(spectrogramGridMatrix, color, q3, 2*effectiveTicks, 3);
|
|
}
|
|
|
|
tickList = &m_timeScale.getTickList();
|
|
{
|
|
GLfloat *q3 = m_q3TickTime.m_array;
|
|
int effectiveTicks = 0;
|
|
|
|
for (int i= 0; i < tickList->count(); i++)
|
|
{
|
|
tick = &(*tickList)[i];
|
|
|
|
if (tick->major)
|
|
{
|
|
if (tick->textSize > 0)
|
|
{
|
|
float y = tick->pos / m_timeScale.getSize();
|
|
q3[4*effectiveTicks] = 0.0;
|
|
q3[4*effectiveTicks+1] = 1.0 - y;
|
|
q3[4*effectiveTicks+2] = 1.0;
|
|
q3[4*effectiveTicks+3] = 1.0 - y;
|
|
effectiveTicks++;
|
|
}
|
|
}
|
|
}
|
|
|
|
QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
|
|
m_glShaderSimple.drawSegments(spectrogramGridMatrix, color, q3, 2*effectiveTicks);
|
|
}
|
|
|
|
tickList = &m_frequencyScale.getTickList();
|
|
{
|
|
GLfloat *q3 = m_q3TickFrequency.m_array;
|
|
int effectiveTicks = 0;
|
|
|
|
for (int i= 0; i < tickList->count(); i++)
|
|
{
|
|
tick = &(*tickList)[i];
|
|
|
|
if (tick->major)
|
|
{
|
|
if (tick->textSize > 0)
|
|
{
|
|
float x = tick->pos / m_frequencyScale.getSize();
|
|
q3[4*effectiveTicks] = x;
|
|
q3[4*effectiveTicks+1] = -0.0;
|
|
q3[4*effectiveTicks+2] = x;
|
|
q3[4*effectiveTicks+3] = 1.0;
|
|
effectiveTicks++;
|
|
}
|
|
}
|
|
}
|
|
|
|
QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
|
|
m_glShaderSimple.drawSegments(spectrogramGridMatrix, color, q3, 2*effectiveTicks);
|
|
}
|
|
{
|
|
GLfloat *q3 = m_q3TickFrequency.m_array;
|
|
int effectiveTicks = 0;
|
|
|
|
for (int i= 0; i < tickList->count(); i++)
|
|
{
|
|
tick = &(*tickList)[i];
|
|
|
|
if (tick->major)
|
|
{
|
|
if (tick->textSize > 0)
|
|
{
|
|
float x = tick->pos / m_frequencyScale.getSize();
|
|
q3[6*effectiveTicks] = x;
|
|
q3[6*effectiveTicks+1] = 1.0;
|
|
q3[6*effectiveTicks+2] = 0.0;
|
|
q3[6*effectiveTicks+3] = x;
|
|
q3[6*effectiveTicks+4] = 1.0;
|
|
q3[6*effectiveTicks+5] = 1.0;
|
|
effectiveTicks++;
|
|
}
|
|
}
|
|
}
|
|
|
|
QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
|
|
m_glShaderSimple.drawSegments(spectrogramGridMatrix, color, q3, 2*effectiveTicks, 3);
|
|
}
|
|
|
|
glFunctions->glViewport(0, 0, width()*devicePixelRatio, height()*devicePixelRatio);
|
|
}
|
|
|
|
// paint histogram grid
|
|
if ((m_displayHistogram || m_displayMaxHold || m_displayCurrent) && (m_displayGrid))
|
|
{
|
|
const ScaleEngine::TickList* tickList;
|
|
const ScaleEngine::Tick* tick;
|
|
tickList = &m_powerScale.getTickList();
|
|
|
|
{
|
|
GLfloat *q3 = m_q3TickPower.m_array;
|
|
int effectiveTicks = 0;
|
|
|
|
for (int i= 0; i < tickList->count(); i++)
|
|
{
|
|
tick = &(*tickList)[i];
|
|
|
|
if (tick->major)
|
|
{
|
|
if (tick->textSize > 0)
|
|
{
|
|
float y = tick->pos / m_powerScale.getSize();
|
|
q3[4*effectiveTicks] = 0;
|
|
q3[4*effectiveTicks+1] = 1-y;
|
|
q3[4*effectiveTicks+2] = 1;
|
|
q3[4*effectiveTicks+3] = 1-y;
|
|
effectiveTicks++;
|
|
}
|
|
}
|
|
}
|
|
|
|
QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
|
|
m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, color, q3, 2*effectiveTicks);
|
|
}
|
|
|
|
tickList = &m_frequencyScale.getTickList();
|
|
|
|
{
|
|
GLfloat *q3 = m_q3TickFrequency.m_array;
|
|
int effectiveTicks = 0;
|
|
|
|
for (int i= 0; i < tickList->count(); i++)
|
|
{
|
|
tick = &(*tickList)[i];
|
|
|
|
if (tick->major)
|
|
{
|
|
if (tick->textSize > 0)
|
|
{
|
|
float x = tick->pos / m_frequencyScale.getSize();
|
|
q3[4*effectiveTicks] = x;
|
|
q3[4*effectiveTicks+1] = 0;
|
|
q3[4*effectiveTicks+2] = x;
|
|
q3[4*effectiveTicks+3] = 1;
|
|
effectiveTicks++;
|
|
}
|
|
}
|
|
}
|
|
|
|
QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
|
|
m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, color, q3, 2*effectiveTicks);
|
|
}
|
|
}
|
|
|
|
// paint rect around histogram (do last, so on top of filled spectrum)
|
|
if (m_displayHistogram || m_displayMaxHold || m_displayCurrent)
|
|
{
|
|
{
|
|
GLfloat q3[] {
|
|
1, 1,
|
|
0, 1,
|
|
0, 0,
|
|
1, 0
|
|
};
|
|
|
|
QVector4D color(1.0f, 1.0f, 1.0f, 0.5f);
|
|
m_glShaderSimple.drawContour(m_glHistogramBoxMatrix, color, q3, 4);
|
|
}
|
|
}
|
|
|
|
// Paint info line
|
|
{
|
|
GLfloat vtx1[] = {
|
|
0, 1,
|
|
1, 1,
|
|
1, 0,
|
|
0, 0
|
|
};
|
|
GLfloat tex1[] = {
|
|
0, 1,
|
|
1, 1,
|
|
1, 0,
|
|
0, 0
|
|
};
|
|
|
|
m_glShaderInfo.drawSurface(m_glInfoBoxMatrix, tex1, vtx1, 4);
|
|
}
|
|
|
|
if (m_currentSpectrum)
|
|
{
|
|
switch (m_measurement)
|
|
{
|
|
case SpectrumSettings::MeasurementPeaks:
|
|
measurePeaks();
|
|
break;
|
|
case SpectrumSettings::MeasurementChannelPower:
|
|
measureChannelPower();
|
|
break;
|
|
case SpectrumSettings::MeasurementAdjacentChannelPower:
|
|
measureAdjacentChannelPower();
|
|
break;
|
|
case SpectrumSettings::MeasurementOccupiedBandwidth:
|
|
measureOccupiedBandwidth();
|
|
break;
|
|
case SpectrumSettings::Measurement3dBBandwidth:
|
|
measure3dBBandwidth();
|
|
break;
|
|
case SpectrumSettings::MeasurementSNR:
|
|
measureSNR();
|
|
measureSFDR();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
m_mutex.unlock();
|
|
} // paintGL
|
|
|
|
// Hightlight power band for SFDR
|
|
void GLSpectrumView::drawPowerBandMarkers(float max, float min, const QVector4D &color)
|
|
{
|
|
float p1 = (m_powerScale.getRangeMax() - min) / m_powerScale.getRange();
|
|
float p2 = (m_powerScale.getRangeMax() - max) / m_powerScale.getRange();
|
|
|
|
GLfloat q3[] {
|
|
1, p2,
|
|
0, p2,
|
|
0, p1,
|
|
1, p1,
|
|
0, p1,
|
|
0, p2
|
|
};
|
|
|
|
m_glShaderSimple.drawSurface(m_glHistogramBoxMatrix, color, q3, 4);
|
|
}
|
|
|
|
// Hightlight bandwidth being measured
|
|
void GLSpectrumView::drawBandwidthMarkers(int64_t centerFrequency, int bandwidth, const QVector4D &color)
|
|
{
|
|
float f1 = (centerFrequency - bandwidth / 2);
|
|
float f2 = (centerFrequency + bandwidth / 2);
|
|
float x1 = (f1 - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange();
|
|
float x2 = (f2 - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange();
|
|
|
|
GLfloat q3[] {
|
|
x2, 1,
|
|
x1, 1,
|
|
x1, 0,
|
|
x2, 0,
|
|
x1, 0,
|
|
x1, 1
|
|
};
|
|
|
|
m_glShaderSimple.drawSurface(m_glHistogramBoxMatrix, color, q3, 4);
|
|
}
|
|
|
|
// Hightlight peak being measured. Note that the peak isn't always at the center
|
|
void GLSpectrumView::drawPeakMarkers(int64_t startFrequency, int64_t endFrequency, const QVector4D &color)
|
|
{
|
|
float x1 = (startFrequency - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange();
|
|
float x2 = (endFrequency - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange();
|
|
|
|
GLfloat q3[] {
|
|
x2, 1,
|
|
x1, 1,
|
|
x1, 0,
|
|
x2, 0,
|
|
x1, 0,
|
|
x1, 1
|
|
};
|
|
|
|
m_glShaderSimple.drawSurface(m_glHistogramBoxMatrix, color, q3, 4);
|
|
}
|
|
|
|
void GLSpectrumView::drawSpectrumMarkers()
|
|
{
|
|
if (!m_currentSpectrum) {
|
|
return;
|
|
}
|
|
|
|
QVector4D lineColor(1.0f, 1.0f, 1.0f, 0.3f);
|
|
|
|
// paint histogram markers
|
|
if (m_histogramMarkers.size() > 0)
|
|
{
|
|
for (int i = 0; i < m_histogramMarkers.size(); i++)
|
|
{
|
|
if (!m_histogramMarkers.at(i).m_show) {
|
|
continue;
|
|
}
|
|
|
|
QPointF ypoint = m_histogramMarkers.at(i).m_point;
|
|
QString powerStr = m_histogramMarkers.at(i).m_powerStr;
|
|
|
|
if (m_histogramMarkers.at(i).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePower)
|
|
{
|
|
float power = m_linear ?
|
|
m_currentSpectrum[m_histogramMarkers.at(i).m_fftBin] * (m_useCalibration ? m_calibrationGain : 1.0f):
|
|
m_currentSpectrum[m_histogramMarkers.at(i).m_fftBin] + (m_useCalibration ? m_calibrationShiftdB : 0.0f);
|
|
ypoint.ry() =
|
|
(m_powerScale.getRangeMax() - power) / m_powerScale.getRange();
|
|
ypoint.ry() = ypoint.ry() < 0 ?
|
|
0 :
|
|
ypoint.ry() > 1 ? 1 : ypoint.ry();
|
|
powerStr = displayPower(
|
|
power,
|
|
m_linear ? 'e' : 'f',
|
|
m_linear ? 3 : 1
|
|
);
|
|
}
|
|
else if (m_histogramMarkers.at(i).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePowerMax)
|
|
{
|
|
float power = m_currentSpectrum[m_histogramMarkers.at(i).m_fftBin];
|
|
|
|
if ((m_histogramMarkers.at(i).m_holdReset) || (power > m_histogramMarkers[i].m_powerMax))
|
|
{
|
|
m_histogramMarkers[i].m_powerMax = power;
|
|
m_histogramMarkers[i].m_holdReset = false;
|
|
}
|
|
|
|
float powerMax = m_linear ?
|
|
m_histogramMarkers[i].m_powerMax * (m_useCalibration ? m_calibrationGain : 1.0f) :
|
|
m_histogramMarkers[i].m_powerMax + (m_useCalibration ? m_calibrationShiftdB : 0.0f);
|
|
|
|
ypoint.ry() =
|
|
(m_powerScale.getRangeMax() - powerMax) / m_powerScale.getRange();
|
|
ypoint.ry() = ypoint.ry() < 0 ?
|
|
0 : ypoint.ry() > 1 ?
|
|
1 : ypoint.ry();
|
|
powerStr = displayPower(
|
|
powerMax,
|
|
m_linear ? 'e' : 'f',
|
|
m_linear ? 3 : 1
|
|
);
|
|
}
|
|
|
|
// crosshairs
|
|
GLfloat h[] {
|
|
(float) m_histogramMarkers.at(i).m_point.x(), 0,
|
|
(float) m_histogramMarkers.at(i).m_point.x(), 1
|
|
};
|
|
m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, lineColor, h, 2);
|
|
GLfloat v[] {
|
|
0, (float) ypoint.y(),
|
|
1, (float) ypoint.y()
|
|
};
|
|
m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, lineColor, v, 2);
|
|
QColor textColor = m_histogramMarkers.at(i).m_markerColor;
|
|
// text
|
|
if (i == 0)
|
|
{
|
|
drawTextOverlay(
|
|
m_histogramMarkers.at(i).m_frequencyStr,
|
|
textColor,
|
|
m_textOverlayFont,
|
|
m_histogramMarkers.at(i).m_point.x() * m_histogramRect.width(),
|
|
(m_invertedWaterfall || (m_waterfallHeight == 0)) ? m_histogramRect.height() : 0,
|
|
m_histogramMarkers.at(i).m_point.x() < 0.5f,
|
|
!m_invertedWaterfall && (m_waterfallHeight != 0),
|
|
m_histogramRect);
|
|
drawTextOverlay(
|
|
powerStr,
|
|
textColor,
|
|
m_textOverlayFont,
|
|
0,
|
|
ypoint.y() * m_histogramRect.height(),
|
|
true,
|
|
ypoint.y() < 0.5f,
|
|
m_histogramRect);
|
|
}
|
|
else
|
|
{
|
|
textColor.setAlpha(192);
|
|
float power0, poweri;
|
|
|
|
if (m_histogramMarkers.at(0).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePower) {
|
|
power0 = m_currentSpectrum[m_histogramMarkers.at(0).m_fftBin];
|
|
} else if (m_histogramMarkers.at(0).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePowerMax) {
|
|
power0 = m_histogramMarkers.at(0).m_powerMax;
|
|
} else {
|
|
power0 = m_linear ? m_histogramMarkers.at(0).m_power : CalcDb::dbPower(m_histogramMarkers.at(0).m_power);
|
|
}
|
|
|
|
if (m_histogramMarkers.at(i).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePower) {
|
|
poweri = m_currentSpectrum[m_histogramMarkers.at(i).m_fftBin];
|
|
} else if (m_histogramMarkers.at(i).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePowerMax) {
|
|
poweri = m_histogramMarkers.at(i).m_powerMax;
|
|
} else {
|
|
poweri = m_linear ? m_histogramMarkers.at(i).m_power : CalcDb::dbPower(m_histogramMarkers.at(i).m_power);
|
|
}
|
|
|
|
QString deltaPowerStr;
|
|
|
|
if (m_linear) {
|
|
deltaPowerStr = QString::number(poweri - power0, 'e', 3);
|
|
} else {
|
|
deltaPowerStr = QString::number(poweri - power0, 'f', 1);
|
|
}
|
|
|
|
drawTextOverlay(
|
|
m_histogramMarkers.at(i).m_deltaFrequencyStr,
|
|
textColor,
|
|
m_textOverlayFont,
|
|
m_histogramMarkers.at(i).m_point.x() * m_histogramRect.width(),
|
|
(m_invertedWaterfall || (m_waterfallHeight == 0)) ? 0 : m_histogramRect.height(),
|
|
m_histogramMarkers.at(i).m_point.x() < 0.5f,
|
|
(m_invertedWaterfall || (m_waterfallHeight == 0)),
|
|
m_histogramRect);
|
|
drawTextOverlay(
|
|
deltaPowerStr,
|
|
textColor,
|
|
m_textOverlayFont,
|
|
m_histogramRect.width(),
|
|
ypoint.y() * m_histogramRect.height(),
|
|
false,
|
|
ypoint.y() < 0.5f,
|
|
m_histogramRect);
|
|
}
|
|
}
|
|
}
|
|
|
|
// paint waterfall markers
|
|
if (m_waterfallMarkers.size() > 0)
|
|
{
|
|
// crosshairs
|
|
for (int i = 0; i < m_waterfallMarkers.size(); i++)
|
|
{
|
|
if (!m_waterfallMarkers.at(i).m_show) {
|
|
continue;
|
|
}
|
|
|
|
GLfloat h[] {
|
|
(float) m_waterfallMarkers.at(i).m_point.x(), 0,
|
|
(float) m_waterfallMarkers.at(i).m_point.x(), 1
|
|
};
|
|
m_glShaderSimple.drawSegments(m_glWaterfallBoxMatrix, lineColor, h, 2);
|
|
GLfloat v[] {
|
|
0, (float) m_waterfallMarkers.at(i).m_point.y(),
|
|
1, (float) m_waterfallMarkers.at(i).m_point.y()
|
|
};
|
|
m_glShaderSimple.drawSegments(m_glWaterfallBoxMatrix, lineColor, v, 2);
|
|
// }
|
|
// text
|
|
// for (int i = 0; i < m_waterfallMarkers.size(); i++)
|
|
// {
|
|
QColor textColor = m_waterfallMarkers.at(i).m_markerColor;
|
|
textColor.setAlpha(192);
|
|
|
|
if (i == 0)
|
|
{
|
|
drawTextOverlay(
|
|
m_waterfallMarkers.at(i).m_frequencyStr,
|
|
textColor,
|
|
m_textOverlayFont,
|
|
m_waterfallMarkers.at(i).m_point.x() * m_waterfallRect.width(),
|
|
(!m_invertedWaterfall || (m_histogramHeight == 0)) ? m_waterfallRect.height() : 0,
|
|
m_waterfallMarkers.at(i).m_point.x() < 0.5f,
|
|
m_invertedWaterfall && (m_histogramHeight != 0),
|
|
m_waterfallRect);
|
|
drawTextOverlay(
|
|
m_waterfallMarkers.at(i).m_timeStr,
|
|
textColor,
|
|
m_textOverlayFont,
|
|
0,
|
|
m_waterfallMarkers.at(i).m_point.y() * m_waterfallRect.height(),
|
|
true,
|
|
m_waterfallMarkers.at(i).m_point.y() < 0.5f,
|
|
m_waterfallRect);
|
|
}
|
|
else
|
|
{
|
|
drawTextOverlay(
|
|
m_waterfallMarkers.at(i).m_deltaFrequencyStr,
|
|
textColor,
|
|
m_textOverlayFont,
|
|
m_waterfallMarkers.at(i).m_point.x() * m_waterfallRect.width(),
|
|
(!m_invertedWaterfall || (m_histogramHeight == 0)) ? 0 : m_waterfallRect.height(),
|
|
m_waterfallMarkers.at(i).m_point.x() < 0.5f,
|
|
!m_invertedWaterfall || (m_histogramHeight == 0),
|
|
m_waterfallRect);
|
|
drawTextOverlay(
|
|
m_waterfallMarkers.at(i).m_deltaTimeStr,
|
|
textColor,
|
|
m_textOverlayFont,
|
|
m_waterfallRect.width(),
|
|
m_waterfallMarkers.at(i).m_point.y() * m_waterfallRect.height(),
|
|
false,
|
|
m_waterfallMarkers.at(i).m_point.y() < 0.5f,
|
|
m_waterfallRect);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::drawAnnotationMarkers()
|
|
{
|
|
if ((!m_currentSpectrum) || (m_visibleAnnotationMarkers.size() == 0)) {
|
|
return;
|
|
}
|
|
|
|
float h = m_annotationMarkerHeight / (float) m_histogramHeight;
|
|
float htop = 1.0f / (float) m_histogramHeight;
|
|
|
|
for (const auto &marker : m_visibleAnnotationMarkers)
|
|
{
|
|
if (marker->m_show == SpectrumAnnotationMarker::Hidden) {
|
|
continue;
|
|
}
|
|
|
|
QVector4D color(marker->m_markerColor.redF(), marker->m_markerColor.greenF(), marker->m_markerColor.blueF(), 0.5f);
|
|
|
|
if (marker->m_bandwidth == 0)
|
|
{
|
|
GLfloat d[] {
|
|
marker->m_startPos, htop,
|
|
marker->m_startPos, h
|
|
};
|
|
m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, color, d, 2);
|
|
}
|
|
else
|
|
{
|
|
GLfloat q3[] {
|
|
marker->m_stopPos, h,
|
|
marker->m_startPos, h,
|
|
marker->m_startPos, htop,
|
|
marker->m_stopPos, htop
|
|
};
|
|
m_glShaderSimple.drawSurface(m_glHistogramBoxMatrix, color, q3, 4);
|
|
}
|
|
|
|
// Always draw a line in the top area, so we can see where bands start/stop when contiguous
|
|
// When show is ShowFull, we draw at full height of spectrum
|
|
bool full = marker->m_show == SpectrumAnnotationMarker::ShowFull;
|
|
|
|
GLfloat d1[] {
|
|
marker->m_startPos, full ? 0 : htop,
|
|
marker->m_startPos, full ? 1 : h,
|
|
};
|
|
m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, color, d1, 2);
|
|
|
|
if (marker->m_bandwidth != 0)
|
|
{
|
|
GLfloat d2[] {
|
|
marker->m_stopPos, full ? 0 : htop,
|
|
marker->m_stopPos, full ? 1 : h,
|
|
};
|
|
m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, color, d2, 2);
|
|
}
|
|
|
|
if ((marker->m_show == SpectrumAnnotationMarker::ShowFull) || (marker->m_show == SpectrumAnnotationMarker::ShowText))
|
|
{
|
|
float txtpos = marker->m_startPos < 0.5f ?
