mirror of
https://github.com/f4exb/sdrangel.git
synced 2024-11-23 00:18:37 -05:00
187 lines
4.8 KiB
C++
187 lines
4.8 KiB
C++
///////////////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2018-2021 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
|
|
// Copyright (C) 2019 Davide Gerhard <rainbow@irh.it> //
|
|
// Copyright (C) 2020 Kacper Michajłow <kasper93@gmail.com> //
|
|
// //
|
|
// This file is part of LeanSDR Copyright (C) 2016-2019 <pabr@pabr.org>. //
|
|
// //
|
|
// This program is free software; you can redistribute it and/or modify //
|
|
// it under the terms of the GNU General Public License as published by //
|
|
// the Free Software Foundation as version 3 of the License, or //
|
|
// (at your option) any later version. //
|
|
// //
|
|
// This program is distributed in the hope that it will be useful, //
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
|
// GNU General Public License V3 for more details. //
|
|
// //
|
|
// You should have received a copy of the GNU General Public License //
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
|
|
///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef LEANSDR_MATH_H
|
|
#define LEANSDR_MATH_H
|
|
|
|
#include <cmath>
|
|
#include <complex>
|
|
#include <stdint.h>
|
|
|
|
namespace leansdr
|
|
{
|
|
|
|
template <typename T>
|
|
T dotprod(const T *u, const T *v, int n)
|
|
{
|
|
T acc = 0;
|
|
|
|
while (n--) {
|
|
acc += (*u++) * (*v++);
|
|
}
|
|
|
|
return acc;
|
|
}
|
|
|
|
template <typename T>
|
|
inline T cnorm2(const std::complex<T> &u)
|
|
{
|
|
return u.real() * u.real() + u.imag() * u.imag();
|
|
}
|
|
|
|
template <typename T>
|
|
T cnorm2(const std::complex<T> *p, int n)
|
|
{
|
|
T res = 0;
|
|
|
|
for (; n--; ++p) {
|
|
res += cnorm2(*p);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
// Return conj(u)*v
|
|
template <typename T>
|
|
inline std::complex<T> conjprod(const std::complex<T> &u, const std::complex<T> &v)
|
|
{
|
|
return std::complex<T>(
|
|
u.real() * v.real() + u.imag() * v.imag(),
|
|
u.real() * v.imag() - u.imag() * v.real()
|
|
);
|
|
}
|
|
|
|
// Return sum(conj(u[i])*v[i])
|
|
template <typename T>
|
|
std::complex<T> conjprod(const std::complex<T> *u, const std::complex<T> *v, int n)
|
|
{
|
|
std::complex<T> acc = 0;
|
|
|
|
while (n--) {
|
|
acc += conjprod(*u++, *v++);
|
|
}
|
|
|
|
return acc;
|
|
}
|
|
|
|
// TBD Optimize with dedicated instructions
|
|
int hamming_weight(uint8_t x);
|
|
int hamming_weight(uint16_t x);
|
|
int hamming_weight(uint32_t x);
|
|
int hamming_weight(uint64_t x);
|
|
unsigned char parity(uint8_t x);
|
|
unsigned char parity(uint16_t x);
|
|
unsigned char parity(uint32_t x);
|
|
unsigned char parity(uint64_t x);
|
|
int log2i(uint64_t x);
|
|
|
|
// Pre-computed sin/cos for 16-bit angles
|
|
|
|
struct trig16
|
|
{
|
|
std::complex<float> lut[65536]; // TBD static and shared
|
|
|
|
trig16()
|
|
{
|
|
for (int a = 0; a < 65536; ++a)
|
|
{
|
|
float af = a * 2 * M_PI / 65536;
|
|
lut[a] = {cosf(af), sinf(af)};
|
|
}
|
|
}
|
|
|
|
inline const std::complex<float> &expi(uint16_t a) const
|
|
{
|
|
return lut[a];
|
|
}
|
|
|
|
// a must fit in a int32_t, otherwise behaviour is undefined
|
|
inline const std::complex<float> &expi(float a) const
|
|
{
|
|
return expi((uint16_t)(int16_t)(int32_t)a);
|
|
}
|
|
};
|
|
|
|
// Modulo with signed result in [-m/2..m/2[
|
|
|
|
inline float fmodfs(float v, float m)
|
|
{
|
|
v = fmodf(v, m);
|
|
return (v>=m/2) ? v-m : (v<-m/2) ? v+m : v;
|
|
}
|
|
|
|
inline double rand_compat()
|
|
{
|
|
#ifdef WIN32
|
|
return double(rand())/RAND_MAX;
|
|
#else
|
|
return drand48();
|
|
#endif
|
|
}
|
|
|
|
// Simple statistics
|
|
|
|
template<typename T>
|
|
struct statistics
|
|
{
|
|
statistics() {
|
|
reset();
|
|
}
|
|
|
|
void reset()
|
|
{
|
|
vm1 = vm2 = 0;
|
|
count = 0;
|
|
vmin = vmax = 99;/*comp warning*/
|
|
}
|
|
|
|
void add(const T &v)
|
|
{
|
|
vm1 += v;
|
|
vm2 += v*v;
|
|
|
|
if ( count == 0 ) {
|
|
vmin = vmax = v;
|
|
} else if (
|
|
v < vmin ) { vmin = v;
|
|
} else if ( v > vmax ) {
|
|
vmax = v;
|
|
}
|
|
|
|
++count;
|
|
}
|
|
|
|
T average() { return vm1 / count; }
|
|
T variance() { return vm2/count - (vm1/count)*(vm1/count); }
|
|
T stddev() { return gen_sqrt(variance()); }
|
|
T min() { return vmin; }
|
|
T max() { return vmax; }
|
|
|
|
private:
|
|
T vm1, vm2; // Moments
|
|
T vmin, vmax; // Range
|
|
int count; // Number of samples in vm1, vm2
|
|
}; // statistics
|
|
|
|
} // namespace leansdr
|
|
|
|
#endif // LEANSDR_MATH_H
|