1
0
mirror of https://github.com/f4exb/sdrangel.git synced 2024-11-26 17:58:43 -05:00
sdrangel/plugins/samplesink/xtrxoutput/xtrxoutputthread.cpp
2019-01-03 13:08:11 +01:00

342 lines
10 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <algorithm>
#include <chrono>
#include <thread>
#include "xtrx/devicextrx.h"
#include "dsp/samplesourcefifo.h"
#include "xtrxoutputthread.h"
XTRXOutputThread::XTRXOutputThread(struct xtrx_dev *dev, unsigned int nbChannels, unsigned int uniqueChannelIndex, QObject* parent) :
QThread(parent),
m_running(false),
m_dev(dev),
m_nbChannels(nbChannels),
m_uniqueChannelIndex(uniqueChannelIndex)
{
qDebug("XTRXOutputThread::XTRXOutputThread: nbChannels: %u uniqueChannelIndex: %u", nbChannels, uniqueChannelIndex);
m_channels = new Channel[2];
}
XTRXOutputThread::~XTRXOutputThread()
{
qDebug("XTRXOutputThread::~XTRXOutputThread");
if (m_running) {
stopWork();
}
delete[] m_channels;
}
void XTRXOutputThread::startWork()
{
m_startWaitMutex.lock();
start();
while(!m_running) {
m_startWaiter.wait(&m_startWaitMutex, 100);
}
m_startWaitMutex.unlock();
}
void XTRXOutputThread::stopWork()
{
m_running = false;
wait();
}
unsigned int XTRXOutputThread::getNbFifos()
{
unsigned int fifoCount = 0;
for (unsigned int i = 0; i < 2; i++)
{
if (m_channels[i].m_sampleFifo) {
fifoCount++;
}
}
return fifoCount;
}
void XTRXOutputThread::setLog2Interpolation(unsigned int channel, unsigned int log2_interp)
{
if (channel < 2) {
m_channels[channel].m_log2Interp = log2_interp;
}
}
unsigned int XTRXOutputThread::getLog2Interpolation(unsigned int channel) const
{
if (channel < 2) {
return m_channels[channel].m_log2Interp;
} else {
return 0;
}
}
void XTRXOutputThread::setFifo(unsigned int channel, SampleSourceFifo *sampleFifo)
{
if (channel < 2) {
m_channels[channel].m_sampleFifo = sampleFifo;
}
}
SampleSourceFifo *XTRXOutputThread::getFifo(unsigned int channel)
{
if (channel < 2) {
return m_channels[channel].m_sampleFifo;
} else {
return 0;
}
}
void XTRXOutputThread::run()
{
int res;
m_running = true;
m_startWaiter.wakeAll();
unsigned int nbFifos = getNbFifos();
if ((m_nbChannels != 0) && (nbFifos != 0))
{
xtrx_run_params params;
xtrx_run_params_init(&params);
params.dir = XTRX_TX;
params.tx_repeat_buf = 0;
params.tx.paketsize = 2*DeviceXTRX::blockSize;
params.tx.chs = XTRX_CH_AB;
params.tx.wfmt = XTRX_WF_16;
params.tx.hfmt = XTRX_IQ_INT16;
if (m_nbChannels == 1)
{
qDebug("XTRXOutputThread::run: SO mode for channel #%u", m_uniqueChannelIndex);
params.tx.flags |= XTRX_RSP_SISO_MODE;
if (m_uniqueChannelIndex == 1) {
params.tx.flags |= XTRX_RSP_SWAP_AB;
}
}
res = xtrx_run_ex(m_dev, &params);
if (res != 0)
{
qCritical("XTRXOutputThread::run: could not start stream err:%d", res);
m_running = false;
}
else
{
std::this_thread::sleep_for(std::chrono::milliseconds(50));
qDebug("XTRXOutputThread::run: stream started");
}
const unsigned int elemSize = 4; // XTRX uses 4 byte I+Q samples
std::vector<std::vector<char>> buffMem(m_nbChannels, std::vector<char>(elemSize*DeviceXTRX::blockSize));
std::vector<void *> buffs(m_nbChannels);
master_ts ts = 4096*1024;
for (std::size_t i = 0; i < m_nbChannels; i++) {
buffs[i] = buffMem[i].data();
}
xtrx_send_ex_info_t nfo;
nfo.samples = DeviceXTRX::blockSize;
nfo.buffer_count = m_nbChannels;
nfo.buffers = (void* const*) buffs.data();
nfo.flags = XTRX_TX_DONT_BUFFER; // | XTRX_TX_SEND_ZEROS;
nfo.timeout = 0;
nfo.out_txlatets = 0;
nfo.ts = ts;
while (m_running)
{
// if (m_nbChannels > 1) {
// callbackMO((qint16*) buffs[0], (qint16*) buffs[1], nfo.samples);
// } else {
// callbackSO((qint16*) buffs[0], nfo.samples);
// }
callbackSO((qint16*) buffs[0], nfo.samples);
res = xtrx_send_sync_ex(m_dev, &nfo);
if (res < 0)
{
qCritical("XTRXOutputThread::run send error: %d", res);
qDebug("XTRXOutputThread::run: out_samples: %u out_flags: %u", nfo.out_samples, nfo.out_flags);