|
|
marker->m_startPos :
|
|
marker->m_stopPos;
|
|
|
|
drawTextOverlay(
|
|
marker->m_text,
|
|
QColor(255, 255, 255, 192),
|
|
m_textOverlayFont,
|
|
txtpos * m_histogramRect.width(),
|
|
0,
|
|
marker->m_startPos < 0.5f,
|
|
true,
|
|
m_histogramRect);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find and display peak in info line
|
|
void GLSpectrumView::measurePeak()
|
|
{
|
|
float power, frequency;
|
|
|
|
findPeak(power, frequency);
|
|
|
|
drawTextsRight(
|
|
{"Peak: ", ""},
|
|
{
|
|
displayPower(power, m_linear ? 'e' : 'f', m_linear ? 3 : 1),
|
|
displayFull(frequency)
|
|
},
|
|
{m_peakPowerMaxStr, m_peakFrequencyMaxStr},
|
|
{m_peakPowerUnits, "Hz"}
|
|
);
|
|
if (m_measurements) {
|
|
m_measurements->setPeak(0, frequency, power);
|
|
}
|
|
}
|
|
|
|
// Find and display peaks
|
|
void GLSpectrumView::measurePeaks()
|
|
{
|
|
// Copy current spectrum so we can modify it
|
|
Real *spectrum = new Real[m_nbBins];
|
|
std::copy(m_currentSpectrum, m_currentSpectrum + m_nbBins, spectrum);
|
|
|
|
for (int i = 0; i < m_measurementPeaks; i++)
|
|
{
|
|
// Find peak
|
|
int peakBin = findPeakBin(spectrum);
|
|
int left, right;
|
|
peakWidth(spectrum, peakBin, left, right, 0, m_nbBins);
|
|
left++;
|
|
right--;
|
|
|
|
float power = m_linear ?
|
|
spectrum[peakBin] * (m_useCalibration ? m_calibrationGain : 1.0f) :
|
|
spectrum[peakBin] + (m_useCalibration ? m_calibrationShiftdB : 0.0f);
|
|
int64_t frequency = binToFrequency(peakBin);
|
|
|
|
// Add to table
|
|
if (m_measurements) {
|
|
m_measurements->setPeak(i, frequency, power);
|
|
}
|
|
|
|
if (m_measurementHighlight)
|
|
{
|
|
float x = peakBin / (float)m_nbBins;
|
|
float y = (m_powerScale.getRangeMax() - power) / m_powerScale.getRange();
|
|
|
|
QString text = QString::number(i + 1);
|
|
|
|
drawTextOverlayCentered(
|
|
text,
|
|
QColor(255, 255, 255),
|
|
m_textOverlayFont,
|
|
x * m_histogramRect.width(),
|
|
y * m_histogramRect.height(),
|
|
m_histogramRect);
|
|
}
|
|
|
|
// Remove peak from spectrum so not found on next pass
|
|
for (int j = left; j <= right; j++) {
|
|
spectrum[j] = -std::numeric_limits<float>::max();
|
|
}
|
|
}
|
|
|
|
delete[] spectrum;
|
|
}
|
|
|
|
// Calculate and display channel power
|
|
void GLSpectrumView::measureChannelPower()
|
|
{
|
|
float power;
|
|
|
|
power = calcChannelPower(m_centerFrequency + m_measurementCenterFrequencyOffset, m_measurementBandwidth);
|
|
if (m_measurements) {
|
|
m_measurements->setChannelPower(power);
|
|
}
|
|
if (m_measurementHighlight) {
|
|
drawBandwidthMarkers(m_centerFrequency + m_measurementCenterFrequencyOffset, m_measurementBandwidth, m_measurementLightMarkerColor);
|
|
}
|
|
}
|
|
|
|
// Calculate and display channel power and adjacent channel power
|
|
void GLSpectrumView::measureAdjacentChannelPower()
|
|
{
|
|
float power, powerLeft, powerRight;
|
|
|
|
power = calcChannelPower(m_centerFrequency + m_measurementCenterFrequencyOffset, m_measurementBandwidth);
|
|
powerLeft = calcChannelPower(m_centerFrequency + m_measurementCenterFrequencyOffset - m_measurementChSpacing, m_measurementAdjChBandwidth);
|
|
powerRight = calcChannelPower(m_centerFrequency + m_measurementCenterFrequencyOffset + m_measurementChSpacing, m_measurementAdjChBandwidth);
|
|
|
|
float leftDiff = powerLeft - power;
|
|
float rightDiff = powerRight - power;
|
|
|
|
if (m_measurements) {
|
|
m_measurements->setAdjacentChannelPower(powerLeft, leftDiff, power, powerRight, rightDiff);
|
|
}
|
|
|
|
if (m_measurementHighlight)
|
|
{
|
|
drawBandwidthMarkers(m_centerFrequency + m_measurementCenterFrequencyOffset, m_measurementBandwidth, m_measurementLightMarkerColor);
|
|
drawBandwidthMarkers(m_centerFrequency + m_measurementCenterFrequencyOffset - m_measurementChSpacing, m_measurementAdjChBandwidth, m_measurementDarkMarkerColor);
|
|
drawBandwidthMarkers(m_centerFrequency + m_measurementCenterFrequencyOffset + m_measurementChSpacing, m_measurementAdjChBandwidth, m_measurementDarkMarkerColor);
|
|
}
|
|
}
|
|
|
|
// Measure bandwidth that has 99% of power
|
|
void GLSpectrumView::measureOccupiedBandwidth()
|
|
{
|
|
float hzPerBin = m_sampleRate / (float) m_fftSize;
|
|
int start = frequencyToBin(m_centerFrequency + m_measurementCenterFrequencyOffset);
|
|
float totalPower, power = 0.0f;
|
|
int step = 0;
|
|
int width = 0;
|
|
int idx = start;
|
|
float gain = m_useCalibration ? m_calibrationGain : 1.0f;
|
|
float shift = m_useCalibration ? m_calibrationShiftdB : 0.0f;
|
|
|
|
totalPower = CalcDb::powerFromdB(calcChannelPower(m_centerFrequency + m_measurementCenterFrequencyOffset, m_measurementBandwidth));
|
|
do
|
|
{
|
|
if ((idx >= 0) && (idx < m_nbBins))
|
|
{
|
|
if (m_linear) {
|
|
power += m_currentSpectrum[idx] * gain;
|
|
} else {
|
|
power += CalcDb::powerFromdB(m_currentSpectrum[idx]) + shift;
|
|
}
|
|
width++;
|
|
}
|
|
|
|
step++;
|
|
if ((step & 1) == 1) {
|
|
idx -= step;
|
|
} else {
|
|
idx += step;
|
|
}
|
|
}
|
|
while (((power / totalPower) < 0.99f) && (step < m_nbBins));
|
|
|
|
float occupiedBandwidth = width * hzPerBin;
|
|
if (m_measurements) {
|
|
m_measurements->setOccupiedBandwidth(occupiedBandwidth);
|
|
}
|
|
if (m_measurementHighlight)
|
|
{
|
|
drawBandwidthMarkers(m_centerFrequency + m_measurementCenterFrequencyOffset, m_measurementBandwidth, m_measurementDarkMarkerColor);
|
|
drawBandwidthMarkers(m_centerFrequency + m_measurementCenterFrequencyOffset, occupiedBandwidth, m_measurementLightMarkerColor);
|
|
}
|
|
}
|
|
|
|
// Measure bandwidth -3dB from peak
|
|
void GLSpectrumView::measure3dBBandwidth()
|
|
{
|
|
// Find max peak and it's power in dB
|
|
int peakBin = findPeakBin(m_currentSpectrum);
|
|
float peakPower = m_linear ? CalcDb::dbPower(m_currentSpectrum[peakBin]) : m_currentSpectrum[peakBin];
|
|
|
|
// Search right until 3dB from peak
|
|
int rightBin = peakBin;
|
|
for (int i = peakBin + 1; i < m_nbBins; i++)
|
|
{
|
|
float power = m_linear ? CalcDb::dbPower(m_currentSpectrum[i]) : m_currentSpectrum[i];
|
|
if (peakPower - power > 3.0f)
|
|
{
|
|
rightBin = i - 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Search left until 3dB from peak
|
|
int leftBin = peakBin;
|
|
for (int i = peakBin - 1; i >= 0; i--)
|
|
{
|
|
float power = m_linear ? CalcDb::dbPower(m_currentSpectrum[i]) : m_currentSpectrum[i];
|
|
if (peakPower - power > 3.0f)
|
|
{
|
|
leftBin = i + 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Calcualte bandwidth
|
|
int bins = rightBin - leftBin - 1;
|
|
bins = std::max(1, bins);
|
|
float hzPerBin = m_sampleRate / (float) m_fftSize;
|
|
float bandwidth = bins * hzPerBin;
|
|
int centerBin = leftBin + (rightBin - leftBin) / 2;
|
|
float centerFrequency = binToFrequency(centerBin);
|
|
|
|
if (m_measurements) {
|
|
m_measurements->set3dBBandwidth(bandwidth);
|
|
}
|
|
if (m_measurementHighlight) {
|
|
drawBandwidthMarkers(centerFrequency, bandwidth, m_measurementLightMarkerColor);
|
|
}
|
|
}
|
|
|
|
const QVector4D GLSpectrumView::m_measurementLightMarkerColor = QVector4D(0.6f, 0.6f, 0.6f, 0.2f);
|
|
const QVector4D GLSpectrumView::m_measurementDarkMarkerColor = QVector4D(0.6f, 0.6f, 0.6f, 0.15f);
|
|
|
|
// Find the width of a peak, by seaching in either direction until
|
|
// power is no longer falling
|
|
void GLSpectrumView::peakWidth(const Real *spectrum, int center, int &left, int &right, int maxLeft, int maxRight) const
|
|
{
|
|
float prevLeft = spectrum[center];
|
|
float prevRight = spectrum[center];
|
|
left = center - 1;
|
|
right = center + 1;
|
|
while ((left > maxLeft) && (spectrum[left] < prevLeft) && (right < maxRight) && (spectrum[right] < prevRight))
|
|
{
|
|
prevLeft = spectrum[left];
|
|
left--;
|
|
prevRight = spectrum[right];
|
|
right++;
|
|
}
|
|
}
|
|
|
|
int GLSpectrumView::findPeakBin(const Real *spectrum) const
|
|
{
|
|
int bin;
|
|
float power;
|
|
|
|
bin = 0;
|
|
power = spectrum[0];
|
|
for (int i = 1; i < m_nbBins; i++)
|
|
{
|
|
if (spectrum[i] > power)
|
|
{
|
|
power = spectrum[i];
|
|
bin = i;
|
|
}
|
|
}
|
|
return bin;
|
|
}
|
|
|
|
float GLSpectrumView::calPower(float power) const
|
|
{
|
|
if (m_linear) {
|
|
return power * (m_useCalibration ? m_calibrationGain : 1.0f);
|
|
} else {
|
|
return CalcDb::powerFromdB(power) + (m_useCalibration ? m_calibrationShiftdB : 0.0f);
|
|
}
|
|
}
|
|
|
|
int GLSpectrumView::frequencyToBin(int64_t frequency) const
|
|
{
|
|
float rbw = m_sampleRate / (float)m_fftSize;
|
|
return (frequency - m_frequencyScale.getRangeMin()) / rbw;
|
|
}
|
|
|
|
int64_t GLSpectrumView::binToFrequency(int bin) const
|
|
{
|
|
float rbw = m_sampleRate / (float)m_fftSize;
|
|
return m_frequencyScale.getRangeMin() + bin * rbw;
|
|
}
|
|
|
|
// Find a peak and measure SNR / THD / SINAD
|
|
void GLSpectrumView::measureSNR()
|
|
{
|
|
// Find bin with max peak - that will be our signal
|
|
int sig = findPeakBin(m_currentSpectrum);
|
|
int sigLeft, sigRight;
|
|
peakWidth(m_currentSpectrum, sig, sigLeft, sigRight, 0, m_nbBins);
|
|
int sigBins = sigRight - sigLeft - 1;
|
|
int binsLeft = sig - sigLeft;
|
|
int binsRight = sigRight - sig;
|
|
|
|
// Highlight the signal
|
|
float sigFreq = binToFrequency(sig);
|
|
if (m_measurementHighlight) {
|
|
drawPeakMarkers(binToFrequency(sigLeft+1), binToFrequency(sigRight-1), m_measurementLightMarkerColor);
|
|
}
|
|
|
|
// Find the harmonics and highlight them
|
|
QList<int> hBinsLeft;
|
|
QList<int> hBinsRight;
|
|
QList<int> hBinsBins;
|
|
for (int h = 2; h < m_measurementHarmonics + 2; h++)
|
|
{
|
|
float hFreq = sigFreq * h;
|
|
if (hFreq < m_frequencyScale.getRangeMax())
|
|
{
|
|
int hBin = frequencyToBin(hFreq);
|
|
// Check if peak is an adjacent bin
|
|
if (m_currentSpectrum[hBin-1] > m_currentSpectrum[hBin]) {
|
|
hBin--;
|
|
} else if (m_currentSpectrum[hBin+1] > m_currentSpectrum[hBin]) {
|
|
hBin++;
|
|
}
|
|
hFreq = binToFrequency(hBin);
|
|
int hLeft, hRight;
|
|
peakWidth(m_currentSpectrum, hBin, hLeft, hRight, hBin - binsLeft, hBin + binsRight);
|
|
int hBins = hRight - hLeft - 1;
|
|
if (m_measurementHighlight) {
|
|
drawPeakMarkers(binToFrequency(hLeft+1), binToFrequency(hRight-1), m_measurementDarkMarkerColor);
|
|
}
|
|
hBinsLeft.append(hLeft);
|
|
hBinsRight.append(hRight);
|
|
hBinsBins.append(hBins);
|
|
}
|
|
}
|
|
|
|
// Integrate signal, harmonic and noise power
|
|
float sigPower = 0.0f;
|
|
float noisePower = 0.0f;
|
|
float harmonicPower = 0.0f;
|
|
QList<float> noise;
|
|
float gain = m_useCalibration ? m_calibrationGain : 1.0f;
|
|
float shift = m_useCalibration ? m_calibrationShiftdB : 0.0f;
|
|
|
|
for (int i = 0; i < m_nbBins; i++)
|
|
{
|
|
float power;
|
|
if (m_linear) {
|
|
power = m_currentSpectrum[i] * gain;
|
|
} else {
|
|
power = CalcDb::powerFromdB(m_currentSpectrum[i]) + shift;
|
|
}
|
|
|
|
// Signal power
|
|
if ((i > sigLeft) && (i < sigRight))
|
|
{
|
|
sigPower += power;
|
|
continue;
|
|
}
|
|
|
|
// Harmonics
|
|
for (int h = 0; h < hBinsLeft.size(); h++)
|
|
{
|
|
if ((i > hBinsLeft[h]) && (i < hBinsRight[h]))
|
|
{
|
|
harmonicPower += power;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Noise
|
|
noisePower += power;
|
|
noise.append(power);
|
|
}
|
|
|
|
// Calculate median of noise
|
|
float noiseMedian = 0.0;
|
|
if (noise.size() > 0)
|
|
{
|
|
auto m = noise.begin() + noise.size()/2;
|
|
std::nth_element(noise.begin(), m, noise.end());
|
|
noiseMedian = noise[noise.size()/2];
|
|
}
|
|
|
|
// Assume we have similar noise where the signal and harmonics are
|
|
float inBandNoise = noiseMedian * sigBins;
|
|
noisePower += inBandNoise;
|
|
sigPower -= inBandNoise;
|
|
for (auto hBins : hBinsBins)
|
|
{
|
|
float hNoise = noiseMedian * hBins;
|
|
noisePower += hNoise;
|
|
harmonicPower -= hNoise;
|
|
}
|
|
|
|
if (m_measurements)
|
|
{
|
|
// Calculate SNR in dB over full bandwidth
|
|
float snr = CalcDb::dbPower(sigPower / noisePower);
|
|
|
|
// Calculate SNR, where noise is median of noise summed over signal b/w
|
|
float snfr = CalcDb::dbPower(sigPower / inBandNoise);
|
|
|
|
// Calculate THD - Total harmonic distortion
|
|
float thd = harmonicPower / sigPower;
|
|
float thdDB = CalcDb::dbPower(thd);
|
|
|
|
// Calculate THD+N - Total harmonic distortion plus noise
|
|
float thdpn = CalcDb::dbPower((harmonicPower + noisePower) / sigPower);
|
|
|
|
// Calculate SINAD - Signal to noise and distotion ratio (Should be -THD+N)
|
|
float sinad = CalcDb::dbPower((sigPower + harmonicPower + noisePower) / (harmonicPower + noisePower));
|
|
|
|
m_measurements->setSNR(snr, snfr, thdDB, thdpn, sinad);
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::measureSFDR()
|
|
{
|
|
// Find first peak which is our signal
|
|
int peakBin = findPeakBin(m_currentSpectrum);
|
|
int peakLeft, peakRight;
|
|
peakWidth(m_currentSpectrum, peakBin, peakLeft, peakRight, 0, m_nbBins);
|
|
|
|
// Find next largest peak, which is the spur
|
|
int nextPeakBin = -1;
|
|
float nextPeakPower = -std::numeric_limits<float>::max();
|
|
for (int i = 0; i < m_nbBins; i++)
|
|
{
|
|
if ((i < peakLeft) || (i > peakRight))
|
|
{
|
|
if (m_currentSpectrum[i] > nextPeakPower)
|
|
{
|
|
nextPeakBin = i;
|
|
nextPeakPower = m_currentSpectrum[i];
|
|
}
|
|
}
|
|
}
|
|
if (nextPeakBin != -1)
|
|
{
|
|
// Calculate SFDR in dB from difference between two peaks
|
|
float peakPower = calPower(m_currentSpectrum[peakBin]);
|
|
float nextPeakPower = calPower(m_currentSpectrum[nextPeakBin]);
|
|
float peakPowerDB = CalcDb::dbPower(peakPower);
|
|
float nextPeakPowerDB = CalcDb::dbPower(nextPeakPower);
|
|
float sfdr = peakPowerDB - nextPeakPowerDB;
|
|
|
|
// Display
|
|
if (m_measurements) {
|
|
m_measurements->setSFDR(sfdr);
|
|
}
|
|
if (m_measurementHighlight)
|
|
{
|
|
if (m_linear) {
|
|
drawPowerBandMarkers(peakPower, nextPeakPower, m_measurementDarkMarkerColor);
|
|
} else {
|
|
drawPowerBandMarkers(peakPowerDB, nextPeakPowerDB, m_measurementDarkMarkerColor);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find power and frequency of max peak in current spectrum
|
|
void GLSpectrumView::findPeak(float &power, float &frequency) const
|
|
{
|
|
int bin;
|
|
|
|
bin = 0;
|
|
power = m_currentSpectrum[0];
|
|
for (int i = 1; i < m_nbBins; i++)
|
|
{
|
|
if (m_currentSpectrum[i] > power)
|
|
{
|
|
power = m_currentSpectrum[i];
|
|
bin = i;
|
|
}
|
|
}
|
|
|
|
power = m_linear ?
|
|
power * (m_useCalibration ? m_calibrationGain : 1.0f) :
|
|
power + (m_useCalibration ? m_calibrationShiftdB : 0.0f);
|
|
frequency = binToFrequency(bin);
|
|
}
|
|
|
|
// Calculate channel power in dB
|
|
float GLSpectrumView::calcChannelPower(int64_t centerFrequency, int channelBandwidth) const
|
|
{
|
|
float hzPerBin = m_sampleRate / (float) m_fftSize;
|
|
int bins = channelBandwidth / hzPerBin;
|
|
int start = frequencyToBin(centerFrequency) - (bins / 2);
|
|
int end = start + bins;
|
|
float power = 0.0;
|
|
|
|
start = std::max(start, 0);
|
|
end = std::min(end, m_nbBins);
|
|
|
|
if (m_linear)
|
|
{
|
|
float gain = m_useCalibration ? m_calibrationGain : 1.0f;
|
|
for (int i = start; i < end; i++) {
|
|
power += m_currentSpectrum[i] * gain;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
float shift = m_useCalibration ? m_calibrationShiftdB : 0.0f;
|
|
for (int i = start; i < end; i++) {
|
|
power += CalcDb::powerFromdB(m_currentSpectrum[i]) + shift;
|
|
}
|
|
}
|
|
|
|
return CalcDb::dbPower(power);
|
|
}
|
|
|
|
void GLSpectrumView::stopDrag()
|
|
{
|
|
if (m_cursorState != CSNormal)
|
|
{
|
|
if ((m_cursorState == CSSplitterMoving) || (m_cursorState == CSChannelMoving)) {
|
|
releaseMouse();
|
|
}
|
|
|
|
setCursor(Qt::ArrowCursor);
|
|
m_cursorState = CSNormal;
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::applyChanges()
|
|
{
|
|
if (m_nbBins <= 0) {
|
|
return;
|
|
}
|
|
|
|
QFontMetrics fm(font());
|
|
int M = fm.horizontalAdvance("-");
|
|
|
|
m_topMargin = fm.ascent() * 2.0;
|
|
m_bottomMargin = fm.ascent() * 1.0;
|
|
m_infoHeight = fm.height() * 3;
|
|
|
|
int waterfallTop = 0;
|
|
m_frequencyScaleHeight = fm.height() * 3; // +1 line for marker frequency scale
|
|
int frequencyScaleTop = 0;
|
|
int histogramTop = 0;
|
|
//int m_leftMargin;
|
|
m_rightMargin = fm.horizontalAdvance("000");
|
|
|
|
// displays both histogram and waterfall
|
|
if ((m_displayWaterfall || m_display3DSpectrogram) && (m_displayHistogram | m_displayMaxHold | m_displayCurrent))
|
|
{
|
|
m_waterfallHeight = height() * m_waterfallShare - 1;
|
|
|
|
if (m_waterfallHeight < 0) {
|
|
m_waterfallHeight = 0;
|
|
}
|
|
|
|
if (m_invertedWaterfall)
|
|
{
|
|
histogramTop = m_topMargin;
|
|
m_histogramHeight = height() - m_topMargin - m_waterfallHeight - m_frequencyScaleHeight - m_bottomMargin;
|
|
waterfallTop = histogramTop + m_histogramHeight + m_frequencyScaleHeight + 1;
|
|
frequencyScaleTop = histogramTop + m_histogramHeight + 1;
|
|
}
|
|
else
|
|
{
|
|
waterfallTop = m_topMargin;
|
|
frequencyScaleTop = waterfallTop + m_waterfallHeight + 1;
|
|
histogramTop = waterfallTop + m_waterfallHeight + m_frequencyScaleHeight + 1;
|
|
m_histogramHeight = height() - m_topMargin - m_waterfallHeight - m_frequencyScaleHeight - m_bottomMargin;
|
|
}
|
|
|
|
m_timeScale.setSize(m_waterfallHeight);
|
|
|
|
if (m_sampleRate > 0)
|
|
{
|
|
float scaleDiv = ((float)m_sampleRate / (float)m_timingRate) * (m_ssbSpectrum ? 2 : 1);
|
|
float halfFFTSize = m_fftSize / 2;
|
|
|
|
if (halfFFTSize > m_fftOverlap) {
|
|
scaleDiv *= halfFFTSize / (halfFFTSize - m_fftOverlap);
|
|
}
|
|
|
|
if (!m_invertedWaterfall) {
|
|
m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, (m_waterfallHeight * m_fftSize) / scaleDiv, 0);
|
|
} else {
|
|
m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, 0, (m_waterfallHeight * m_fftSize) / scaleDiv);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m_timeScale.setRange(Unit::Time, 0, 1);
|
|
}
|
|
|
|
m_leftMargin = m_timeScale.getScaleWidth();
|
|
|
|
setPowerScale(m_histogramHeight);
|
|
|
|
m_leftMargin += 2 * M;
|
|
|
|
setFrequencyScale();
|
|
|
|
m_glWaterfallBoxMatrix.setToIdentity();
|
|
m_glWaterfallBoxMatrix.translate(
|
|
-1.0f + ((float)(2*m_leftMargin) / (float) width()),
|
|
1.0f - ((float)(2*waterfallTop) / (float) height())
|
|
);
|
|
m_glWaterfallBoxMatrix.scale(
|
|
((float) 2 * (width() - m_leftMargin - m_rightMargin)) / (float) width(),
|
|
(float) (-2*m_waterfallHeight) / (float) height()
|
|
);
|
|
|
|
m_glHistogramBoxMatrix.setToIdentity();
|
|
m_glHistogramBoxMatrix.translate(
|
|
-1.0f + ((float)(2*m_leftMargin) / (float) width()),
|
|
1.0f - ((float)(2*histogramTop) / (float) height())
|
|
);
|
|
m_glHistogramBoxMatrix.scale(
|
|
((float) 2 * (width() - m_leftMargin - m_rightMargin)) / (float) width(),
|
|
(float) (-2*m_histogramHeight) / (float) height()
|
|
);
|
|
|
|
m_glHistogramSpectrumMatrix.setToIdentity();
|
|
m_glHistogramSpectrumMatrix.translate(
|
|
-1.0f + ((float)(2*m_leftMargin) / (float) width()),
|
|
1.0f - ((float)(2*histogramTop) / (float) height())
|
|
);
|
|
m_glHistogramSpectrumMatrix.scale(
|
|
((float) 2 * (width() - m_leftMargin - m_rightMargin)) / ((float) width() * (float)(m_nbBins)),
|
|
((float) 2*m_histogramHeight / height()) / m_powerRange
|
|
);
|
|
|
|
// m_frequencyScaleRect = QRect(
|
|
// 0,
|
|
// frequencyScaleTop,
|
|
// width(),
|
|
// m_frequencyScaleHeight
|
|
// );
|
|
|
|
m_glFrequencyScaleBoxMatrix.setToIdentity();
|
|
m_glFrequencyScaleBoxMatrix.translate (
|
|
-1.0f,
|
|
1.0f - ((float) 2*frequencyScaleTop / (float) height())
|
|
);
|
|
m_glFrequencyScaleBoxMatrix.scale (
|
|
2.0f,
|
|
(float) -2*m_frequencyScaleHeight / (float) height()
|
|
);
|
|
|
|
m_glLeftScaleBoxMatrix.setToIdentity();
|
|
m_glLeftScaleBoxMatrix.translate(-1.0f, 1.0f);
|
|
m_glLeftScaleBoxMatrix.scale(
|
|
(float)(2*(m_leftMargin - 1)) / (float) width(),
|
|
-2.0f
|
|
);
|
|
}
|
|
// displays waterfall/3D spectrogram only
|
|
else if (m_displayWaterfall || m_display3DSpectrogram)
|
|
{
|
|
m_histogramHeight = 0;
|
|
histogramTop = 0;
|
|
m_bottomMargin = m_frequencyScaleHeight;
|
|
m_waterfallHeight = height() - m_topMargin - m_frequencyScaleHeight;
|
|
waterfallTop = m_topMargin;
|
|
frequencyScaleTop = m_topMargin + m_waterfallHeight + 1;
|
|
|
|
m_timeScale.setSize(m_waterfallHeight);
|
|
|
|
if (m_sampleRate > 0)
|
|
{
|
|
float scaleDiv = ((float)m_sampleRate / (float)m_timingRate) * (m_ssbSpectrum ? 2 : 1);
|
|
float halfFFTSize = m_fftSize / 2;
|
|
|
|
if (halfFFTSize > m_fftOverlap) {
|
|
scaleDiv *= halfFFTSize / (halfFFTSize - m_fftOverlap);
|
|
}
|
|
|
|
if (!m_invertedWaterfall) {
|
|
m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, (m_waterfallHeight * m_fftSize) / scaleDiv, 0);
|
|
} else {
|
|
m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, 0, (m_waterfallHeight * m_fftSize) / scaleDiv);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!m_invertedWaterfall) {
|
|
m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, 10, 0);
|
|
} else {
|
|
m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, 0, 10);
|
|
}
|
|
}
|
|
|
|
m_leftMargin = m_timeScale.getScaleWidth();
|
|
|
|
setPowerScale((height() - m_topMargin - m_bottomMargin) / 2.0);
|
|
|
|
m_leftMargin += 2 * M;
|
|
|
|
setFrequencyScale();
|
|
|
|
m_glWaterfallBoxMatrix.setToIdentity();
|
|
m_glWaterfallBoxMatrix.translate(
|
|
-1.0f + ((float)(2*m_leftMargin) / (float) width()),
|
|
1.0f - ((float)(2*m_topMargin) / (float) height())
|
|
);
|
|
m_glWaterfallBoxMatrix.scale(
|
|
((float) 2 * (width() - m_leftMargin - m_rightMargin)) / (float) width(),
|
|
(float) (-2*m_waterfallHeight) / (float) height()
|
|
);
|
|
|
|
// m_frequencyScaleRect = QRect(
|
|
// 0,
|
|
// frequencyScaleTop,
|
|
// width(),
|
|
// m_frequencyScaleHeight
|
|
// );
|
|
|
|
m_glFrequencyScaleBoxMatrix.setToIdentity();
|
|
m_glFrequencyScaleBoxMatrix.translate (
|
|
-1.0f,
|
|
1.0f - ((float) 2*frequencyScaleTop / (float) height())
|
|
);
|
|
m_glFrequencyScaleBoxMatrix.scale (
|
|
2.0f,
|
|
(float) -2*m_frequencyScaleHeight / (float) height()
|
|
);
|
|
|
|
m_glLeftScaleBoxMatrix.setToIdentity();
|
|
m_glLeftScaleBoxMatrix.translate(-1.0f, 1.0f);
|
|
m_glLeftScaleBoxMatrix.scale(
|
|
(float)(2*(m_leftMargin - 1)) / (float) width(),
|
|
-2.0f
|
|
);
|
|
}
|
|
// displays histogram only
|
|
else if (m_displayHistogram || m_displayMaxHold || m_displayCurrent)
|
|
{
|
|
m_bottomMargin = m_frequencyScaleHeight;
|
|
frequencyScaleTop = height() - m_bottomMargin;
|
|
histogramTop = m_topMargin - 1;
|
|
m_waterfallHeight = 0;
|
|
m_histogramHeight = height() - m_topMargin - m_frequencyScaleHeight;
|
|
|
|
m_leftMargin = 0;
|
|
|
|
setPowerScale(m_histogramHeight);
|
|
|
|
m_leftMargin += 2 * M;
|
|
|
|
setFrequencyScale();
|
|
|
|
m_glHistogramSpectrumMatrix.setToIdentity();
|
|
m_glHistogramSpectrumMatrix.translate(
|
|
-1.0f + ((float)(2*m_leftMargin) / (float) width()),
|
|
1.0f - ((float)(2*histogramTop) / (float) height())
|
|
);
|
|
m_glHistogramSpectrumMatrix.scale(
|
|
((float) 2 * (width() - m_leftMargin - m_rightMargin)) / ((float) width() * (float)(m_nbBins)),
|
|
((float) 2*(height() - m_topMargin - m_frequencyScaleHeight)) / (height()*m_powerRange)
|
|
);
|
|
|
|
m_glHistogramBoxMatrix.setToIdentity();
|
|
m_glHistogramBoxMatrix.translate(
|
|
-1.0f + ((float)(2*m_leftMargin) / (float) width()),
|
|
1.0f - ((float)(2*histogramTop) / (float) height())
|
|
);
|
|
m_glHistogramBoxMatrix.scale(
|
|
((float) 2 * (width() - m_leftMargin - m_rightMargin)) / (float) width(),
|
|
(float) (-2*(height() - m_topMargin - m_frequencyScaleHeight)) / (float) height()
|
|
);
|
|
|
|
// m_frequencyScaleRect = QRect(
|
|
// 0,
|
|
// frequencyScaleTop,
|
|
// width(),
|
|
// m_frequencyScaleHeight
|
|
// );
|
|
|
|
m_glFrequencyScaleBoxMatrix.setToIdentity();
|
|
m_glFrequencyScaleBoxMatrix.translate (
|
|
-1.0f,
|
|
1.0f - ((float) 2*frequencyScaleTop / (float) height())
|
|
);
|
|
m_glFrequencyScaleBoxMatrix.scale (
|
|
2.0f,
|
|
(float) -2*m_frequencyScaleHeight / (float) height()
|
|
);
|
|
|
|
m_glLeftScaleBoxMatrix.setToIdentity();
|
|
m_glLeftScaleBoxMatrix.translate(-1.0f, 1.0f);
|
|
m_glLeftScaleBoxMatrix.scale(
|
|
(float)(2*(m_leftMargin - 1)) / (float) width(),
|
|
-2.0f
|
|
);
|
|
}
|
|
else
|
|
{
|
|
m_leftMargin = 2;
|
|
m_waterfallHeight = 0;
|
|
}
|
|
|
|
m_glShaderSpectrogram.setScaleX(((width() - m_leftMargin - m_rightMargin) / (float)m_waterfallHeight));
|
|
m_glShaderSpectrogram.setScaleZ((m_histogramHeight != 0 ? m_histogramHeight : m_waterfallHeight / 4) / (float)(width() - m_leftMargin - m_rightMargin));
|
|
|
|
// bounding boxes
|
|
m_frequencyScaleRect = QRect(
|
|
0,
|
|
frequencyScaleTop,
|
|
width(),
|
|
m_frequencyScaleHeight
|
|
);
|
|
|
|
if ((m_invertedWaterfall) || (m_waterfallHeight == 0))
|
|
{
|
|
m_histogramRect = QRectF(
|
|
(float) m_leftMargin / (float) width(),
|
|
(float) m_topMargin / (float) height(),
|
|
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
|
|
(float) (m_histogramHeight) / (float) height()
|
|
);
|
|
}
|
|
else
|
|
{
|
|
m_histogramRect = QRectF(
|
|
(float) m_leftMargin / (float) width(),
|
|
(float) (waterfallTop + m_waterfallHeight + m_frequencyScaleHeight) / (float) height(),
|
|
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
|
|
(float) m_histogramHeight / (float) height()
|
|
);
|
|
}
|
|
|
|
if (!m_invertedWaterfall || (m_histogramHeight == 0))
|
|
{
|
|
m_waterfallRect = QRectF(
|
|
(float) m_leftMargin / (float) width(),
|
|
(float) m_topMargin / (float) height(),
|
|
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
|
|
(float) m_waterfallHeight / (float) height()
|
|
);
|
|
}
|
|
else
|
|
{
|
|
m_waterfallRect = QRectF(
|
|
(float) m_leftMargin / (float) width(),
|
|
(float) (m_topMargin + m_histogramHeight + m_frequencyScaleHeight) / (float) height(),
|
|
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
|
|
(float) (m_waterfallHeight) / (float) height()
|
|
);
|
|
}
|
|
|
|
m_glShaderSpectrogram.setAspectRatio((width() - m_leftMargin - m_rightMargin) / (float)m_waterfallHeight);
|
|
|
|
m_3DSpectrogramBottom = m_bottomMargin;
|
|
if (!m_invertedWaterfall) {
|
|
m_3DSpectrogramBottom += m_histogramHeight + m_frequencyScaleHeight + 1;
|
|
}
|
|
|
|
// channel overlays
|
|
int64_t centerFrequency;
|
|
int frequencySpan;
|
|
|
|
if (m_frequencyZoomFactor == 1.0f)
|
|
{
|
|
centerFrequency = m_centerFrequency;
|
|
frequencySpan = m_sampleRate;
|
|
}
|
|
else
|
|
{
|
|
getFrequencyZoom(centerFrequency, frequencySpan);
|
|
}
|
|
|
|
for (int i = 0; i < m_channelMarkerStates.size(); ++i)
|
|
{
|
|
ChannelMarkerState* dv = m_channelMarkerStates[i];
|
|
|
|
qreal xc, pw, nw, dsbw;
|
|
ChannelMarker::sidebands_t sidebands = dv->m_channelMarker->getSidebands();
|
|
xc = m_centerFrequency + dv->m_channelMarker->getCenterFrequency(); // marker center frequency
|
|
dsbw = dv->m_channelMarker->getBandwidth();
|
|
|
|
if (sidebands == ChannelMarker::usb) {
|
|
nw = dv->m_channelMarker->getLowCutoff(); // negative bandwidth
|
|
int bw = dv->m_channelMarker->getBandwidth() / 2;