break;
}
if (nfo.out_flags & XTRX_TX_DISCARDED_TO) {
qDebug("XTRXOutputThread::run: underrun");
}
if (nfo.out_txlatets) {
qDebug("XTRXOutputThread::run: out_txlatets: %lu", nfo.out_txlatets);
}
nfo.ts += DeviceXTRX::blockSize;
}
res = xtrx_stop(m_dev, XTRX_TX);
if (res != 0)
{
qCritical("XTRXOutputThread::run: could not stop stream");
}
else
{
std::this_thread::sleep_for(std::chrono::milliseconds(50));
qDebug("XTRXOutputThread::run: stream stopped");
}
}
else
{
qWarning("XTRXOutputThread::run: no channels or FIFO allocated. Aborting");
}
m_running = false;
}
void XTRXOutputThread::callback(qint16* buf, qint32 len)
{
if (m_channels[m_uniqueChannelIndex].m_sampleFifo)
{
float bal = m_channels[m_uniqueChannelIndex].m_sampleFifo->getRWBalance();
if (bal < -0.25) {
qDebug("XTRXOutputThread::callbackSO: read lags: %f", bal);
} else if (bal > 0.25) {
qDebug("XTRXOutputThread::callbackSO: read leads: %f", bal);
}
SampleVector::iterator beginRead;
m_channels[m_uniqueChannelIndex].m_sampleFifo->readAdvance(beginRead, len/(1<<m_channels[m_uniqueChannelIndex].m_log2Interp));
beginRead -= len;
if (m_channels[m_uniqueChannelIndex].m_log2Interp == 0)
{
m_channels[m_uniqueChannelIndex].m_interpolators.interpolate1(&beginRead, buf, len*2);
}
else
{
switch (m_channels[m_uniqueChannelIndex].m_log2Interp)
{
case 1:
m_channels[m_uniqueChannelIndex].m_interpolators.interpolate2_cen(&beginRead, buf, len*2);
break;
case 2:
m_channels[m_uniqueChannelIndex].m_interpolators.interpolate4_cen(&beginRead, buf, len*2);
break;
case 3:
m_channels[m_uniqueChannelIndex].m_interpolators.interpolate8_cen(&beginRead, buf, len*2);
break;
case 4:
m_channels[m_uniqueChannelIndex].m_interpolators.interpolate16_cen(&beginRead, buf, len*2);
break;
case 5:
m_channels[m_uniqueChannelIndex].m_interpolators.interpolate32_cen(&beginRead, buf, len*2);
break;
case 6:
m_channels[m_uniqueChannelIndex].m_interpolators.interpolate64_cen(&beginRead, buf, len*2);
break;
default:
break;
}
}
}
else
{
std::fill(buf, buf+2*len, 0);
}
}
void XTRXOutputThread::callbackSO(qint16* buf, qint32 len)
{
if (m_channels[m_uniqueChannelIndex].m_sampleFifo)
{
float bal = m_channels[m_uniqueChannelIndex].m_sampleFifo->getRWBalance();
if (bal < -0.25) {
qDebug("XTRXOutputThread::callbackSO: read lags: %f", bal);
} else if (bal > 0.25) {
qDebug("XTRXOutputThread::callbackSO: read leads: %f", bal);
}
SampleVector::iterator beginRead;
m_channels[m_uniqueChannelIndex].m_sampleFifo->readAdvance(beginRead, len/(1<<m_channels[m_uniqueChannelIndex].m_log2Interp));
beginRead -= len;
if (m_channels[m_uniqueChannelIndex].m_log2Interp == 0)
{
m_channels[m_uniqueChannelIndex].m_interpolators.interpolate1(&beginRead, buf, len*2);
}
else
{
switch (m_channels[m_uniqueChannelIndex].m_log2Interp)
{
case 1:
m_channels[m_uniqueChannelIndex].m_interpolators.interpolate2_cen(&beginRead, buf, len*2);
break;
case 2:
m_channels[m_uniqueChannelIndex].m_interpolators.interpolate4_cen(&beginRead, buf, len*2);
break;
case 3:
m_channels[m_uniqueChannelIndex].m_interpolators.interpolate8_cen(&beginRead, buf, len*2);
break;
case 4:
m_channels[m_uniqueChannelIndex].m_interpolators.interpolate16_cen(&beginRead, buf, len*2);
break;
case 5:
m_channels[m_uniqueChannelIndex].m_interpolators.interpolate32_cen(&beginRead, buf, len*2);
break;
case 6:
m_channels[m_uniqueChannelIndex].m_interpolators.interpolate64_cen(&beginRead, buf, len*2);
break;
default:
break;
}
}
}
else
{
std::fill(buf, buf+2*len, 0);
}
}
void XTRXOutputThread::callbackMO(qint16* buf0, qint16* buf1, qint32 len)
{
unsigned int uniqueChannelIndex = m_uniqueChannelIndex;
// channel 0
m_uniqueChannelIndex = 0;
callbackSO(buf0, len);
// channel 1
m_uniqueChannelIndex = 1;
callbackSO(buf1, len);
m_uniqueChannelIndex = uniqueChannelIndex;
}