|
|
pw = (qreal) bw; // positive bandwidth
|
|
} else if (sidebands == ChannelMarker::lsb) {
|
|
pw = dv->m_channelMarker->getLowCutoff();
|
|
int bw = dv->m_channelMarker->getBandwidth() / 2;
|
|
nw = (qreal) bw;
|
|
} else if (sidebands == ChannelMarker::vusb) {
|
|
nw = -dv->m_channelMarker->getOppositeBandwidth(); // negative bandwidth
|
|
pw = dv->m_channelMarker->getBandwidth(); // positive bandwidth
|
|
} else if (sidebands == ChannelMarker::vlsb) {
|
|
pw = dv->m_channelMarker->getOppositeBandwidth(); // positive bandwidth
|
|
nw = -dv->m_channelMarker->getBandwidth(); // negative bandwidth
|
|
} else {
|
|
pw = dsbw / 2;
|
|
nw = -pw;
|
|
}
|
|
|
|
// draw the DSB rectangle
|
|
|
|
QMatrix4x4 glMatrixDsb;
|
|
glMatrixDsb.setToIdentity();
|
|
glMatrixDsb.translate(
|
|
-1.0f + 2.0f * ((m_leftMargin + m_frequencyScale.getPosFromValue(xc - (dsbw/2))) / (float) width()),
|
|
1.0f
|
|
);
|
|
glMatrixDsb.scale(
|
|
2.0f * (dsbw / (float) frequencySpan),
|
|
-2.0f
|
|
);
|
|
|
|
dv->m_glMatrixDsbWaterfall = glMatrixDsb;
|
|
dv->m_glMatrixDsbWaterfall.translate(
|
|
0.0f,
|
|
(float) waterfallTop / (float) height()
|
|
);
|
|
dv->m_glMatrixDsbWaterfall.scale(
|
|
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
|
|
(float) m_waterfallHeight / (float) height()
|
|
);
|
|
|
|
dv->m_glMatrixDsbHistogram = glMatrixDsb;
|
|
dv->m_glMatrixDsbHistogram.translate(
|
|
0.0f,
|
|
(float) histogramTop / (float) height()
|
|
);
|
|
dv->m_glMatrixDsbHistogram.scale(
|
|
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
|
|
(float) m_histogramHeight / (float) height()
|
|
);
|
|
|
|
dv->m_glMatrixDsbFreqScale = glMatrixDsb;
|
|
dv->m_glMatrixDsbFreqScale.translate(
|
|
0.0f,
|
|
(float) frequencyScaleTop / (float) height()
|
|
);
|
|
dv->m_glMatrixDsbFreqScale.scale(
|
|
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
|
|
(float) m_frequencyScaleHeight / (float) height()
|
|
);
|
|
|
|
// draw the effective BW rectangle
|
|
|
|
QMatrix4x4 glMatrix;
|
|
glMatrix.setToIdentity();
|
|
glMatrix.translate(
|
|
-1.0f + 2.0f * ((m_leftMargin + m_frequencyScale.getPosFromValue(xc + nw)) / (float) width()),
|
|
1.0f
|
|
);
|
|
glMatrix.scale(
|
|
2.0f * ((pw-nw) / (float) frequencySpan),
|
|
-2.0f
|
|
);
|
|
|
|
dv->m_glMatrixWaterfall = glMatrix;
|
|
dv->m_glMatrixWaterfall.translate(
|
|
0.0f,
|
|
(float) waterfallTop / (float) height()
|
|
);
|
|
dv->m_glMatrixWaterfall.scale(
|
|
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
|
|
(float) m_waterfallHeight / (float) height()
|
|
);
|
|
|
|
dv->m_glMatrixHistogram = glMatrix;
|
|
dv->m_glMatrixHistogram.translate(
|
|
0.0f,
|
|
(float) histogramTop / (float) height()
|
|
);
|
|
dv->m_glMatrixHistogram.scale(
|
|
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
|
|
(float) m_histogramHeight / (float) height()
|
|
);
|
|
|
|
dv->m_glMatrixFreqScale = glMatrix;
|
|
dv->m_glMatrixFreqScale.translate(
|
|
0.0f,
|
|
(float) frequencyScaleTop / (float) height()
|
|
);
|
|
dv->m_glMatrixFreqScale.scale(
|
|
(float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
|
|
(float) m_frequencyScaleHeight / (float) height()
|
|
);
|
|
|
|
|
|
/*
|
|
dv->m_glRect.setRect(
|
|
m_frequencyScale.getPosFromValue(m_centerFrequency + dv->m_channelMarker->getCenterFrequency() - dv->m_channelMarker->getBandwidth() / 2) / (float)(width() - m_leftMargin - m_rightMargin),
|
|
0,
|
|
(dv->m_channelMarker->getBandwidth() / (float)m_sampleRate),
|
|
1);
|
|
*/
|
|
|
|
if (m_displayHistogram || m_displayMaxHold || m_displayCurrent || m_displayWaterfall)
|
|
{
|
|
dv->m_rect.setRect(m_frequencyScale.getPosFromValue(xc) + m_leftMargin - 1,
|
|
m_topMargin,
|
|
5,
|
|
height() - m_topMargin - m_bottomMargin);
|
|
}
|
|
|
|
/*
|
|
if(m_displayHistogram || m_displayMaxHold || m_displayWaterfall) {
|
|
dv->m_rect.setRect(m_frequencyScale.getPosFromValue(m_centerFrequency + dv->m_channelMarker->getCenterFrequency()) + m_leftMargin - 1,
|
|
m_topMargin,
|
|
5,
|
|
height() - m_topMargin - m_bottomMargin);
|
|
}
|
|
*/
|
|
}
|
|
|
|
// prepare left scales (time and power)
|
|
{
|
|
m_leftMarginPixmap = QPixmap(m_leftMargin - 1, height());
|
|
m_leftMarginPixmap.fill(Qt::transparent);
|
|
{
|
|
QPainter painter(&m_leftMarginPixmap);
|
|
painter.setPen(QColor(0xf0, 0xf0, 0xff));
|
|
painter.setFont(font());
|
|
const ScaleEngine::TickList* tickList;
|
|
const ScaleEngine::Tick* tick;
|
|
if (m_displayWaterfall) {
|
|
tickList = &m_timeScale.getTickList();
|
|
for (int i = 0; i < tickList->count(); i++) {
|
|
tick = &(*tickList)[i];
|
|
if (tick->major) {
|
|
if (tick->textSize > 0)
|
|
painter.drawText(QPointF(m_leftMargin - M - tick->textSize, waterfallTop + fm.ascent() + tick->textPos), tick->text);
|
|
}
|
|
}
|
|
}
|
|
if (m_displayHistogram || m_displayMaxHold || m_displayCurrent) {
|
|
tickList = &m_powerScale.getTickList();
|
|
for (int i = 0; i < tickList->count(); i++) {
|
|
tick = &(*tickList)[i];
|
|
if (tick->major) {
|
|
if (tick->textSize > 0)
|
|
painter.drawText(QPointF(m_leftMargin - M - tick->textSize, histogramTop + m_histogramHeight - tick->textPos - 1), tick->text);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
m_glShaderLeftScale.initTexture(m_leftMarginPixmap.toImage());
|
|
}
|
|
// prepare frequency scale
|
|
if (m_displayWaterfall || m_display3DSpectrogram || m_displayHistogram || m_displayMaxHold || m_displayCurrent) {
|
|
m_frequencyPixmap = QPixmap(width(), m_frequencyScaleHeight);
|
|
m_frequencyPixmap.fill(Qt::transparent);
|
|
{
|
|
QPainter painter(&m_frequencyPixmap);
|
|
painter.setPen(Qt::NoPen);
|
|
painter.setBrush(Qt::black);
|
|
painter.setBrush(Qt::transparent);
|
|
painter.drawRect(m_leftMargin, 0, width() - m_leftMargin, m_frequencyScaleHeight);
|
|
painter.setPen(QColor(0xf0, 0xf0, 0xff));
|
|
painter.setFont(font());
|
|
const ScaleEngine::TickList* tickList = &m_frequencyScale.getTickList();
|
|
const ScaleEngine::Tick* tick;
|
|
|
|
for (int i = 0; i < tickList->count(); i++) {
|
|
tick = &(*tickList)[i];
|
|
if (tick->major) {
|
|
if (tick->textSize > 0)
|
|
painter.drawText(QPointF(m_leftMargin + tick->textPos, fm.height() + fm.ascent() / 2 - 1), tick->text);
|
|
}
|
|
}
|
|
|
|
// Frequency overlay on highlighted marker
|
|
for (int i = 0; i < m_channelMarkerStates.size(); ++i)
|
|
{
|
|
ChannelMarkerState* dv = m_channelMarkerStates[i];
|
|
|
|
if (dv->m_channelMarker->getHighlighted()
|
|
&& (dv->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink)
|
|
&& dv->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
|
|
{
|
|
qreal xc;
|
|
int shift;
|
|
//ChannelMarker::sidebands_t sidebands = dv->m_channelMarker->getSidebands();
|
|
xc = m_centerFrequency + dv->m_channelMarker->getCenterFrequency(); // marker center frequency
|
|
QString ftext;
|
|
switch (dv->m_channelMarker->getFrequencyScaleDisplayType())
|
|
{
|
|
case ChannelMarker::FScaleDisplay_freq:
|
|
ftext = QString::number((m_centerFrequency + dv->m_channelMarker->getCenterFrequency())/1e6, 'f', 6);
|
|
break;
|
|
case ChannelMarker::FScaleDisplay_title:
|
|
ftext = dv->m_channelMarker->getTitle();
|
|
break;
|
|
case ChannelMarker::FScaleDisplay_addressSend:
|
|
ftext = dv->m_channelMarker->getDisplayAddressSend();
|
|
break;
|
|
case ChannelMarker::FScaleDisplay_addressReceive:
|
|
ftext = dv->m_channelMarker->getDisplayAddressReceive();
|
|
break;
|
|
default:
|
|
ftext = QString::number((m_centerFrequency + dv->m_channelMarker->getCenterFrequency())/1e6, 'f', 6);
|
|
break;
|
|
}
|
|
if (dv->m_channelMarker->getCenterFrequency() < 0) { // left half of scale
|
|
ftext = " " + ftext;
|
|
shift = 0;
|
|
} else { // right half of scale
|
|
ftext = ftext + " ";
|
|
shift = - fm.horizontalAdvance(ftext);
|
|
}
|
|
painter.drawText(QPointF(m_leftMargin + m_frequencyScale.getPosFromValue(xc) + shift, 2*fm.height() + fm.ascent() / 2 - 1), ftext);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
m_glShaderFrequencyScale.initTexture(m_frequencyPixmap.toImage());
|
|
}
|
|
// prepare left scale for spectrogram (time)
|
|
{
|
|
m_spectrogramTimePixmap = QPixmap(m_leftMargin - 1, fm.ascent() + m_waterfallHeight);
|
|
m_spectrogramTimePixmap.fill(Qt::transparent);
|
|
{
|
|
QPainter painter(&m_spectrogramTimePixmap);
|
|
painter.setPen(QColor(0xf0, 0xf0, 0xff));
|
|
painter.setFont(font());
|
|
const ScaleEngine::TickList* tickList;
|
|
const ScaleEngine::Tick* tick;
|
|
if (m_display3DSpectrogram) {
|
|
tickList = &m_timeScale.getTickList();
|
|
for (int i = 0; i < tickList->count(); i++) {
|
|
tick = &(*tickList)[i];
|
|
if (tick->major) {
|
|
if (tick->textSize > 0)
|
|
painter.drawText(QPointF(m_leftMargin - M - tick->textSize, fm.height() + tick->textPos), tick->text);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
m_glShaderSpectrogramTimeScale.initTexture(m_spectrogramTimePixmap.toImage());
|
|
}
|
|
// prepare vertical scale for spectrogram (power)
|
|
{
|
|
int h = m_histogramHeight != 0 ? m_histogramHeight : m_waterfallHeight / 4;
|
|
m_spectrogramPowerPixmap = QPixmap(m_leftMargin - 1, m_topMargin + h);
|
|
m_spectrogramPowerPixmap.fill(Qt::transparent);
|
|
{
|
|
QPainter painter(&m_spectrogramPowerPixmap);
|
|
painter.setPen(QColor(0xf0, 0xf0, 0xff));
|
|
painter.setFont(font());
|
|
const ScaleEngine::TickList* tickList;
|
|
const ScaleEngine::Tick* tick;
|
|
if (m_display3DSpectrogram) {
|
|
tickList = &m_powerScale.getTickList();
|
|
for (int i = 0; i < tickList->count(); i++) {
|
|
tick = &(*tickList)[i];
|
|
if (tick->major) {
|
|
if (tick->textSize > 0)
|
|
painter.drawText(QPointF(m_leftMargin - M - tick->textSize, m_topMargin + h - tick->textPos - 1), tick->text);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
m_glShaderSpectrogramPowerScale.initTexture(m_spectrogramPowerPixmap.toImage());
|
|
}
|
|
|
|
// Top info line
|
|
m_glInfoBoxMatrix.setToIdentity();
|
|
m_glInfoBoxMatrix.translate (
|
|
-1.0f,
|
|
1.0f
|
|
);
|
|
m_glInfoBoxMatrix.scale (
|
|
2.0f,
|
|
(float) -2*m_infoHeight / (float) height()
|
|
);
|
|
m_infoRect = QRect(
|
|
0,
|
|
0,
|
|
width(),
|
|
m_infoHeight
|
|
);
|
|
QString infoText;
|
|
formatTextInfo(infoText);
|
|
m_infoPixmap = QPixmap(width(), m_infoHeight);
|
|
m_infoPixmap.fill(Qt::transparent);
|
|
{
|
|
QPainter painter(&m_infoPixmap);
|
|
painter.setPen(Qt::NoPen);
|
|
painter.setBrush(Qt::black);
|
|
painter.setBrush(Qt::transparent);
|
|
painter.drawRect(m_leftMargin, 0, width() - m_leftMargin, m_infoHeight);
|
|
painter.setPen(QColor(0xf0, 0xf0, 0xff));
|
|
painter.setFont(font());
|
|
painter.drawText(QPointF(m_leftMargin, fm.height() + fm.ascent() / 2 - 2), infoText);
|
|
}
|
|
|
|
m_glShaderInfo.initTexture(m_infoPixmap.toImage());
|
|
|
|
// Peak details in top info line
|
|
QString minFrequencyStr = displayFull(m_centerFrequency - m_sampleRate/2); // This can be wider if negative, while max is positive
|
|
QString maxFrequencyStr = displayFull(m_centerFrequency + m_sampleRate/2);
|
|
m_peakFrequencyMaxStr = minFrequencyStr.size() > maxFrequencyStr.size() ? minFrequencyStr : maxFrequencyStr;
|
|
m_peakFrequencyMaxStr = m_peakFrequencyMaxStr.append("Hz");
|
|
m_peakPowerMaxStr = m_linear ? "8.000e-10" : "-100.0";
|
|
m_peakPowerUnits = m_linear ? "" : "dB";
|
|
|
|
bool waterfallFFTSizeChanged = true;
|
|
|
|
if (m_waterfallBuffer) {
|
|
waterfallFFTSizeChanged = m_waterfallBuffer->width() != m_nbBins;
|
|
}
|
|
|
|
bool windowSizeChanged = m_waterfallTextureHeight != m_waterfallHeight;
|
|
|
|
if (waterfallFFTSizeChanged || windowSizeChanged)
|
|
{
|
|
if (m_waterfallBuffer) {
|
|
delete m_waterfallBuffer;
|
|
}
|
|
|
|
m_waterfallBuffer = new QImage(m_nbBins, m_waterfallHeight, QImage::Format_ARGB32);
|
|
m_waterfallBuffer->fill(qRgb(0x00, 0x00, 0x00));
|
|
|
|
if (m_waterfallHeight > 0) {
|
|
m_glShaderWaterfall.initTexture(*m_waterfallBuffer);
|
|
}
|
|
|
|
m_waterfallBufferPos = 0;
|
|
|
|
if (m_3DSpectrogramBuffer) {
|
|
delete m_3DSpectrogramBuffer;
|
|
}
|
|
|
|
m_3DSpectrogramBuffer = new QImage(m_nbBins, m_waterfallHeight, QImage::Format_Grayscale8);
|
|
m_3DSpectrogramBuffer->fill(qRgb(0x00, 0x00, 0x00));
|
|
|
|
if (m_waterfallHeight > 0) {
|
|
m_glShaderSpectrogram.initTexture(*m_3DSpectrogramBuffer);
|
|
}
|
|
|
|
m_3DSpectrogramBufferPos = 0;
|
|
|
|
m_waterfallTextureHeight = m_waterfallHeight;
|
|
m_waterfallTexturePos = 0;
|
|
m_3DSpectrogramTextureHeight = m_waterfallHeight;
|
|
m_3DSpectrogramTexturePos = 0;
|
|
}
|
|
|
|
m_glShaderSpectrogram.initColorMapTexture(m_colorMapName);
|
|
m_glShaderColorMap.initColorMapTexture(m_colorMapName);
|
|
m_colorMap = ColorMap::getColorMap(m_colorMapName);
|
|
// Why only 240 entries in the palette?
|
|
for (int i = 0; i <= 239; i++)
|
|
{
|
|
((quint8*)&m_waterfallPalette[i])[0] = (quint8)(m_colorMap[i*3] * 255.0);
|
|
((quint8*)&m_waterfallPalette[i])[1] = (quint8)(m_colorMap[i*3+1] * 255.0);
|
|
((quint8*)&m_waterfallPalette[i])[2] = (quint8)(m_colorMap[i*3+2] * 255.0);
|
|
((quint8*)&m_waterfallPalette[i])[3] = 255;
|
|
}
|
|
|
|
bool histogramFFTSizeChanged = true;
|
|
|
|
if (m_histogramBuffer) {
|
|
histogramFFTSizeChanged = m_histogramBuffer->width() != m_nbBins;
|
|
}
|
|
|
|
if (histogramFFTSizeChanged)
|
|
{
|
|
if (m_histogramBuffer) {
|
|
delete m_histogramBuffer;
|
|
}
|
|
|
|
m_histogramBuffer = new QImage(m_nbBins, 100, QImage::Format_RGB32);
|
|
|
|
m_histogramBuffer->fill(qRgb(0x00, 0x00, 0x00));
|
|
m_glShaderHistogram.initTexture(*m_histogramBuffer, QOpenGLTexture::ClampToEdge);
|
|
|
|
if (m_histogram) {
|
|
delete[] m_histogram;
|
|
}
|
|
|
|
m_histogram = new quint8[100 * m_nbBins];
|
|
memset(m_histogram, 0x00, 100 * m_nbBins);
|
|
|
|
m_q3FFT.allocate(2*(m_nbBins+1));
|
|
|
|
m_q3ColorMap.allocate(4*(m_nbBins+1));
|
|
std::fill(m_q3ColorMap.m_array, m_q3ColorMap.m_array+4*(m_nbBins+1), 0.0f);
|
|
}
|
|
|
|
m_q3TickTime.allocate(4*m_timeScale.getTickList().count());
|
|
m_q3TickFrequency.allocate(4*m_frequencyScale.getTickList().count());
|
|
m_q3TickPower.allocate(6*m_powerScale.getTickList().count()); // 6 as we need 3d points for 3D spectrogram
|
|
updateHistogramMarkers();
|
|
updateWaterfallMarkers();
|
|
updateSortedAnnotationMarkers();
|
|
} // applyChanges
|
|
|
|
void GLSpectrumView::updateHistogramMarkers()
|
|
{
|
|
int64_t centerFrequency;
|
|
int frequencySpan;
|
|
getFrequencyZoom(centerFrequency, frequencySpan);
|
|
int effFftSize = m_fftSize * ((float) frequencySpan / (float) m_sampleRate);
|
|
|
|
for (int i = 0; i < m_histogramMarkers.size(); i++)
|
|
{
|
|
float powerI = m_linear ?
|
|
m_histogramMarkers.at(i).m_power * (m_useCalibration ? m_calibrationGain : 1.0f) :
|
|
CalcDb::dbPower(m_histogramMarkers.at(i).m_power) + (m_useCalibration ? m_calibrationShiftdB : 0.0f);
|
|
m_histogramMarkers[i].m_point.rx() =
|
|
(m_histogramMarkers[i].m_frequency - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange();
|
|
m_histogramMarkers[i].m_point.ry() =
|
|
(m_powerScale.getRangeMax() - powerI) / m_powerScale.getRange();
|
|
// m_histogramMarkers[i].m_fftBin =
|
|
// (((m_histogramMarkers[i].m_frequency - m_centerFrequency) / (float) m_sampleRate) + 0.5) * m_fftSize;
|
|
m_histogramMarkers[i].m_fftBin =
|
|
(((m_histogramMarkers[i].m_frequency - centerFrequency) / (float) frequencySpan) + 0.5) * effFftSize;
|
|
m_histogramMarkers[i].m_point.rx() = m_histogramMarkers[i].m_point.rx() < 0 ?
|
|
0 : m_histogramMarkers[i].m_point.rx() > 1 ?
|
|
1 : m_histogramMarkers[i].m_point.rx();
|
|
m_histogramMarkers[i].m_point.ry() = m_histogramMarkers[i].m_point.ry() < 0 ?
|
|
0 : m_histogramMarkers[i].m_point.ry() > 1 ?
|
|
1 : m_histogramMarkers[i].m_point.ry();
|
|
m_histogramMarkers[i].m_fftBin = m_histogramMarkers[i].m_fftBin < 0 ?
|
|
0 : m_histogramMarkers[i].m_fftBin > m_fftSize - 1 ?
|
|
m_fftSize - 1 : m_histogramMarkers[i].m_fftBin;
|
|
m_histogramMarkers[i].m_frequencyStr = displayScaled(
|
|
m_histogramMarkers[i].m_frequency,
|
|
'f',
|
|
getPrecision((m_centerFrequency*1000)/m_sampleRate),
|
|
false);
|
|
m_histogramMarkers[i].m_powerStr = displayPower(
|
|
powerI,
|
|
m_linear ? 'e' : 'f',
|
|
m_linear ? 3 : 1);
|
|
|
|
if (i > 0)
|
|
{
|
|
int64_t deltaFrequency = m_histogramMarkers.at(i).m_frequency - m_histogramMarkers.at(0).m_frequency;
|
|
m_histogramMarkers[i].m_deltaFrequencyStr = displayScaled(
|
|
deltaFrequency,
|
|
'f',
|
|
getPrecision(deltaFrequency/m_sampleRate),
|
|
true);
|
|
float power0 = m_linear ?
|
|
m_histogramMarkers.at(0).m_power * (m_useCalibration ? m_calibrationGain : 1.0f) :
|
|
CalcDb::dbPower(m_histogramMarkers.at(0).m_power) + (m_useCalibration ? m_calibrationShiftdB : 0.0f);
|
|
m_histogramMarkers[i].m_deltaPowerStr = displayPower(
|
|
powerI - power0,
|
|
m_linear ? 'e' : 'f',
|
|
m_linear ? 3 : 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::updateHistogramPeaks()
|
|
{
|
|
int j = 0;
|
|
for (int i = 0; i < m_histogramMarkers.size(); i++)
|
|
{
|
|
if (j >= (int) m_peakFinder.getPeaks().size()) {
|
|
break;
|
|
}
|
|
|
|
int fftBin = m_peakFinder.getPeaks()[j].second;
|
|
Real power = m_peakFinder.getPeaks()[j].first;
|
|
// qDebug("GLSpectrumView::updateHistogramPeaks: %d %d %f", j, fftBin, power);
|
|
|
|
if ((m_histogramMarkers.at(i).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePower) ||
|
|
((m_histogramMarkers.at(i).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePowerMax) &&
|
|
(m_histogramMarkers.at(i).m_holdReset || (power > m_histogramMarkers.at(i).m_powerMax))))
|
|
{
|
|
float binSize = m_frequencyScale.getRange() / m_nbBins;
|
|
m_histogramMarkers[i].m_fftBin = fftBin;
|
|
m_histogramMarkers[i].m_frequency = m_frequencyScale.getRangeMin() + binSize*fftBin;
|
|
m_histogramMarkers[i].m_point.rx() = binSize*fftBin / m_frequencyScale.getRange();
|
|
|
|
if (i == 0)
|
|
{
|
|
m_histogramMarkers[i].m_frequencyStr = displayScaled(
|
|
m_histogramMarkers[i].m_frequency,
|
|
'f',
|
|
getPrecision((m_centerFrequency*1000)/m_sampleRate),
|
|
false
|
|
);
|
|
}
|
|
else
|
|
{
|
|
int64_t deltaFrequency = m_histogramMarkers.at(i).m_frequency - m_histogramMarkers.at(0).m_frequency;
|
|
m_histogramMarkers[i].m_deltaFrequencyStr = displayScaled(
|
|
deltaFrequency,
|
|
'f',
|
|
getPrecision(deltaFrequency/m_sampleRate),
|
|
true
|
|
);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
continue;
|
|
}
|
|
|
|
j++;
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::updateWaterfallMarkers()
|
|
{
|
|
for (int i = 0; i < m_waterfallMarkers.size(); i++)
|
|
{
|
|
m_waterfallMarkers[i].m_point.rx() =
|
|
(m_waterfallMarkers[i].m_frequency - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange();
|
|
m_waterfallMarkers[i].m_point.ry() =
|
|
(m_waterfallMarkers[i].m_time - m_timeScale.getRangeMin()) / m_timeScale.getRange();
|
|
m_waterfallMarkers[i].m_point.rx() = m_waterfallMarkers[i].m_point.rx() < 0 ?
|
|
0 : m_waterfallMarkers[i].m_point.rx() > 1 ?
|
|
1 : m_waterfallMarkers[i].m_point.rx();
|
|
m_waterfallMarkers[i].m_point.ry() = m_waterfallMarkers[i].m_point.ry() < 0 ?
|
|
0 : m_waterfallMarkers[i].m_point.ry() > 1 ?
|
|
1 : m_waterfallMarkers[i].m_point.ry();
|
|
m_waterfallMarkers[i].m_frequencyStr = displayScaled(
|
|
m_waterfallMarkers[i].m_frequency,
|
|
'f',
|
|
getPrecision((m_centerFrequency*1000)/m_sampleRate),
|
|
false);
|
|
m_waterfallMarkers[i].m_timeStr = displayScaledF(
|
|
m_waterfallMarkers[i].m_time,
|
|
'f',
|
|
3,
|
|
true);
|
|
|
|
if (i > 0)
|
|
{
|
|
int64_t deltaFrequency = m_waterfallMarkers.at(i).m_frequency - m_waterfallMarkers.at(0).m_frequency;
|
|
m_waterfallMarkers.back().m_deltaFrequencyStr = displayScaled(
|
|
deltaFrequency,
|
|
'f',
|
|
getPrecision(deltaFrequency/m_sampleRate),
|
|
true);
|
|
m_waterfallMarkers.back().m_deltaTimeStr = displayScaledF(
|
|
m_waterfallMarkers.at(i).m_time - m_waterfallMarkers.at(0).m_time,
|
|
'f',
|
|
3,
|
|
true);
|
|
}
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::updateAnnotationMarkers()
|
|
{
|
|
if (!(m_markersDisplay & SpectrumSettings::MarkersDisplayAnnotations)) {
|
|
return;
|
|
}
|
|
|
|
m_sortedAnnotationMarkers.clear();
|
|
|
|
for (auto &marker : m_annotationMarkers) {
|
|
m_sortedAnnotationMarkers.push_back(&marker);
|
|
}
|
|
|
|
std::sort(m_sortedAnnotationMarkers.begin(), m_sortedAnnotationMarkers.end(), annotationDisplayLessThan);
|
|
updateSortedAnnotationMarkers();
|
|
}
|
|
|
|
void GLSpectrumView::updateSortedAnnotationMarkers()
|
|
{
|
|
if (!(m_markersDisplay & SpectrumSettings::MarkersDisplayAnnotations)) {
|
|
return;
|
|
}
|
|
|
|
m_visibleAnnotationMarkers.clear();
|
|
|
|
for (auto &marker : m_sortedAnnotationMarkers)
|
|
{
|
|
float startPos = (marker->m_startFrequency - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange();
|
|
float stopPos = ((marker->m_startFrequency + marker->m_bandwidth) - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange();
|
|
|
|
if ((startPos > 1.0f) || (stopPos < 0.0f)) // out of range
|
|
{
|
|
continue;
|
|
}
|
|
|
|
m_visibleAnnotationMarkers.push_back(marker);
|
|
m_visibleAnnotationMarkers.back()->m_startPos = startPos < 0.0f ? 0.0f : startPos;
|
|
m_visibleAnnotationMarkers.back()->m_stopPos = stopPos > 1.0f ? 1.0f : stopPos;
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::updateMarkersDisplay()
|
|
{
|
|
if (m_markersDisplay & SpectrumSettings::MarkersDisplayAnnotations) {
|
|
updateAnnotationMarkers();
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::updateCalibrationPoints()
|
|
{
|
|
if (m_calibrationPoints.size() == 0)
|
|
{
|
|
m_calibrationGain = 1.0;
|
|
m_calibrationShiftdB = 0.0;
|
|
}
|
|
else if (m_calibrationPoints.size() == 1)
|
|
{
|
|
m_calibrationGain = m_calibrationPoints.first().m_powerCalibratedReference /
|
|
m_calibrationPoints.first().m_powerRelativeReference;
|
|
m_calibrationShiftdB = CalcDb::dbPower(m_calibrationGain);
|
|
}
|
|
else
|
|
{
|
|
QList<SpectrumCalibrationPoint> sortedCalibrationPoints = m_calibrationPoints;
|
|
std::sort(sortedCalibrationPoints.begin(), sortedCalibrationPoints.end(), calibrationPointsLessThan);
|
|
|
|
if (m_centerFrequency <= sortedCalibrationPoints.first().m_frequency)
|
|
{
|
|
m_calibrationGain = m_calibrationPoints.first().m_powerCalibratedReference /
|
|
m_calibrationPoints.first().m_powerRelativeReference;
|
|
m_calibrationShiftdB = CalcDb::dbPower(m_calibrationGain);
|
|
}
|
|
else if (m_centerFrequency >= sortedCalibrationPoints.last().m_frequency)
|
|
{
|
|
m_calibrationGain = m_calibrationPoints.last().m_powerCalibratedReference /
|
|
m_calibrationPoints.last().m_powerRelativeReference;
|
|
m_calibrationShiftdB = CalcDb::dbPower(m_calibrationGain);
|
|
}
|
|
else
|
|
{
|
|
int lowIndex = 0;
|
|
int highIndex = sortedCalibrationPoints.size() - 1;
|
|
|
|
for (int index = 0; index < sortedCalibrationPoints.size(); index++)
|
|
{
|
|
if (m_centerFrequency < sortedCalibrationPoints[index].m_frequency)
|
|
{
|
|
highIndex = index;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
lowIndex = index;
|
|
}
|
|
}
|
|
|
|
// frequency interpolation is always linear
|
|
double deltaFrequency = sortedCalibrationPoints[highIndex].m_frequency -
|
|
sortedCalibrationPoints[lowIndex].m_frequency;
|
|
double shiftFrequency = m_centerFrequency - sortedCalibrationPoints[lowIndex].m_frequency;
|
|
double interpolationRatio = shiftFrequency / deltaFrequency;
|
|
|
|
// calculate low and high gains in linear mode
|
|
double gainLow = sortedCalibrationPoints[lowIndex].m_powerCalibratedReference /
|
|
sortedCalibrationPoints[lowIndex].m_powerRelativeReference;
|
|
double gainHigh = sortedCalibrationPoints[highIndex].m_powerCalibratedReference /
|
|
sortedCalibrationPoints[highIndex].m_powerRelativeReference;
|
|
|
|
// power interpolation depends on interpolation options
|
|
if (m_calibrationInterpMode == SpectrumSettings::CalibInterpLinear)
|
|
{
|
|
m_calibrationGain = gainLow + interpolationRatio*(gainHigh - gainLow); // linear driven
|
|
m_calibrationShiftdB = CalcDb::dbPower(m_calibrationGain);
|
|
}
|
|
else if (m_calibrationInterpMode == SpectrumSettings::CalibInterpLog)
|
|
{
|
|
m_calibrationShiftdB = CalcDb::dbPower(gainLow)
|
|
+ interpolationRatio*(CalcDb::dbPower(gainHigh) - CalcDb::dbPower(gainLow)); // log driven
|
|
m_calibrationGain = CalcDb::powerFromdB(m_calibrationShiftdB);
|
|
}
|
|
}
|
|
}
|
|
|
|
updateHistogramMarkers();
|
|
|
|
if (m_messageQueueToGUI && m_useCalibration) {
|
|
m_messageQueueToGUI->push(new MsgReportCalibrationShift(m_calibrationShiftdB));
|
|
}
|
|
|
|
m_changesPending = true;
|
|
}
|
|
|
|
void GLSpectrumView::mouseMoveEvent(QMouseEvent* event)
|
|
{
|
|
if (m_rotate3DSpectrogram)
|
|
{
|
|
// Rotate 3D Spectrogram
|
|
QPointF delta = m_mousePrevLocalPos - event->localPos();
|
|
m_mousePrevLocalPos = event->localPos();
|
|
m_glShaderSpectrogram.rotateZ(-delta.x()/2.0f);
|
|
m_glShaderSpectrogram.rotateX(-delta.y()/2.0f);
|
|
repaint(); // Force repaint in case acquisition is stopped
|
|
return;
|
|
}
|
|
if (m_pan3DSpectrogram)
|
|
{
|
|
// Pan 3D Spectrogram
|
|
QPointF delta = m_mousePrevLocalPos - event->localPos();
|
|
m_mousePrevLocalPos = event->localPos();
|
|
m_glShaderSpectrogram.translateX(-delta.x()/2.0f/500.0f);
|
|
m_glShaderSpectrogram.translateY(delta.y()/2.0f/500.0f);
|
|
repaint(); // Force repaint in case acquisition is stopped
|
|
return;
|
|
}
|
|
|
|
if (m_scaleZ3DSpectrogram)
|
|
{
|
|
// Scale 3D Spectrogram in Z dimension
|
|
QPointF delta = m_mousePrevLocalPos - event->localPos();
|
|
m_mousePrevLocalPos = event->localPos();
|
|
m_glShaderSpectrogram.userScaleZ(1.0+(float)delta.y()/20.0);
|
|
repaint(); // Force repaint in case acquisition is stopped
|
|
return;
|
|
}
|
|
|
|
if (m_scrollFrequency)
|
|
{
|
|
// Request containing widget to adjust center frequency
|
|
// Not all containers will support this - mainly for MainSpectrumGUI
|
|
// This can be a little slow on some SDRs, so we use delta from where
|
|
// button was originally pressed rather than do it incrementally
|
|
QPointF delta = m_mousePrevLocalPos - event->localPos();
|
|
float histogramWidth = width() - m_leftMargin - m_rightMargin;
|
|
qint64 frequency = (qint64)(m_scrollStartCenterFreq + delta.x()/histogramWidth * m_frequencyScale.getRange());
|
|
emit requestCenterFrequency(frequency);
|
|
return;
|
|
}
|
|
|
|
if (m_displayWaterfall || m_displayHistogram || m_displayMaxHold || m_displayCurrent)
|
|
{
|
|
if (m_frequencyScaleRect.contains(event->pos()))
|
|
{
|
|
if (m_cursorState == CSNormal)
|
|
{
|
|
setCursor(Qt::SizeVerCursor);
|
|
m_cursorState = CSSplitter;
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (m_cursorState == CSSplitter)
|
|
{
|
|
setCursor(Qt::ArrowCursor);
|
|
m_cursorState = CSNormal;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (m_cursorState == CSSplitterMoving)
|
|
{
|
|
QMutexLocker mutexLocker(&m_mutex);
|
|
float newShare;
|
|
|
|
if (!m_invertedWaterfall) {
|
|
newShare = (float) (event->y() - m_frequencyScaleRect.height()) / (float) height();
|
|
} else {
|
|
newShare = 1.0 - (float) (event->y() + m_frequencyScaleRect.height()) / (float) height();
|
|
}
|
|
|
|
if (newShare < 0.1) {
|
|
newShare = 0.1f;
|
|
} else if (newShare > 0.8) {
|
|
newShare = 0.8f;
|
|
}
|
|
|
|
m_waterfallShare = newShare;
|
|
m_changesPending = true;
|
|
|
|
if (m_messageQueueToGUI) {
|
|
m_messageQueueToGUI->push(new MsgReportWaterfallShare(m_waterfallShare));
|
|
}
|
|
|
|
update();
|
|
return;
|
|
}
|
|
else if (m_cursorState == CSChannelMoving)
|
|
{
|
|
// Determine if user is trying to move the channel outside of the current frequency range
|
|
// and if so, request an adjustment to the center frequency
|
|
Real freqAbs = m_frequencyScale.getValueFromPos(event->x() - m_leftMarginPixmap.width() - 1);
|
|
Real freqMin = m_centerFrequency - m_sampleRate / 2.0f;
|
|
Real freqMax = m_centerFrequency + m_sampleRate / 2.0f;
|
|
if (freqAbs < freqMin) {
|
|
emit requestCenterFrequency(m_centerFrequency - (freqMin - freqAbs));
|
|
} else if (freqAbs > freqMax) {
|
|
emit requestCenterFrequency(m_centerFrequency + (freqAbs - freqMax));
|
|
}
|
|
|
|
Real freq = freqAbs - m_centerFrequency;
|
|
if (m_channelMarkerStates[m_cursorChannel]->m_channelMarker->getMovable()
|
|
&& (m_channelMarkerStates[m_cursorChannel]->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink)
|
|
&& m_channelMarkerStates[m_cursorChannel]->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
|
|
{
|
|
m_channelMarkerStates[m_cursorChannel]->m_channelMarker->setCenterFrequencyByCursor(freq);
|
|
channelMarkerChanged();
|
|
}
|
|
}
|
|
|
|
if (m_displayWaterfall || m_displayHistogram || m_displayMaxHold || m_displayCurrent)
|
|
{
|
|
for (int i = 0; i < m_channelMarkerStates.size(); ++i)
|
|
{
|
|
if ((m_channelMarkerStates[i]->m_channelMarker->getSourceOrSinkStream() != m_displaySourceOrSink)
|
|
|| !m_channelMarkerStates[i]->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (m_channelMarkerStates[i]->m_rect.contains(event->pos()))
|
|
{
|
|
if (m_cursorState == CSNormal)
|
|
{
|
|
setCursor(Qt::SizeHorCursor);
|
|
m_cursorState = CSChannel;
|
|
m_cursorChannel = i;
|
|
m_channelMarkerStates[i]->m_channelMarker->setHighlightedByCursor(true);
|
|
channelMarkerChanged();
|
|
|
|
return;
|
|
}
|
|
else if (m_cursorState == CSChannel)
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
else if (m_channelMarkerStates[i]->m_channelMarker->getHighlighted())
|
|
{
|
|
m_channelMarkerStates[i]->m_channelMarker->setHighlightedByCursor(false);
|
|
channelMarkerChanged();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (m_cursorState == CSChannel)
|
|
{
|
|
setCursor(Qt::ArrowCursor);
|
|
m_cursorState = CSNormal;
|
|
|
|
return;
|
|
}
|
|
|
|
event->setAccepted(false);
|
|
}
|
|
|
|
void GLSpectrumView::mousePressEvent(QMouseEvent* event)
|
|
{
|
|
const QPointF& ep = event->localPos();
|
|
|
|
if ((event->button() == Qt::MiddleButton) && (m_displayMaxHold || m_displayCurrent || m_displayHistogram) && pointInHistogram(ep))
|
|
{
|
|
m_scrollFrequency = true;
|
|
m_scrollStartCenterFreq = m_centerFrequency;
|
|
m_mousePrevLocalPos = ep;
|
|
return;
|
|
}
|
|
|
|
if ((event->button() == Qt::MiddleButton) && m_display3DSpectrogram && pointInWaterfallOrSpectrogram(ep))
|
|
{
|
|
m_pan3DSpectrogram = true;
|
|
m_mousePrevLocalPos = ep;
|
|
return;
|
|
}
|
|
|
|
if ((event->button() == Qt::RightButton) && m_display3DSpectrogram && pointInWaterfallOrSpectrogram(ep))
|
|
{
|
|
m_scaleZ3DSpectrogram = true;
|
|
m_mousePrevLocalPos = ep;
|
|
return;
|
|
}
|
|
|
|
if (event->button() == Qt::RightButton)
|
|
{
|
|
QPointF pHis = ep;
|
|
bool doUpdate = false;
|
|
pHis.rx() = (ep.x()/width() - m_histogramRect.left()) / m_histogramRect.width();
|
|
pHis.ry() = (ep.y()/height() - m_histogramRect.top()) / m_histogramRect.height();
|
|
|
|
if (event->modifiers() & Qt::ShiftModifier)
|
|
{
|
|
if ((pHis.x() >= 0) && (pHis.x() <= 1) && (pHis.y() >= 0) && (pHis.y() <= 1))
|
|
{
|
|
m_histogramMarkers.clear();
|
|
doUpdate = true;
|
|
if (m_messageQueueToGUI) {
|
|
m_messageQueueToGUI->push(new MsgReportHistogramMarkersChange());
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((m_histogramMarkers.size() > 0) && (pHis.x() >= 0) && (pHis.x() <= 1) && (pHis.y() >= 0) && (pHis.y() <= 1))
|
|
{
|
|
m_histogramMarkers.pop_back();
|
|
doUpdate = true;
|
|
if (m_messageQueueToGUI) {
|
|
m_messageQueueToGUI->push(new MsgReportHistogramMarkersChange());
|
|
}
|
|
}
|
|
}
|
|
|
|
QPointF pWat = ep;
|
|
pWat.rx() = (ep.x()/width() - m_waterfallRect.left()) / m_waterfallRect.width();
|
|
pWat.ry() = (ep.y()/height() - m_waterfallRect.top()) / m_waterfallRect.height();
|
|
|
|
if (event->modifiers() & Qt::ShiftModifier)
|
|
{
|
|
if ((pWat.x() >= 0) && (pWat.x() <= 1) && (pWat.y() >= 0) && (pWat.y() <= 1))
|
|
{
|
|
m_waterfallMarkers.clear();
|
|
doUpdate = true;
|
|
if (m_messageQueueToGUI) {
|
|
m_messageQueueToGUI->push(new MsgReportWaterfallMarkersChange());
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((m_waterfallMarkers.size() > 0) && (pWat.x() >= 0) && (pWat.x() <= 1) && (pWat.y() >= 0) && (pWat.y() <= 1))
|
|
{
|
|
m_waterfallMarkers.pop_back();
|
|
doUpdate = true;
|
|
if (m_messageQueueToGUI) {
|
|
m_messageQueueToGUI->push(new MsgReportWaterfallMarkersChange());
|
|
}
|
|
}
|
|
}
|
|
|
|
if (doUpdate) {
|
|
update();
|
|
}
|
|
}
|
|
else if (event->button() == Qt::LeftButton)
|
|
{
|
|
if (event->modifiers() & Qt::ShiftModifier)
|
|
{
|
|
QPointF pHis = ep;
|
|
bool doUpdate = false;
|
|
pHis.rx() = (ep.x()/width() - m_histogramRect.left()) / m_histogramRect.width();
|
|
pHis.ry() = (ep.y()/height() - m_histogramRect.top()) / m_histogramRect.height();
|
|
float frequency = m_frequencyScale.getRangeMin() + pHis.x()*m_frequencyScale.getRange();
|
|
float powerVal = m_powerScale.getRangeMax() - pHis.y()*m_powerScale.getRange();
|
|
float power = m_linear ? powerVal : CalcDb::powerFromdB(powerVal);
|
|
int fftBin = (((frequency - m_centerFrequency) / (float) m_sampleRate) * m_fftSize) + (m_fftSize / 2);
|
|
|
|
if ((pHis.x() >= 0) && (pHis.x() <= 1) && (pHis.y() >= 0) && (pHis.y() <= 1))
|
|
{
|
|
if (m_histogramMarkers.size() < SpectrumHistogramMarker::m_maxNbOfMarkers)
|
|
{
|
|
m_histogramMarkers.push_back(SpectrumHistogramMarker());
|
|
m_histogramMarkers.back().m_point = pHis;
|
|
m_histogramMarkers.back().m_frequency = frequency;
|
|
m_histogramMarkers.back().m_fftBin = fftBin;
|
|
m_histogramMarkers.back().m_frequencyStr = displayScaled(
|
|
frequency,
|
|
'f',
|
|
getPrecision((m_centerFrequency*1000)/m_sampleRate),
|
|
false);
|
|
m_histogramMarkers.back().m_power = power;
|
|
m_histogramMarkers.back().m_powerStr = displayPower(
|
|
powerVal,
|
|
m_linear ? 'e' : 'f',
|
|
m_linear ? 3 : 1);
|
|
|
|
if (m_histogramMarkers.size() > 1)
|
|
{
|
|
int64_t deltaFrequency = frequency - m_histogramMarkers.at(0).m_frequency;
|
|
m_histogramMarkers.back().m_deltaFrequencyStr = displayScaled(
|
|
deltaFrequency,
|
|
'f',
|
|
getPrecision(deltaFrequency/m_sampleRate),
|
|
true);
|
|
float power0 = m_linear ?
|
|
m_histogramMarkers.at(0).m_power :
|
|
CalcDb::dbPower(m_histogramMarkers.at(0).m_power);
|
|
m_histogramMarkers.back().m_deltaPowerStr = displayPower(
|
|
power - power0,
|
|
m_linear ? 'e' : 'f',
|
|
m_linear ? 3 : 1);
|
|
}
|
|
|
|
if (m_messageQueueToGUI) {
|
|
m_messageQueueToGUI->push(new MsgReportHistogramMarkersChange());
|
|
}
|
|
doUpdate = true;
|
|
}
|
|
}
|
|
|
|
QPointF pWat = ep;
|
|
pWat.rx() = (ep.x()/width() - m_waterfallRect.left()) / m_waterfallRect.width();
|
|
pWat.ry() = (ep.y()/height() - m_waterfallRect.top()) / m_waterfallRect.height();
|
|
frequency = m_frequencyScale.getRangeMin() + pWat.x()*m_frequencyScale.getRange();
|
|
float time = m_timeScale.getRangeMin() + pWat.y()*m_timeScale.getRange();
|
|
|
|
if ((pWat.x() >= 0) && (pWat.x() <= 1) && (pWat.y() >= 0) && (pWat.y() <= 1) && !m_display3DSpectrogram)
|
|
{
|
|
if (m_waterfallMarkers.size() < SpectrumWaterfallMarker::m_maxNbOfMarkers)
|
|
{
|
|
m_waterfallMarkers.push_back(SpectrumWaterfallMarker());
|
|
m_waterfallMarkers.back().m_point = pWat;
|
|
m_waterfallMarkers.back().m_frequency = frequency;
|
|
m_waterfallMarkers.back().m_frequencyStr = displayScaled(
|
|
frequency,
|
|
'f',
|
|
getPrecision((m_centerFrequency*1000)/m_sampleRate),
|
|
false);
|
|
m_waterfallMarkers.back().m_time = time;
|
|
m_waterfallMarkers.back().m_timeStr = displayScaledF(
|
|
time,
|
|
'f',
|
|
3,
|
|
true);
|
|
|
|
if (m_waterfallMarkers.size() > 1)
|
|
{
|
|
int64_t deltaFrequency = frequency - m_waterfallMarkers.at(0).m_frequency;
|
|
m_waterfallMarkers.back().m_deltaFrequencyStr = displayScaled(
|
|
deltaFrequency,
|
|
'f',
|
|
getPrecision(deltaFrequency/m_sampleRate),
|
|
true);
|
|
m_waterfallMarkers.back().m_deltaTimeStr = displayScaledF(
|
|
time - m_waterfallMarkers.at(0).m_time,
|
|
'f',
|
|
3,
|
|
true);
|
|
}
|
|
|
|
if (m_messageQueueToGUI) {
|
|
m_messageQueueToGUI->push(new MsgReportWaterfallMarkersChange());
|
|
}
|
|
doUpdate = true;
|
|
}
|
|
}
|
|
|
|
if (doUpdate) {
|
|
update();
|
|
}
|
|
}
|
|
else if (event->modifiers() & Qt::AltModifier)
|
|
{
|
|
frequencyPan(event);
|
|
}
|
|
else if (m_display3DSpectrogram)
|
|
{
|
|
// Detect click and drag to rotate 3D spectrogram
|
|
if (pointInWaterfallOrSpectrogram(ep))
|
|
{
|
|
m_rotate3DSpectrogram = true;
|
|
m_mousePrevLocalPos = ep;
|
|
return;
|
|
}
|
|
}
|
|
|
|
if ((m_markersDisplay & SpectrumSettings::MarkersDisplayAnnotations) &&
|
|
(ep.y() <= m_histogramRect.top()*height() + m_annotationMarkerHeight + 2.0f))
|
|
{
|
|
QPointF pHis;
|
|
pHis.rx() = (ep.x()/width() - m_histogramRect.left()) / m_histogramRect.width();
|
|
qint64 selectedFrequency = m_frequencyScale.getRangeMin() + pHis.x() * m_frequencyScale.getRange();
|
|
bool selected = false;
|
|
|
|
for (auto iMarker = m_visibleAnnotationMarkers.rbegin(); iMarker != m_visibleAnnotationMarkers.rend(); ++iMarker)
|
|
{
|
|
if ((*iMarker)->m_show == SpectrumAnnotationMarker::Hidden) {
|
|
continue;
|
|
}
|
|
|
|
qint64 stopFrequency = (*iMarker)->m_startFrequency +
|
|
((*iMarker)->m_bandwidth == 0 ? m_frequencyScale.getRange()*0.01f : (*iMarker)->m_bandwidth);
|
|
|
|
if (((*iMarker)->m_startFrequency < selectedFrequency) && (selectedFrequency <= stopFrequency) && !selected)
|
|
{
|
|
switch ((*iMarker)->m_show)
|
|
{
|
|
case SpectrumAnnotationMarker::ShowTop:
|
|
(*iMarker)->m_show = SpectrumAnnotationMarker::ShowText;
|
|
break;
|
|
case SpectrumAnnotationMarker::ShowText:
|
|
(*iMarker)->m_show = SpectrumAnnotationMarker::ShowFull;
|
|
break;
|
|
case SpectrumAnnotationMarker::ShowFull:
|
|
(*iMarker)->m_show = SpectrumAnnotationMarker::ShowTop;
|
|
break;
|
|
case SpectrumAnnotationMarker::Hidden:
|
|
break;
|
|
}
|
|
selected = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (m_cursorState == CSSplitter)
|
|
{
|
|
grabMouse();
|
|
m_cursorState = CSSplitterMoving;
|
|
return;
|
|
}
|
|
else if (m_cursorState == CSChannel)
|
|
{
|
|
grabMouse();
|
|
m_cursorState = CSChannelMoving;
|
|
return;
|
|
}
|
|
else if ((m_cursorState == CSNormal) &&
|
|
(m_channelMarkerStates.size() == 1) &&
|
|
!(event->modifiers() & Qt::ShiftModifier) &&
|
|
!(event->modifiers() & Qt::AltModifier) &&
|
|
!(event->modifiers() & Qt::ControlModifier) &&
|
|
(ep.y() > m_histogramRect.top()*height() + m_annotationMarkerHeight + 2.0f)) // out of annotation selection zone
|
|
{
|
|
grabMouse();
|
|
setCursor(Qt::SizeHorCursor);
|
|
m_cursorState = CSChannelMoving;
|
|
m_cursorChannel = 0;
|
|
Real freq = m_frequencyScale.getValueFromPos(event->x() - m_leftMarginPixmap.width() - 1) - m_centerFrequency;
|
|
|
|
if (m_channelMarkerStates[m_cursorChannel]->m_channelMarker->getMovable()
|
|
&& (m_channelMarkerStates[m_cursorChannel]->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink)
|
|
&& m_channelMarkerStates[m_cursorChannel]->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
|
|
{
|
|
m_channelMarkerStates[m_cursorChannel]->m_channelMarker->setCenterFrequencyByCursor(freq);
|
|
channelMarkerChanged();
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::mouseReleaseEvent(QMouseEvent*)
|
|
{
|
|
m_scrollFrequency = false;
|
|
m_pan3DSpectrogram = false;
|
|
m_rotate3DSpectrogram = false;
|
|
m_scaleZ3DSpectrogram = false;
|
|
if (m_cursorState == CSSplitterMoving)
|
|
{
|
|
releaseMouse();
|
|
m_cursorState = CSSplitter;
|
|
}
|
|
else if (m_cursorState == CSChannelMoving)
|
|
{
|
|
releaseMouse();
|
|
m_cursorState = CSChannel;
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::wheelEvent(QWheelEvent *event)
|
|
{
|
|
#if QT_VERSION >= QT_VERSION_CHECK(5, 14, 0)
|
|
const QPointF& ep = event->position();
|
|
#else
|
|
const QPointF& ep = event->pos();
|
|
#endif
|
|
if (m_display3DSpectrogram && pointInWaterfallOrSpectrogram(ep))
|
|
{
|
|
// Scale 3D spectrogram when mouse wheel moved
|
|
// Some mice use delta in steps of 120 for 15 degrees
|
|
// for one step of mouse wheel
|
|
// Other mice/trackpads use smaller values
|
|
int delta = event->angleDelta().y();
|
|
if (delta != 0) {
|
|
m_glShaderSpectrogram.verticalAngle(-5.0*delta/120.0);
|
|
}
|
|
repaint(); // Force repaint in case acquisition is stopped
|
|
}
|
|
else
|
|
{
|
|
if (event->modifiers() & Qt::ShiftModifier) {
|
|
channelMarkerMove(event, 100);
|
|
} else if (event->modifiers() & Qt::ControlModifier) {
|
|
channelMarkerMove(event, 10);
|
|
} else {
|
|
channelMarkerMove(event, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::zoom(QWheelEvent *event)
|
|
{
|
|
#if QT_VERSION >= QT_VERSION_CHECK(5, 14, 0)
|
|
const QPointF& p = event->position();
|
|
#else
|
|
const QPointF& p = event->pos();
|
|
#endif
|
|
|
|
float pwx = (p.x() - m_leftMargin) / (width() - m_leftMargin - m_rightMargin); // x position in window
|
|
|
|
if ((pwx >= 0.0f) && (pwx <= 1.0f))
|
|
{
|
|
// When we zoom, we want the frequency under the cursor to remain the same
|
|
|
|
// Determine frequency at cursor position
|
|
float zoomFreq = m_frequencyScale.getRangeMin() + pwx*m_frequencyScale.getRange();
|
|
|
|
// Calculate current centre frequency
|
|
float currentCF = (m_frequencyZoomFactor == 1) ? m_centerFrequency : ((m_frequencyZoomPos - 0.5) * m_sampleRate + m_centerFrequency);
|
|
|
|
// Calculate difference from frequency under cursor to centre frequency
|
|
float freqDiff = (currentCF - zoomFreq);
|
|
|
|
// Calculate what that difference would be if there was no zoom
|
|
float freqDiffZoom1 = freqDiff * m_frequencyZoomFactor;
|
|
|
|
if (event->angleDelta().y() > 0) // zoom in
|
|
{
|
|
if (m_frequencyZoomFactor < m_maxFrequencyZoom) {
|
|
m_frequencyZoomFactor += 0.5f;
|
|
} else {
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (m_frequencyZoomFactor > 1.0f) {
|
|
m_frequencyZoomFactor -= 0.5f;
|
|
} else {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Calculate what frequency difference should be at new zoom
|
|
float zoomedFreqDiff = freqDiffZoom1 / m_frequencyZoomFactor;
|
|
// Then calculate what the center frequency should be
|
|
float zoomedCF = zoomFreq + zoomedFreqDiff;
|
|
|
|
// Calculate zoom position which will set the desired center frequency
|
|
float zoomPos = (zoomedCF - m_centerFrequency) / m_sampleRate + 0.5;
|
|
zoomPos = std::max(0.0f, zoomPos);
|
|
zoomPos = std::min(1.0f, zoomPos);
|
|
|
|
frequencyZoom(zoomPos);
|
|
}
|
|
else
|
|
{
|
|
float pwyh, pwyw;
|
|
|
|
if (m_invertedWaterfall) // histo on top
|
|
{
|
|
pwyh = (p.y() - m_topMargin) / m_histogramHeight;
|
|
pwyw = (p.y() - m_topMargin - m_histogramHeight - m_frequencyScaleHeight) / m_waterfallHeight;
|
|
}
|
|
else // waterfall on top
|
|
{
|
|
pwyw = (p.y() - m_topMargin) / m_waterfallHeight;
|
|
pwyh = (p.y() - m_topMargin - m_waterfallHeight - m_frequencyScaleHeight) / m_histogramHeight;
|
|
}
|
|
|
|
//qDebug("GLSpectrumView::zoom: pwyh: %f pwyw: %f", pwyh, pwyw);
|
|
|
|
if ((pwyw >= 0.0f) && (pwyw <= 1.0f)) {
|
|
timeZoom(event->angleDelta().y() > 0);
|
|
}
|
|
|
|
if ((pwyh >= 0.0f) && (pwyh <= 1.0f) && !m_linear) {
|
|
powerZoom(pwyh, event->angleDelta().y() > 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::frequencyZoom(float zoomPos)
|
|
{
|
|
m_frequencyZoomPos = zoomPos;
|
|
updateFFTLimits();
|
|
}
|
|
|
|
void GLSpectrumView::frequencyPan(QMouseEvent *event)
|
|
{
|
|
if (m_frequencyZoomFactor == 1.0f) {
|
|
return;
|
|
}
|
|
|
|
const QPointF& p = event->pos();
|
|
float pw = (p.x() - m_leftMargin) / (width() - m_leftMargin - m_rightMargin); // position in window
|
|
pw = pw < 0.0f ? 0.0f : pw > 1.0f ? 1.0 : pw;
|
|
float dw = pw - 0.5f;
|
|
m_frequencyZoomPos += dw * (1.0f / m_frequencyZoomFactor);
|
|
float lim = 0.5f / m_frequencyZoomFactor;
|
|
m_frequencyZoomPos = m_frequencyZoomPos < lim ? lim : m_frequencyZoomPos > 1 - lim ? 1 - lim : m_frequencyZoomPos;
|
|
|
|
qDebug("GLSpectrumView::frequencyPan: pw: %f p: %f", pw, m_frequencyZoomPos);
|
|
updateFFTLimits();
|
|
}
|
|
|
|
void GLSpectrumView::timeZoom(bool zoomInElseOut)
|
|
{
|
|
if ((m_fftOverlap == 0) && !zoomInElseOut) {
|
|
return;
|
|
}
|
|
|
|
if (zoomInElseOut && (m_fftOverlap == m_fftSize/2 - 1)) {
|
|
return;
|
|
}
|
|
|
|
m_fftOverlap = m_fftOverlap + (zoomInElseOut ? 1 : -1);
|
|
m_changesPending = true;
|
|
|
|
if (m_messageQueueToGUI) {
|
|
m_messageQueueToGUI->push(new MsgReportFFTOverlap(m_fftOverlap));
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::powerZoom(float pw, bool zoomInElseOut)
|
|
{
|
|
m_powerRange = m_powerRange + (zoomInElseOut ? -2 : 2);
|
|
|
|
if (pw > 2.0/3.0) { // bottom
|
|
m_referenceLevel = m_referenceLevel + (zoomInElseOut ? -2 : 2);
|
|
} else if (pw > 1.0/3.0) { // middle
|
|
m_referenceLevel = m_referenceLevel + (zoomInElseOut ? -1 : 1);
|
|
} // top
|
|
|
|
m_powerRange = m_powerRange < 1 ? 1 : m_powerRange > 100 ? 100 : m_powerRange;
|
|
m_referenceLevel = m_referenceLevel < -110 ? -110 : m_referenceLevel > 0 ? 0 : m_referenceLevel;
|
|
m_changesPending = true;
|
|
|
|
if (m_messageQueueToGUI) {
|
|
m_messageQueueToGUI->push(new MsgReportPowerScale(m_referenceLevel, m_powerRange));
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::resetFrequencyZoom()
|
|
{
|
|
m_frequencyZoomFactor = 1.0f;
|
|
m_frequencyZoomPos = 0.5f;
|
|
|
|
updateFFTLimits();
|
|
}
|
|
|
|
void GLSpectrumView::updateFFTLimits()
|
|
{
|
|
if (!m_spectrumVis) {
|
|
return;
|
|
}
|
|
|
|
SpectrumVis::MsgFrequencyZooming *msg = SpectrumVis::MsgFrequencyZooming::create(
|
|
m_frequencyZoomFactor, m_frequencyZoomPos
|
|
);
|
|
|
|
m_spectrumVis->getInputMessageQueue()->push(msg);
|
|
m_changesPending = true;
|
|
}
|
|
|
|
void GLSpectrumView::setFrequencyScale()
|
|
{
|
|
int frequencySpan;
|
|
int64_t centerFrequency;
|
|
|
|
getFrequencyZoom(centerFrequency, frequencySpan);
|
|
m_frequencyScale.setSize(width() - m_leftMargin - m_rightMargin);
|
|
m_frequencyScale.setRange(Unit::Frequency, centerFrequency - frequencySpan / 2.0, centerFrequency + frequencySpan / 2.0);
|
|
m_frequencyScale.setMakeOpposite(m_lsbDisplay);
|
|
}
|
|
|
|
void GLSpectrumView::setPowerScale(int height)
|
|
{
|
|
m_powerScale.setSize(height);
|
|
|
|
if (m_linear)
|
|
{
|
|
Real referenceLevel = m_useCalibration ? m_referenceLevel * m_calibrationGain : m_referenceLevel;
|
|
m_powerScale.setRange(Unit::Scientific, 0.0f, referenceLevel);
|
|
}
|
|
else
|
|
{
|
|
Real referenceLevel = m_useCalibration ? m_referenceLevel + m_calibrationShiftdB : m_referenceLevel;
|
|
m_powerScale.setRange(Unit::Decibel, referenceLevel - m_powerRange, referenceLevel);
|
|
}
|
|
|
|
if (m_powerScale.getScaleWidth() > m_leftMargin) {
|
|
m_leftMargin = m_powerScale.getScaleWidth();
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::getFrequencyZoom(int64_t& centerFrequency, int& frequencySpan)
|
|
{
|
|
frequencySpan = (m_frequencyZoomFactor == 1) ?
|
|
m_sampleRate : m_sampleRate * (1.0 / m_frequencyZoomFactor);
|
|
centerFrequency = (m_frequencyZoomFactor == 1) ?
|
|
m_centerFrequency : (m_frequencyZoomPos - 0.5) * m_sampleRate + m_centerFrequency;
|
|
}
|
|
|
|
// void GLSpectrumView::updateFFTLimits()
|
|
// {
|
|
// m_fftMin = m_frequencyZoomFactor == 1 ? 0 : (m_frequencyZoomPos - (0.5f / m_frequencyZoomFactor)) * m_fftSize;
|
|
// m_fftMax = m_frequencyZoomFactor == 1 ? m_fftSize : (m_frequencyZoomPos - (0.5f / m_frequencyZoomFactor)) * m_fftSize;
|
|
// }
|
|
|
|
void GLSpectrumView::channelMarkerMove(QWheelEvent *event, int mul)
|
|
{
|
|
for (int i = 0; i < m_channelMarkerStates.size(); ++i)
|
|
{
|
|
if ((m_channelMarkerStates[i]->m_channelMarker->getSourceOrSinkStream() != m_displaySourceOrSink)
|
|
|| !m_channelMarkerStates[i]->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (m_channelMarkerStates[i]->m_rect.contains(event->position()))
|
|
{
|
|
int freq = m_channelMarkerStates[i]->m_channelMarker->getCenterFrequency();
|
|
|
|
if (event->angleDelta().y() > 0) {
|
|
freq += 10 * mul;
|
|
} else if (event->angleDelta().y() < 0) {
|
|
freq -= 10 * mul;
|
|
}
|
|
|
|
// calculate scale relative cursor position for new frequency
|
|
float x_pos = m_frequencyScale.getPosFromValue(m_centerFrequency + freq);
|
|
|
|
if ((x_pos >= 0.0) && (x_pos < m_frequencyScale.getSize())) // cursor must be in scale
|
|
{
|
|
m_channelMarkerStates[i]->m_channelMarker->setCenterFrequencyByCursor(freq);
|
|
m_channelMarkerStates[i]->m_channelMarker->setCenterFrequency(freq);
|
|
|
|
// cursor follow-up
|
|
int xd = x_pos + m_leftMargin;
|
|
QCursor c = cursor();
|
|
QPoint cp_a = c.pos();
|
|
QPoint cp_w = mapFromGlobal(cp_a);
|
|
cp_w.setX(xd);
|
|
cp_a = mapToGlobal(cp_w);
|
|
c.setPos(cp_a);
|
|
setCursor(c);
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
zoom(event);
|
|
}
|
|
|
|
// Return if specified point is within the bounds of the waterfall / 3D spectrogram screen area
|
|
bool GLSpectrumView::pointInWaterfallOrSpectrogram(const QPointF &point) const
|
|
{
|
|
// m_waterfallRect is normalised to [0,1]
|
|
QPointF pWat = point;
|
|
pWat.rx() = (point.x()/width() - m_waterfallRect.left()) / m_waterfallRect.width();
|
|
pWat.ry() = (point.y()/height() - m_waterfallRect.top()) / m_waterfallRect.height();
|
|
|
|
return (pWat.x() >= 0) && (pWat.x() <= 1) && (pWat.y() >= 0) && (pWat.y() <= 1);
|
|
}
|
|
|
|
// Return if specified point is within the bounds of the histogram screen area
|
|
bool GLSpectrumView::pointInHistogram(const QPointF &point) const
|
|
{
|
|
// m_histogramRect is normalised to [0,1]
|
|
QPointF p = point;
|
|
p.rx() = (point.x()/width() - m_histogramRect.left()) / m_histogramRect.width();
|
|
p.ry() = (point.y()/height() - m_histogramRect.top()) / m_histogramRect.height();
|
|
|
|
return (p.x() >= 0) && (p.x() <= 1) && (p.y() >= 0) && (p.y() <= 1);
|
|
}
|
|
|
|
void GLSpectrumView::enterEvent(EnterEventType* event)
|
|
{
|
|
m_mouseInside = true;
|
|
update();
|
|
QOpenGLWidget::enterEvent(event);
|
|
}
|
|
|
|
void GLSpectrumView::leaveEvent(QEvent* event)
|
|
{
|
|
m_mouseInside = false;
|
|
update();
|
|
QOpenGLWidget::leaveEvent(event);
|
|
}
|
|
|
|
void GLSpectrumView::tick()
|
|
{
|
|
if (m_displayChanged)
|
|
{
|
|
m_displayChanged = false;
|
|
update();
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::channelMarkerChanged()
|
|
{
|
|
QMutexLocker mutexLocker(&m_mutex);
|
|
m_changesPending = true;
|
|
update();
|
|
}
|
|
|
|
void GLSpectrumView::channelMarkerDestroyed(QObject* object)
|
|
{
|
|
removeChannelMarker((ChannelMarker*)object);
|
|
}
|
|
|
|
void GLSpectrumView::setWaterfallShare(Real waterfallShare)
|
|
{
|
|
QMutexLocker mutexLocker(&m_mutex);
|
|
|
|
if (waterfallShare < 0.1f) {
|
|
m_waterfallShare = 0.1f;
|
|
} else if (waterfallShare > 0.8f) {
|
|
m_waterfallShare = 0.8f;
|
|
} else {
|
|
m_waterfallShare = waterfallShare;
|
|
}
|
|
|
|
m_changesPending = true;
|
|
}
|
|
|
|
void GLSpectrumView::setFPSPeriodMs(int fpsPeriodMs)
|
|
{
|
|
if (fpsPeriodMs == 0)
|
|
{
|
|
disconnect(&m_timer, SIGNAL(timeout()), this, SLOT(tick()));
|
|
m_timer.stop();
|
|
}
|
|
else
|
|
{
|
|
connect(&m_timer, SIGNAL(timeout()), this, SLOT(tick()));
|
|
m_timer.start(fpsPeriodMs);
|
|
}
|
|
|
|
m_fpsPeriodMs = fpsPeriodMs;
|
|
}
|
|
|
|
void GLSpectrumView::cleanup()
|
|
{
|
|
//makeCurrent();
|
|
m_glShaderSimple.cleanup();
|
|
m_glShaderFrequencyScale.cleanup();
|
|
m_glShaderHistogram.cleanup();
|
|
m_glShaderLeftScale.cleanup();
|
|
m_glShaderWaterfall.cleanup();
|
|
m_glShaderTextOverlay.cleanup();
|
|
m_glShaderInfo.cleanup();
|
|
m_glShaderSpectrogram.cleanup();
|
|
m_glShaderSpectrogramTimeScale.cleanup();
|
|
m_glShaderSpectrogramPowerScale.cleanup();
|
|
//doneCurrent();
|
|
}
|
|
|
|
// Display number with full precision, group separators and eng. unit suffixes
|
|
// E.g:
|
|
// -1.505,123,304G
|
|
// 456.034,123M
|
|
// 300.345k
|
|
// 789
|
|
QString GLSpectrumView::displayFull(int64_t value)
|
|
{
|
|
if (value == 0) {
|
|
return "0";
|
|
}
|
|
int64_t absValue = std::abs(value);
|
|
|
|
QString digits = QString::number(absValue);
|
|
int cnt = digits.size();
|
|
|
|
QString point = QLocale::system().decimalPoint();
|
|
QString group = QLocale::system().groupSeparator();
|
|
int i;
|
|
for (i = cnt - 3; i >= 4; i -= 3)
|
|
{
|
|
digits = digits.insert(i, group);
|
|
}
|
|
if (absValue >= 1000) {
|
|
digits = digits.insert(i, point);
|
|
}
|
|
if (cnt > 9) {
|
|
digits = digits.append("G");
|
|
} else if (cnt > 6) {
|
|
digits = digits.append("M");
|
|
} else if (cnt > 3) {
|
|
digits = digits.append("k");
|
|
}
|
|
if (value < 0) {
|
|
digits = digits.insert(0, "-");
|
|
}
|
|
|
|
return digits;
|
|
}
|
|
|
|
QString GLSpectrumView::displayScaled(int64_t value, char type, int precision, bool showMult)
|
|
{
|
|
int64_t posValue = (value < 0) ? -value : value;
|
|
|
|
if (posValue < 1000) {
|
|
return tr("%1").arg(QString::number(value, type, precision));
|
|
} else if (posValue < 1000000) {
|
|
return tr("%1%2").arg(QString::number(value / 1000.0, type, precision)).arg(showMult ? "k" : "");
|
|
} else if (posValue < 1000000000) {
|
|
return tr("%1%2").arg(QString::number(value / 1000000.0, type, precision)).arg(showMult ? "M" : "");
|
|
} else if (posValue < 1000000000000) {
|
|
return tr("%1%2").arg(QString::number(value / 1000000000.0, type, precision)).arg(showMult ? "G" : "");
|
|
} else {
|
|
return tr("%1").arg(QString::number(value, 'e', precision));
|
|
}
|
|
}
|
|
|
|
QString GLSpectrumView::displayPower(float value, char type, int precision)
|
|
{
|
|
return tr("%1").arg(QString::number(value, type, precision));
|
|
}
|
|
|
|
QString GLSpectrumView::displayScaledF(float value, char type, int precision, bool showMult)
|
|
{
|
|
float posValue = (value < 0) ? -value : value;
|
|
|
|
if (posValue == 0)
|
|
{
|
|
return tr("%1").arg(QString::number(value, 'f', precision));
|
|
}
|
|
else if (posValue < 1)
|
|
{
|
|
if (posValue > 0.001) {
|
|
return tr("%1%2").arg(QString::number(value * 1000.0, type, precision)).arg(showMult ? "m" : "");
|
|
} else if (posValue > 0.000001) {
|
|
return tr("%1%2").arg(QString::number(value * 1000000.0, type, precision)).arg(showMult ? "u" : "");
|
|
} else if (posValue > 1e-9) {
|
|
return tr("%1%2").arg(QString::number(value * 1e9, type, precision)).arg(showMult ? "n" : "");
|
|
} else if (posValue > 1e-12) {
|
|
return tr("%1%2").arg(QString::number(value * 1e12, type, precision)).arg(showMult ? "p" : "");
|
|
} else {
|
|
return tr("%1").arg(QString::number(value, 'e', precision));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (posValue < 1e3) {
|
|
return tr("%1").arg(QString::number(value, type, precision));
|
|
} else if (posValue < 1e6) {
|
|
return tr("%1%2").arg(QString::number(value / 1000.0, type, precision)).arg(showMult ? "k" : "");
|
|
} else if (posValue < 1e9) {
|
|
return tr("%1%2").arg(QString::number(value / 1000000.0, type, precision)).arg(showMult ? "M" : "");
|
|
} else if (posValue < 1e12) {
|
|
return tr("%1%2").arg(QString::number(value / 1000000000.0, type, precision)).arg(showMult ? "G" : "");
|
|
} else {
|
|
return tr("%1").arg(QString::number(value, 'e', precision));
|
|
}
|
|
}
|
|
}
|
|
|
|
int GLSpectrumView::getPrecision(int value)
|
|
{
|
|
int posValue = (value < 0) ? -value : value;
|
|
|
|
if (posValue < 1000) {
|
|
return 3;
|
|
} else if (posValue < 10000) {
|
|
return 4;
|
|
} else if (posValue < 100000) {
|
|
return 5;
|
|
} else {
|
|
return 6;
|
|
}
|
|
}
|
|
|
|
// Draw text right justified in top info bar - currently unused
|
|
void GLSpectrumView::drawTextRight(const QString &text, const QString &value, const QString &max, const QString &units)
|
|
{
|
|
drawTextsRight({text}, {value}, {max}, {units});
|
|
}
|
|
|
|
void GLSpectrumView::drawTextsRight(const QStringList &text, const QStringList &value, const QStringList &max, const QStringList &units)
|
|
{
|
|
QFontMetrics fm(font());
|
|
|
|
m_infoPixmap.fill(Qt::transparent);
|
|
|
|
QPainter painter(&m_infoPixmap);
|
|
painter.setPen(Qt::NoPen);
|
|
painter.setBrush(Qt::black);
|
|
painter.setBrush(Qt::transparent);
|
|
painter.drawRect(m_leftMargin, 0, width() - m_leftMargin, m_infoHeight);
|
|
painter.setPen(QColor(0xf0, 0xf0, 0xff));
|
|
painter.setFont(font());
|
|
|
|
int x = width() - m_rightMargin;
|
|
int y = fm.height() + fm.ascent() / 2 - 2;
|
|
int textWidth, maxWidth;
|
|
for (int i = text.length() - 1; i >= 0; i--)
|
|
{
|
|
textWidth = fm.horizontalAdvance(units[i]);
|
|
painter.drawText(QPointF(x - textWidth, y), units[i]);
|
|
x -= textWidth;
|
|
|
|
textWidth = fm.horizontalAdvance(value[i]);
|
|
maxWidth = fm.horizontalAdvance(max[i]);
|
|
painter.drawText(QPointF(x - textWidth, y), value[i]);
|
|
x -= maxWidth;
|
|
|
|
textWidth = fm.horizontalAdvance(text[i]);
|
|
painter.drawText(QPointF(x - textWidth, y), text[i]);
|
|
x -= textWidth;
|
|
}
|
|
|
|
m_glShaderTextOverlay.initTexture(m_infoPixmap.toImage());
|
|
|
|
GLfloat vtx1[] = {
|
|
0, 1,
|
|
1, 1,
|
|
1, 0,
|
|
0, 0
|
|
};
|
|
GLfloat tex1[] = {
|
|
0, 1,
|
|
1, 1,
|
|
1, 0,
|
|
0, 0
|
|
};
|
|
|
|
m_glShaderTextOverlay.drawSurface(m_glInfoBoxMatrix, tex1, vtx1, 4);
|
|
}
|
|
|
|
void GLSpectrumView::drawTextOverlayCentered (
|
|
const QString &text,
|
|
const QColor &color,
|
|
const QFont& font,
|
|
float shiftX,
|
|
float shiftY,
|
|
const QRectF &glRect)
|
|
{
|
|
if (text.isEmpty()) {
|
|
return;
|
|
}
|
|
|
|
QFontMetricsF metrics(font);
|
|
QRectF textRect = metrics.boundingRect(text);
|
|
QRectF overlayRect(0, 0, textRect.width() * 1.05f + 4.0f, textRect.height());
|
|
QPixmap channelOverlayPixmap = QPixmap(overlayRect.width(), overlayRect.height());
|
|
channelOverlayPixmap.fill(Qt::transparent);
|
|
QPainter painter(&channelOverlayPixmap);
|
|
painter.setRenderHints(QPainter::Antialiasing | QPainter::TextAntialiasing, false);
|
|
painter.fillRect(overlayRect, QColor(0, 0, 0, 0x80));
|
|
QColor textColor(color);
|
|
textColor.setAlpha(0xC0);
|
|
painter.setPen(textColor);
|
|
painter.setFont(font);
|
|
painter.drawText(QPointF(2.0f, overlayRect.height() - 4.0f), text);
|
|
painter.end();
|
|
|
|
m_glShaderTextOverlay.initTexture(channelOverlayPixmap.toImage());
|
|
|
|
{
|
|
GLfloat vtx1[] = {
|
|
0, 1,
|
|
1, 1,
|
|
1, 0,
|
|
0, 0};
|
|
GLfloat tex1[] = {
|
|
0, 1,
|
|
1, 1,
|
|
1, 0,
|
|
0, 0};
|
|
|
|
float rectX = glRect.x() + shiftX - ((overlayRect.width()/2)/width());
|
|
float rectY = glRect.y() + shiftY + (4.0f / height()) - ((overlayRect.height()+5)/height());
|
|
float rectW = overlayRect.width() / (float) width();
|
|
float rectH = overlayRect.height() / (float) height();
|
|
|
|
QMatrix4x4 mat;
|
|
mat.setToIdentity();
|
|
mat.translate(-1.0f + 2.0f * rectX, 1.0f - 2.0f * rectY);
|
|
mat.scale(2.0f * rectW, -2.0f * rectH);
|
|
m_glShaderTextOverlay.drawSurface(mat, tex1, vtx1, 4);
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::drawTextOverlay(
|
|
const QString &text,
|
|
const QColor &color,
|
|
const QFont& font,
|
|
float shiftX,
|
|
float shiftY,
|
|
bool leftHalf,
|
|
bool topHalf,
|
|
const QRectF &glRect)
|
|
{
|
|
if (text.isEmpty()) {
|
|
return;
|
|
}
|
|
|
|
QFontMetricsF metrics(font);
|
|
QRectF textRect = metrics.boundingRect(text);
|
|
QRectF overlayRect(0, 0, textRect.width() * 1.05f + 4.0f, textRect.height());
|
|
QPixmap channelOverlayPixmap = QPixmap(overlayRect.width(), overlayRect.height());
|
|
channelOverlayPixmap.fill(Qt::transparent);
|
|
QPainter painter(&channelOverlayPixmap);
|
|
painter.setRenderHints(QPainter::Antialiasing | QPainter::TextAntialiasing, false);
|
|
painter.fillRect(overlayRect, QColor(0, 0, 0, 0x80));
|
|
QColor textColor(color);
|
|
textColor.setAlpha(0xC0);
|
|
painter.setPen(textColor);
|
|
painter.setFont(font);
|
|
painter.drawText(QPointF(2.0f, overlayRect.height() - 4.0f), text);
|
|
painter.end();
|
|
|
|
m_glShaderTextOverlay.initTexture(channelOverlayPixmap.toImage());
|
|
|
|
{
|
|
GLfloat vtx1[] = {
|
|
0, 1,
|
|
1, 1,
|
|
1, 0,
|
|
0, 0};
|
|
GLfloat tex1[] = {
|
|
0, 1,
|
|
1, 1,
|
|
1, 0,
|
|
0, 0};
|
|
|
|
// float shiftX = glRect.width() - ((overlayRect.width() + 4.0f) / width());
|
|
// float shiftY = 4.0f / height();
|
|
float rectX = glRect.x() + shiftX - (leftHalf ? 0 : (overlayRect.width()+1)/width());
|
|
float rectY = glRect.y() + shiftY + (4.0f / height()) - (topHalf ? 0 : (overlayRect.height()+5)/height());
|
|
float rectW = overlayRect.width() / (float) width();
|
|
float rectH = overlayRect.height() / (float) height();
|
|
|
|
QMatrix4x4 mat;
|
|
mat.setToIdentity();
|
|
mat.translate(-1.0f + 2.0f * rectX, 1.0f - 2.0f * rectY);
|
|
mat.scale(2.0f * rectW, -2.0f * rectH);
|
|
m_glShaderTextOverlay.drawSurface(mat, tex1, vtx1, 4);
|
|
}
|
|
}
|
|
|
|
void GLSpectrumView::formatTextInfo(QString& info)
|
|
{
|
|
if (m_useCalibration) {
|
|
info.append(tr("CAL:%1dB ").arg(QString::number(m_calibrationShiftdB, 'f', 1)));
|
|
}
|
|
|
|
if (m_frequencyZoomFactor != 1.0f) {
|
|
info.append(tr("%1x ").arg(QString::number(m_frequencyZoomFactor, 'f', 1)));
|
|
}
|
|
|
|
if (m_sampleRate == 0)
|
|
{
|
|
info.append(tr("CF:%1 SP:%2").arg(m_centerFrequency).arg(m_sampleRate));
|
|
}
|
|
else
|
|
{
|
|
int64_t centerFrequency;
|
|
int frequencySpan;
|
|
getFrequencyZoom(centerFrequency, frequencySpan);
|
|
info.append(tr("CF:%1 ").arg(displayScaled(centerFrequency, 'f', getPrecision(centerFrequency/frequencySpan), true)));
|
|
info.append(tr("SP:%1 ").arg(displayScaled(frequencySpan, 'f', 3, true)));
|
|
}
|
|
}
|
|
|
|
bool GLSpectrumView::eventFilter(QObject *object, QEvent *event)
|
|
{
|
|
if (event->type() == QEvent::KeyPress)
|
|
{
|
|
QKeyEvent *keyEvent = static_cast<QKeyEvent *>(event);
|
|
switch (keyEvent->key())
|
|
{
|
|
case Qt::Key_Up:
|
|
if (keyEvent->modifiers() & Qt::ShiftModifier) {
|
|
m_glShaderSpectrogram.lightRotateX(-5.0f);
|
|
} else if (keyEvent->modifiers() & Qt::AltModifier) {
|
|
m_glShaderSpectrogram.lightTranslateY(0.05);
|
|
} else if (keyEvent->modifiers() & Qt::ControlModifier) {
|
|
m_glShaderSpectrogram.translateY(0.05);
|
|
} else {
|
|
m_glShaderSpectrogram.rotateX(-5.0f);
|
|
}
|
|
break;
|
|
case Qt::Key_Down:
|
|
if (keyEvent->modifiers() & Qt::ShiftModifier) {
|
|
m_glShaderSpectrogram.lightRotateX(5.0f);
|
|
} else if (keyEvent->modifiers() & Qt::AltModifier) {
|
|
m_glShaderSpectrogram.lightTranslateY(-0.05);
|
|
} else if (keyEvent->modifiers() & Qt::ControlModifier) {
|
|
m_glShaderSpectrogram.translateY(-0.05);
|
|
} else {
|
|
m_glShaderSpectrogram.rotateX(5.0f);
|
|
}
|
|
break;
|
|
case Qt::Key_Left:
|
|
if (keyEvent->modifiers() & Qt::ShiftModifier) {
|
|
m_glShaderSpectrogram.lightRotateZ(5.0f);
|
|
} else if (keyEvent->modifiers() & Qt::AltModifier) {
|
|
m_glShaderSpectrogram.lightTranslateX(-0.05);
|
|
} else if (keyEvent->modifiers() & Qt::ControlModifier) {
|
|
m_glShaderSpectrogram.translateX(-0.05);
|
|
} else {
|
|
m_glShaderSpectrogram.rotateZ(5.0f);
|
|
}
|
|
break;
|
|
case Qt::Key_Right:
|
|
if (keyEvent->modifiers() & Qt::ShiftModifier) {
|
|
m_glShaderSpectrogram.lightRotateZ(-5.0f);
|
|
} else if (keyEvent->modifiers() & Qt::AltModifier) {
|
|
m_glShaderSpectrogram.lightTranslateX(0.05);
|
|
} else if (keyEvent->modifiers() & Qt::ControlModifier) {
|
|
m_glShaderSpectrogram.translateX(0.05);
|
|
} else {
|
|
m_glShaderSpectrogram.rotateZ(-5.0f);
|
|
}
|
|
break;
|
|
case Qt::Key_Equal: // So you don't need to press shift
|
|
case Qt::Key_Plus:
|
|
if (keyEvent->modifiers() & Qt::ControlModifier) {
|
|
m_glShaderSpectrogram.userScaleZ(1.1f);
|
|
} else {
|
|
m_glShaderSpectrogram.verticalAngle(-1.0f);
|
|
}
|
|
break;
|
|
case Qt::Key_Minus:
|
|
if (keyEvent->modifiers() & Qt::ControlModifier) {
|
|
m_glShaderSpectrogram.userScaleZ(0.9f);
|
|
} else {
|
|
m_glShaderSpectrogram.verticalAngle(1.0f);
|
|
}
|
|
break;
|
|
case Qt::Key_R:
|
|
m_glShaderSpectrogram.reset();
|
|
break;
|
|
case Qt::Key_F:
|
|
// Project straight down and scale to view, so it's a bit like 2D
|
|
m_glShaderSpectrogram.reset();
|
|
m_glShaderSpectrogram.rotateX(45.0f);
|
|
m_glShaderSpectrogram.verticalAngle(-9.0f);
|
|
m_glShaderSpectrogram.userScaleZ(0.0f);
|
|
break;
|
|
}
|
|
repaint(); // Force repaint in case acquisition is stopped
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return QOpenGLWidget::eventFilter(object, event);
|
|
}
|
|
}
|